Зная радиус вписанной окружности как найти описанной

Все формулы для радиуса вписанной окружности

Радиус вписанной окружности в треугольник

a , b , c — стороны треугольника

p — полупериметр, p=( a + b + c )/2

Формула радиуса вписанной окружности в треугольник ( r ):

Радиус вписанной окружности в равносторонний треугольник

a — сторона треугольника

r — радиус вписанной окружности

Формула для радиуса вписанной окружности в равносторонний треугольник ( r ):

Радиус вписанной окружности равнобедренный треугольник

1. Формулы радиуса вписанной окружности если известны: стороны и угол

a — равные стороны равнобедренного треугольника

b — сторона ( основание)

α — угол при основании

О — центр вписанной окружности

r — радиус вписанной окружности

Формула радиуса вписанной окружности в равнобедренный треугольник через стороны ( r ) :

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и угол ( r ) :

2. Формулы радиуса вписанной окружности если известны: сторона и высота

a — равные стороны равнобедренного треугольника

b — сторона ( основание)

h — высота

О — центр вписанной окружности

r — радиус вписанной окружности

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и высоту ( r ) :

Калькулятор расчета стороны правильного многоугольника через радиусы окружностей

В публикации представлены онлайн-калькуляторы и формулы для расчета длины стороны правильного многоугольника через радиус вписанной или описанной окружности.

Расчет длины стороны

Инструкция по использованию: введите радиус вписанной (r) или описанной (R) окружности, укажите количество вершин правильного многоугольника (n), затем нажмите кнопку “Рассчитать”. В результате будет вычислена длина стороны фигуры (a).

Как найти радиус окружности. Вписанная и описанная окружность

Радиус – это отрезок, который соединяет любую точку на окружности с ее центром. Это одна из самых важных характеристик данной фигуры, поскольку на ее основе можно вычислить все другие параметры. Если знать, как найти радиус окружности, то можно рассчитать ее диаметр, длину, а также площадь. В том случае, когда данная фигура вписана или описана вокруг другой, то можно решить еще целый ряд задач. Сегодня мы разберем основные формулы и особенности их применения.

Известные величины

Если знать, как найти радиус окружности, который обычно обозначают буквой R, то его можно вычислить по одной характеристике. К таким величинам относят:

  • длину окружности (C);
  • диаметр (D) – отрезок (вернее, хорда), который проходит через центральную точку;
  • площадь (S) – пространство, которое ограничено данной фигурой.

По длине окружности

Если в задаче известна величина C, то R = С / (2 * П). Эта формула является производной. Если мы знаем, что из себя представляет длина окружности, то ее уже не нужно запоминать. Предположим, что в задаче C = 20 м. Как найти радиус окружности в этом случае? Просто подставляем известную величину в вышеприведенную формулу. Отметим, что в таких задачах всегда подразумевается знание числа П. Для удобства расчетов примем его значение за 3,14. Решение в этом случае выглядит следующим образом: записываем, какие величины даны, выводим формулу и проводим вычисления. В ответе пишем, что радиус равен 20 / (2 * 3,14) = 3,19 м. Важно не забыть о том, что мы считали, и упомянуть название единиц измерения.

По диаметру

Сразу подчеркнем, что это самый простой вид задач, в которых спрашивается о том, как найти радиус окружности. Если такой пример попался вам на контрольной, то можете быть спокойны. Тут даже не нужен калькулятор! Как мы уже говорили, диаметр – это отрезок или, правильнее сказать, хорда, которая проходит через центр. При этом все точки окружности равноудалены. Поэтому данная хорда состоит из двух половинок. Каждая из них является радиусом, что следует из его определения как отрезка, который соединяет точку на окружности и ее центр. Если в задаче известен диаметр, то для нахождения радиуса нужно просто разделить эту величину на два. Формула выглядит следующим образом: R = D / 2. Например, если диаметр в задаче равен 10 м, то радиус – 5 метров.

По площади круга

Этот тип задач обычно называют самым сложным. Это связано в первую очередь с незнанием формулы. Если знать, как найти радиус окружности в этом случае, то остальное – дело техники. В калькуляторе только нужно заранее найти значок вычисления квадратного корня. Площадь круга – это произведение числа П и радиуса, умноженного на самого себя. Формула выглядит следующим образом: S = П * R 2 . Обособив радиус на одной из сторон уравнения, можно с легкость решить задачу. Он будет равен квадратному корню из частного от деления площади на число П. Если S = 10 м, то R = 1,78 метров. Как и в предыдущих задачах, важно не забыть об используемых единицах измерения.

Как найти радиус описанной окружности

Предположим, что a, b, c – это стороны треугольника. Если знать их величины, то можно найти радиус описанной вокруг него окружности. Для этого сначала нужно найти полупериметр треугольника. Чтобы было легче для восприятия, обозначим его маленькой буквой p. Он будет равен половине суммы сторон. Его формула: p = (a + b + c) / 2.

Также вычислим произведение длин сторон. Для удобства обозначим его буквой S. Формула радиуса описанной окружности будет выглядеть так: R = S / (4 * √(p * ( p — a ) * (p — b) * (p — c)).

Рассмотрим пример задачи. У нас есть окружность, описанная вокруг треугольника. Длины ее сторон составляют 5, 6 и 7 см. Сначала вычисляем полупериметр. В нашей задаче он будет равен 9 сантиметрам. Теперь вычислим произведение длин сторон – 210. Подставляем результаты промежуточных расчетов в формулу и узнаем результат. Радиус описанной окружности равен 3,57 сантиметра. Записываем ответ, не забывая о единицах измерения.

Как найти радиус вписанной окружности

Предположим, что a, b, c – длины сторон треугольника. Если знать их величины, то можно найти радиус вписанной в него окружности. Сначала нужно найти его полупериметр. Для облегчения понимания обозначим его маленькой буквой p. Формула его вычисления выглядит следующим образом: p = ( a + b + c) / 2. Этот тип задачи несколько проще, чем предыдущий, поэтому больше не нужно никаких промежуточных расчетов.

Радиус вписанной окружности вычисляется по следующей формуле: R = √((p — a) * (p — b) * (p — c) / p). Рассмотрим это на конкретном примере. Предположим, в задаче описан треугольник со сторонами 5, 7 и 10 см. В него вписана окружность, радиус которой и нужно найти. Сначала находим полупериметр. В нашей задаче он будет равен 11 см. Теперь подставляем его в основную формулу. Радиус окажется равным 1,65 сантиметрам. Записываем ответ и не забываем о правильных единицах измерения.

Окружность и ее свойства

У каждой геометрической фигуры есть свои особенности. Именно от их понимания зависит правильность решения задач. Есть они и у окружности. Зачастую их используют при решении примеров с описанными или вписанными фигурами, поскольку они дают ясное представление о такой ситуации. Среди них:

  • Прямая может иметь ноль, одну или две точки пересечения с окружностью. В первом случае она с ней не пересекается, во втором является касательной, в третьем – секущей.
  • Если взять три точки, что не лежат на одной прямой, то через них можно привести только одну окружность.
  • Прямая может быть касательной сразу двух фигур. В этом случае она будет проходить через точку, которая лежит на отрезке, соединяющем центры окружностей. Его длина равна сумме радиусов данных фигур.
  • Через одну или две точки можно провести бесконечное количество окружностей.
источники:

Введите в поле «радиус вписанной окружности» Ваше измерение и нажмите «Рассчитать»

Введите данные:

Достаточно ввести только одно значение, остальное калькулятор посчитает сам.

Cторона квадрата, диаметр вписанной окружности (L)

Диагональ квадрата, диаметр описанной окружности (M)

Радиус вписанной окружности (R1)

Радиус описанной окружности (R2)

Округление:

* — обязательно заполнить

Радиус вписанной окружности (R1) = 10

Cторона, диаметр вписанной окружности (L) = (R1*2) = (10*2) = 28.28

Диагональ, диаметр описанной окружности (M) = (2*L^{2}) = (2*20^{2}) = 20

Радиус описанной окружности (R2) = (frac{M}{2}) = (frac{28.28}{2}) = 14.14

Периметр (P) = (L*4) = (20*4) = 80

Площадь (S) = (L^{2}) = (20^{2}) = 400

радиус описанной окружности треугольника

a , b , c blue    —  стороны треугольника

s12 black  — полупериметр

s (abc)2

O black  — центр окружности

Формула радиуса описанной окружности треугольника ( R  ) :

Формула радиуса описанной окружности треугольника

радиус описанной окружности равностороннего треугольника

сторона — сторона треугольника

высота — высота

радиус — радиус описанной окружности

Формула радиуса описанной окружности равностороннего треугольника через его сторону:

Формула радиуса описанной окружности равностороннего треугольника через сторону

Формула радиуса описанной окружности равностороннего треугольника через высоту:

Формула радиуса описанной окружности равностороннего треугольника через высоту

Зная стороны равнобедренного треугольника, можно по формуле, найти, радиус описанной окружности около этого треугольника.

радиус описанной окружности равнобедренного треугольника

a, b — стороны треугольника

Формула радиуса описанной окружности равнобедренного треугольника(R):

Формула радиуса описанной окружности равнобедренного треугольника

Радиус описанной окружности прямоугольного треугольника равен половине его гипотенузы.

радиус описанной окружности прямоугольного треугольника

a, b — катеты прямоугольного треугольника

c — гипотенуза

Формула радиуса описанной окружности прямоугольного треугольника (R):

Формула радиуса описанной окружности прямоугольного треугольника

Радиус описанной окружности трапеции

a — боковые стороны трапеции

c — нижнее основание

b — верхнее основание

d — диагональ

p — полупериметр треугольника DBC

p = (a+d+c)/2

Формула радиуса описанной окружности равнобокой трапеции, (R)

Формула радиуса описанной окружности равнобокой трапеции

Радиус описанной окружности квадрата равен половине его диагонали

радиус описанной окружности около квадрата

a — сторона квадрата

d — диагональ

Формула радиуса описанной окружности квадрата (R):

Формула радиуса описанной окружности квадрата

Радиус описанной окружности прямоугольника равен половине его диагонали

Радиус описанной окружности прямоугольника

a, b — стороны прямоугольника

d — диагональ

Формула радиуса описанной окружности прямоугольника (R):

Формула радиуса описанной окружности прямоугольника

Радиус описанной окружности правильного многоугольника

a — сторона многоугольника

N — количество сторон многоугольника

Формула радиуса описанной окружности правильного многоугольника, (R):

Формула радиуса описанной окружности правильного многоугольника

a — сторона шестиугольника

d — диагональ шестиугольника

Радиус описанной окружности правильного шестиугольника (R):

Окружность вписана в n-угольник, если она касается всех сторон этого n-угольника (рис. 8.106). 

Окружность описана около n-угольника, если все вершины n-угольника лежат на окружности (рис. 8.107). 

Свойства вписанной окружности

1. Окружность можно вписать в любой треугольник.

2. Окружность можно вписать в четырехугольник, если суммы длин его противолежащих сторон равны. 

Например, на рисунке 8.106 LaTeX formula: AD+BC=AB+DC

Так, окружность можно вписать в квадрат и в ромб, но нельзя вписать в параллелограмм и в прямоугольник.

Свойства описанной окружности

1. Окружность можно описать около любого треугольника.

2. Окружность можно описать около четырехугольника, если суммы его противолежащих углов равны. 

Например, на рисунке 8.107 LaTeX formula: angle A+angle C=angle B+angle D=180^{circ}

Так, окружность можно описать около квадрата и прямоугольника, но нельзя описать около параллелограмма и ромба.

Расположение центров окружностей, описанных около треугольника:

1) центр окружности расположен на пересечении серединных перпендикуляров к сторонам треугольника;

2) если треугольник остроугольный, то центр окружности расположен в этом треугольнике: 

а) в равностороннем треугольнике центром окружности является точка пересечения высот, биссектрис, медиан треугольника (центры вписанной и описанной окружностей совпадают (рис. 8.108); 

б) в равнобедренном треугольнике центр окружности расположен на биссектрисе, проведенной из вершины треугольника к его основанию (рис. 8.109);

3) если треугольник прямоугольный, то центр окружности расположен на середине гипотенузы (рис. 8.110);

4) если треугольник тупоугольный, то центр окружности расположен вне треугольника (рис. 8.111).

Расположение центров окружностей, вписанных в треугольник:

1) центр окружности, вписанной в треугольник, расположен в этом треугольнике (рис. 8.112 – 8.115);

2) центром окружности является точка пересечения биссектрис треугольника;

3) в равностороннем треугольнике центром окружности является точка пересечения высот, биссектрис, медиан треугольника. 

Формулы для вычисления радиусов вписанной и описанной окружностей

Радиус окружности, описанной около многоугольника, как правило, обозначают LaTeX formula: R, а радиус окружности, вписанной в многоугольник, обозначают LaTeX formula: r

1) для равностороннего треугольника со стороной LaTeX formula: a:

LaTeX formula: R=frac{a}{sqrt{3}}, (8.34)

LaTeX formula: r=frac{a}{2sqrt{3}}; (8.35)

2) для произвольного треугольника со сторонами LaTeX formula: a, b, c и площадью LaTeX formula: S

LaTeX formula: R=frac{abc}{4S}, (8.36)

LaTeX formula: r=frac{2S}{a+b+c}; (8.37)

3) для прямоугольного треугольника с катетами LaTeX formula: a, b и гипотенузой LaTeX formula: c

LaTeX formula: R=frac{c}{2}, (8.38)

LaTeX formula: r=frac{a+b-c}{2}; (8.39)

4) для квадрата со стороной LaTeX formula: a и диагональю LaTeX formula: d

LaTeX formula: R=frac{d}{2}, (8.40)

LaTeX formula: r=frac{a}{2}; (8.41)

5) для прямоугольника с диагональю LaTeX formula: d

LaTeX formula: R=frac{d}{2}; (8.42)

6) для ромба с высотой LaTeX formula: h

LaTeX formula: r=frac{h}{2}; (8.43)

7) для трапеции с высотой LaTeX formula: h, при условии, что в трапецию можно вписать окружность: 

LaTeX formula: r=frac{h}{2}. (8.44)

Если около трапеции можно описать окружность, то, проведя диагональ трапеции и рассмотрев один из полученных треугольников со сторонами LaTeX formula: a, b, c и площадью LaTeX formula: S, по формуле LaTeX formula: R=frac{abc}{4S} найдем радиус окружности описанной около треугольника, а значит и около трапеции (рис. 8.116);

8) для правильного шестиугольника со стороной LaTeX formula: a

LaTeX formula: R=a, (8.45)

LaTeX formula: r=frac{asqrt{3}}{2}. (8.46)

Правильный шестиугольник состоит из шести правильных треугольников (рис. 8.117) и точка LaTeX formula: O является центром вписанной в него и описанной около него окружностей. 

Пример 1. Найдите сторону квадрата, если известно, что разность между площадью квадрата и площадью вписанного в него круга равна LaTeX formula: 2pi -8.

Решение. Так как площадь круга радиуса LaTeX formula: r находят по формуле 8.32, а площадь квадрата со стороной LaTeX formula: a находят по формуле LaTeX formula: S=a^{2}, то согласно условию задачи запишем: LaTeX formula: S_{square }-S_{bigcirc }=12LaTeX formula: pi r^{2}-a^{2}=2pi -8.

А так как LaTeX formula: r=frac{a}{2}, то LaTeX formula: frac{pi a^{2}}{4}-a^{2}=2pi -8LaTeX formula: pi a^{2}-4a^{2}=4(2pi -8)LaTeX formula: a^{2}(pi -4)=8(pi -4)LaTeX formula: a^{2}=8LaTeX formula: a=2sqrt{2}.

Ответ: LaTeX formula: 2sqrt{2}.

Пример 2. Площадь прямоугольника равна 4, а разность длин его смежных сторон рана 3. Найдите радиус окружности, описанной около этого прямоугольника. 

Решение. Площадь прямоугольника со смежными сторонами LaTeX formula: a и LaTeX formula: b находят по формуле LaTeX formula: S=ab.

Пусть LaTeX formula: b=x, тогда LaTeX formula: a=x+3 (рис. 8.118).

Получим: LaTeX formula: x(x+3)=4LaTeX formula: x^{2}+3x-4=0, откуда LaTeX formula: x=1, следовательно, LaTeX formula: b=1LaTeX formula: a=4.

По теореме Пифагора найдем диагональ прямоугольника: LaTeX formula: d^{2}=1+16=17LaTeX formula: d=sqrt{17}. Согласно формуле 8.42 LaTeX formula: R=0,5sqrt{17}.

ОтветLaTeX formula: 0,5sqrt{17}.

Пример 3. Найдите радиус окружности, вписанной в ромб, если его диагонали равны 6 и 8. 

Решение. По теореме Пифагора найдем сторону ромба (рис. 8.119):

LaTeX formula: a^{2}=left (frac{d_{1}}{2} right )^{2}+left ( frac{d_{2}}{2} right )^{2}LaTeX formula: a^{2}=3^{2}+4^{2}LaTeX formula: a=5.

По формуле LaTeX formula: S=frac{1}{2}d_{1}d_{2} найдем площадь ромба: LaTeX formula: S=frac{1}{2}cdot 6cdot 8=24.

Но площадь ромба можно найти и по формуле LaTeX formula: S=ah, а так как LaTeX formula: h=2r, то LaTeX formula: S=2ar. Тогда LaTeX formula: 24=10r, а LaTeX formula: r=2,4.

Ответ: 2,4.

Пример 4. Найдите длину окружности, вписанной в правильный треугольник, если его площадь равна LaTeX formula: 4sqrt{3}.

Решение. Площадь правильного треугольника со стороной LaTeX formula: a находят по формуле: LaTeX formula: S=frac{sqrt{3}a^{2}}{4}.

Зная площадь треугольника, найдем его сторону: LaTeX formula: frac{sqrt{3}a^{2}}{4}=4sqrt{3}LaTeX formula: a^{2}=16LaTeX formula: a=4

По формуле 8.35 найдем радиус окружности, вписанной в этот треугольник: LaTeX formula: r=frac{4}{2sqrt{3}}=frac{2}{sqrt{3}}.

По формуле 8.30 найдем длину окружности: LaTeX formula: C=frac{4pi }{sqrt{3}}.

Ответ: LaTeX formula: frac{4sqrt{3}pi }{3}.

Пример 5. Радиус окружности, описанной около равнобедренного прямоугольного треугольника равен 2. Найдите радиус окружности, вписанной в этот треугольник. 

Решение. Радиус окружности, описанной около прямоугольного треугольника с гипотенузой LaTeX formula: c находят по формуле 8.38. Тогда LaTeX formula: c=2R=4

Так как треугольник равнобедренный, то его катеты LaTeX formula: a и LaTeX formula: b раны и по теореме Пифагора LaTeX formula: c^{2}=2a^{2}, откуда LaTeX formula: a=frac{C}{sqrt{2}}LaTeX formula: a=frac{4}{sqrt{2}}=2sqrt{2}

Радиус окружности, вписанной в прямоугольный треугольник, находят по формуле 8.39. В нашем случае LaTeX formula: r=frac{2a-c}{2}LaTeX formula: r=frac{4sqrt{2}-4}{2}=2sqrt{2}-2.

Ответ: LaTeX formula: 2sqrt{2}-2.

Пример 6. Один из катетов прямоугольного треугольника равен 8, а радиус окружности, вписанной в треугольник равен 3. Найдите площадь треугольника.

Решение. Рассмотрим прямоугольный треугольник LaTeX formula: ABC. Точка LaTeX formula: O является центром вписанной в треугольник окружности (рис. 8.120).

Так как радиусы вписанной в треугольник окружности перпендикулярны сторонам треугольника в точках касания, то имеем квадрат LaTeX formula: ANOP со стороной 3. Если катет LaTeX formula: AC = 8, а сторона квадрата LaTeX formula: AP=3, то LaTeX formula: PC=5.

Пусть отрезок LaTeX formula: NB = x. По свойству касательных LaTeX formula: CP=CK=5 и LaTeX formula: BN=BK=x.

Тогда по теореме Пифагора LaTeX formula: BC^{2}=AC^{2}+AB^{2} или LaTeX formula: 25+10x+x^{2}=64+9+6x+x^{2}, откуда LaTeX formula: 4x=48LaTeX formula: x=12.

Найдем катет LaTeX formula: ABLaTeX formula: AB=AN+BN=3+12=15.

Найдем площадь треугольника: LaTeX formula: S_{Delta ABC}=frac{1}{2}cdot ACcdot ABLaTeX formula: S_{Delta ABC}=frac{1}{2}cdot 8cdot 15=60.

Ответ: 60.

Пример 7. Окружность, центр которой расположен на большей стороне треугольника, делит эту сторону на отрезки 4 и 8 и касается двух других его сторон, длина одной из которых равна 6. Найдите радиус окружности, вписанной в этот треугольник (рис.8.121).

Решение. Согласно свойству биссектрисы треугольника запишем: LaTeX formula: frac{6}{4}=frac{x}{8}, откуда LaTeX formula: x=12

Радиус окружности, вписанной в треугольник, найдем по формуле 8.37.

В свою очередь по формуле Герона LaTeX formula: S=sqrt{p(p-a)(p-b)(p-c)} найдем площадь треугольника. Так как LaTeX formula: p=(6+12+12):2=15, то LaTeX formula: S=sqrt{15cdot9cdot3cdot3}=9sqrt{15}.

Тогда LaTeX formula: r=frac{18sqrt{15}}{30}=frac{3sqrt{15}}{5}=0,6sqrt{15}.

Ответ:  LaTeX formula: 0,6sqrt{15}.

Пример 8. В прямоугольную трапецию вписана окружность радиуса 3, которая в точке касания делит ее боковую сторону на отрезки 4 и 5. Найдите площадь трапеции. 

Решение. Согласно условию задачи и рисунку 8.122, запишем: LaTeX formula: CD=9LaTeX formula: h=2r=AB=6.

По свойству четырехугольника, описанного около окружности, получим: LaTeX formula: AB+DC=BC+ADLaTeX formula: 6+9=BC+ADLaTeX formula: BC+AD = 15.

Согласно формуле LaTeX formula: S=frac{1}{2}(a+b)h найдем площадь трапеции: LaTeX formula: S=frac{1}{2}cdot 15cdot 6=45.

Ответ: 45.

Пример 9. Длины оснований равнобедренной трапеции относятся как LaTeX formula: 5:12, а длина ее высоты равна 17. Вычислите площадь круга, описанного около трапеции, если известно, что средняя линия трапеции равна ее высоте.

Решение. Рассмотрим равнобедренную трапецию LaTeX formula: ABCD (рис. 8.123) и проведем диагональ трапеции LaTeX formula: BD.

Радиус окружности, описанной около треугольника LaTeX formula: ABD, найдем по формуле 8.36:

LaTeX formula: R=frac{ABcdot BDcdot AD}{4cdot S_{triangle ABD}}=frac{ABcdot BDcdot AD}{4cdot frac{1}{2}cdot ADcdot BN}LaTeX formula: R=frac{ABcdot BD}{2cdot BN}.

Зная, что LaTeX formula: BC:AD=5:12 и вводя коэффициент пропорциональности LaTeX formula: k, получим LaTeX formula: BC=5kLaTeX formula: AD=12k.

Так как длина средней линии трапеции равна высоте трапеции, то LaTeX formula: frac{1}{2}(5k +12k)=17, откуда LaTeX formula: k=2. Тогда LaTeX formula: BC = 10, LaTeX formula: AD = 24.

Поскольку четырехугольник LaTeX formula: BCKN является прямоугольником, то LaTeX formula: NK = 10, тогда LaTeX formula: AN=KD=frac{1}{2}(24-10)=7.

Согласно теореме Пифагора запишем:

LaTeX formula: AB=sqrt{AN^{2}+BN^{2}}LaTeX formula: AB=sqrt{17^{2}+7^{2}}=sqrt{338};

LaTeX formula: BD=sqrt{BN^{2}+ND^{2}}LaTeX formula: BD=sqrt{17^{2}+17^{2}}=17sqrt{2}.

По формуле 8.36 найдем радиус окружности, описанной около треугольника LaTeX formula: ABD, а, следовательно, и около трапеции LaTeX formula: ABCD:

LaTeX formula: R=frac{sqrt{338}cdot 17sqrt{2}}{2cdot 17}=frac{2cdot 13}{2}=13.

Согласно формуле 8.32 найдем площадь круга: LaTeX formula: S=169pi.

Ответ: LaTeX formula: 169pi.

Пример 10. В правильный шестиугольник вписана окружность и около него описана окружность. Найдите площадь образовавшегося кольца, если сторона шестиугольника равна LaTeX formula: sqrt{3}.

Решение. По формуле 8.45 найдем радиус окружности, описанной около правильного шестиугольника: LaTeX formula: R=a=sqrt{3}

По формуле 8.46 найдем радиус окружности, вписанной в этот шестиугольник. Так как LaTeX formula: a=sqrt{3}, то LaTeX formula: r=frac{3}{2}

Площадь круга находят по формуле 8.32. Тогда LaTeX formula: S_{1}=3pi, а LaTeX formula: S_{2}=frac{9pi}{4}.

Найдем площадь кольца: LaTeX formula: S_{K}=S_{1}-S_{2}LaTeX formula: S_{K}=3pi -frac{9pi }{4}=frac{3pi }{4}.

Ответ: LaTeX formula: 0,75pi.

1. В любой треугольник можно вписать окружность и около любого треугольника можно описать окружность.

2. Не во всякий четырехугольник можно вписать окружность. Например, окружность можно вписать в ромб и квадрат, но нельзя вписать в параллелограмм и прямоугольник.

3. Не около всякого четырехугольника можно описать окружность. Например, окружность можно описать около квадрата и прямоугольника, но нельзя описать около параллелограмма и ромба.

4. Не во всякую трапецию можно писать окружность и не около всякой трапеции можно описать окружность. Описать окружность можно только около равнобедренной трапеции. 

5. Если многоугольник правильный (все его стороны и все его углы равны между собой), то в него всегда можно вписать окружность и около него всегда можно описать окружность. Причем, центры этих окружностей совпадают.

Длину окружности радиуса LaTeX formula: R находят по формуле: 

LaTeX formula: C=2pi R. (8.30)

Площадь круга радиуса LaTeX formula: R находят по формуле: 

LaTeX formula: S=pi R^{2}. (8.32)

Описанная окружность — подробнее

Определение

Описанная окружность – такая окружность, что проходит через все три вершины треугольника, около которого она описана.

Свойства и центр описанной кружности

И вот, представь себе, имеет место удивительный факт:

Вокруг всякого треугольника можно описать окружность.

Почему этот факт удивительный?

Потому что треугольники ведь бывают разные!

И для всякого найдётся окружность, которая пройдёт через все три вершины, то есть описанная окружность.

Доказательство этого удивительного факта мы приведем чуть позже, а здесь заметим только, что если взять, к примеру, четырехугольник, то уже вовсе не для всякого найдётся окружность, проходящая через четыре вершины.

Вот, скажем, параллелограмм – отличный четырехугольник, а окружности, проходящей через все его четыре вершины – нет!

А есть только для прямоугольника:

Подробнее об этом смотри в статье о вписанных четырехугольниках!

Ну вот, а треугольник всякий и всегда имеет собственную описанную окружность! И даже всегда довольно просто найти центр этой окружности.

Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к сторонам этого треугольника.

Знаешь ли ты, что такое серединный перпендикуляр?

Серединный перпендикуляр — это прямая, проходящая через середину отрезка и перпендикулярная ему.

Прямая ( displaystyle a) – это серединный перпендикуляр к отрезку ( displaystyle AB).

А теперь посмотрим, что получится, если мы рассмотрим целых три серединных перпендикуляра к сторонам треугольника.

Вот оказывается (и это как раз и нужно доказывать, хотя мы и не будем), что все три перпендикуляра пересекутся в одной точке. Смотри на рисунок – все три серединных перпендикуляра пересекаются в одной точке ( displaystyle O).

Это и есть центр описанной около (вокруг) треугольника ( displaystyle ABC) окружности.

Как ты думаешь, всегда ли центр описанной окружности лежит внутри треугольника? Представь себе – вовсе не всегда!

Если треугольник тупоугольный, то центр его описанной окружности лежит снаружи!

Вот так:

А вот если остроугольный, то внутри:

Что же делать с прямоугольным треугольником?

В прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы.

Здорово, правда?

Если треугольник – прямоугольный, то не надо строить аж три перпендикуляра, а можно просто найти середину гипотенузы – и центр описанной окружности готов!

Да ещё с дополнительным бонусом:

В прямоугольном треугольнике радиус описанной окружности равен половине гипотенузы.

Раз уж заговорили о радиусе описанной окружности: чему он равен для произвольного треугольника? И есть ответ на этот вопрос: так называемая теорема синусов.

А именно:

В произвольном треугольнике:
( Large displaystyle frac{a}{sin angle A}=2R)

Ну и, конечно,

( displaystyle begin{array}{l}frac{b}{sin angle B}=2R\frac{c}{sin angle C}=2Rend{array})

Так что ты теперь всегда сможешь найти и центр , и радиус окружности, описанной вокруг треугольника.

То есть чтобы найти радиус описанной окружности, нужно знать одну (!) сторону и один (!) противолежащий ей угол. 

Хорошая формула? По-моему, просто отличная!

Доказательство теоремы

Теорема. Вокруг всякого треугольника можно описать окружность, при том единственным образом.

Центр этой окружности – точка пересечения серединных перпендикуляров к сторонам треугольника.

Смотри, вот так:

Давай наберёмся мужества и докажем эту теорему.

Если ты читал уже тему «Биссектриса» разбирался в том, почему же три биссектрисы пересекаются в одной точке, то тебе будет легче, но и если не читал – не переживай: сейчас во всём разберёмся.

Доказательство будем проводить, используя понятие геометрического места точек (ГМТ).

Геометрическое место точек, обладающих свойством «( displaystyle X)» — такое множество точек, что все они обладают свойством «( displaystyle X)» и никакие другие точки этим свойством не обладают.

Ну вот, например, является ли множество мячей – «геометрическим местом» круглых предметов? Нет, конечно, потому что бывают круглые …арбузы.

А является ли множество людей, «геометрическим местом», умеющих говорить? Тоже нет, потому что есть младенцы, которые говорить не умеют.

В жизни вообще сложно найти пример настоящего «геометрического места точек». В геометрии проще. Вот, к примеру, как раз то, что нам нужно:

Серединный перпендикуляр к отрезку является геометрическим местом точек, равноудалённых от концов отрезка.

Тут множество – это серединный перпендикуляр, а свойство «( displaystyle X)» — это «быть равноудаленной (точкой) от концов отрезка».

Проверим? Итак, нужно удостовериться в двух вещах:

  • Всякая точка на серединном перпендикуляре находится на одинаковом расстоянии от концов отрезка
  • Всякая точка, которая равноудалена от концов отрезка – находится на серединном перпендикуляре к ему

Приступим:

Проверим 1. Пусть точка ( displaystyle M) лежит на серединном перпендикуляре к отрезку ( displaystyle AB).

Соединим ( displaystyle M) с ( displaystyle A) и с ( displaystyle B).Тогда линия ( displaystyle MK) является медианой и высотой в ( displaystyle Delta AMB).

Значит, ( displaystyle Delta AMB) – равнобедренный, ( displaystyle MA=MB) – убедились, что любая точка ( displaystyle M), лежащая на серединном перпендикуляре, одинаково удалена от точек ( displaystyle A) и ( displaystyle B).

Теперь 2. Почти точно так же, но в другую сторону. Пусть точка ( displaystyle M) равноудалена от точек ( displaystyle A) и ( displaystyle B), то есть ( displaystyle MA=MB).

Возьмём ( displaystyle K) – середину ( displaystyle AB) и соединим ( displaystyle M) и ( displaystyle K). Получилась медиана ( displaystyle MK). Но ( displaystyle Delta AMB) – равнобедренный по условию ( displaystyle (MA=MB)Rightarrow MK) не только медиана, но и высота, то есть – серединный перпендикуляр. Значит, точка ( displaystyle M) — точно лежит на серединном перпендикуляре.

Всё! Полностью проверили тот факт, что серединный перпендикуляр к отрезку является геометрическим местом точек, равноудаленных от концов отрезка.

Это все хорошо, но не забыли ли мы об описанной окружности? Вовсе нет, мы как раз подготовили себе «плацдарм для нападения».

Рассмотрим треугольник ( displaystyle ABC). Проведём два серединных перпендикуляра ( displaystyle {{a}_{1}}) и ( displaystyle {{a}_{2}}), скажем, к отрезкам ( displaystyle AB) и ( displaystyle BC). Они пересекутся в какой-то точке, которую мы назовем ( displaystyle O).

А теперь, внимание!

Точка ( displaystyle O) лежит на серединном перпендикуляре ( displaystyle {{a}_{1}}Rightarrow OA=OB);
точка ( displaystyle O) лежит на серединном перпендикуляре ( displaystyle {{a}_{2}}Rightarrow OB=OC).
И значит, ( displaystyle OA=OB=OC) и ( displaystyle OA=OC).

Отсюда следует сразу несколько вещей:

Бонусы: Вебинары из нашего курса подготовки к ЕГЭ по математике

ЕГЭ 6. Описанная окружность. Многоугольники

Вы этом видео вы узнаете, что такое описанная окружность, где находится её центр, и другие свойства. 

Около каких фигур можно, а вокруг каких нельзя описать окружность. 

Также мы узнаем, что такое правильные многоугольники, и какие у них свойства; как они связаны с описанной окружностью. 

Научимся решать задачи из ЕГЭ на описанную окружность и правильные многоугольники.

ЕГЭ 6. Вписанная окружность

В этом видео мы узнаем, что такое вписанная окружность, где находится её центр, и другие свойства.

В какие фигуры можно, а в какие нельзя вписать окружность. Научимся решать задачи на вписанную окружность.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти площадь окружности видео
  • Как составить сетевой график по ресурсам
  • Как найти удаленного друга в снапчате
  • Как исправить аутизм
  • Как найти пожарную часть

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии