Плоскость определяемая векторами как найти

Общее уравнение плоскости : описание, примеры, решение задач

В статье рассмотрим такой тип уравнений плоскости как общее уравнение, получим его вид и разберем на практических примерах. Рассмотрим частные случаи и понятие общего неполного уравнения плоскости.

Общее уравнение плоскости: основные сведения

Перед началом разбора темы вспомним, что такое уравнение плоскости в прямоугольной системе координат в трёхмерном пространстве. Пусть нам дана прямоугольная система координат O x y z в трехмерном пространстве, уравнением плоскости в заданной системе координат будет такое уравнение с тремя неизвестными x , y , и z , которому отвечали бы координаты всех точек этой плоскости и не отвечали бы координаты никаких прочих точек. Иначе говоря, подставив в уравнение плоскости координаты некоторой точки этой плоскости, получаем тождество. Если же в уравнение подставить координаты какой-то другой точки, не принадлежащей заданной плоскости, равенство станет неверным.

Также вспомним определение прямой, перпендикулярной к плоскости: прямая является перпендикулярной к заданной плоскости, если она перпендикулярна любой прямой, принадлежащей этой плоскости.

Любую плоскость, заданную в прямоугольной системе координат O x y z трехмерного пространства, можно определить уравнением A x + B y + C z + D = 0 . В свою очередь, любое уравнение A x + B y + C z + D = 0 определяет некоторую плоскость в данной прямоугольной системе координат трехмерного пространства. A , B , C , D – некоторые действительные числа, и числа A , B , C не равны одновременно нулю.

Теорема состоит из двух частей. Разберем доказательство каждой из них.

  1. Первая часть теоремы гласит, что любую заданную плоскость возможно описать уравнением вида A x + B y + C z + D = 0 . Допустим, задана некоторая плоскость и точка M 0 ( x 0 , y 0 , z 0 ) , через которую эта плоскость проходит. Нормальным вектором этой плоскости является n → = ( A , B , C ) . Приведем доказательство, что указанную плоскость в прямоугольной системе координат O x y z задает уравнение A x + B y + C z + D = 0 .

Возьмем произвольную точку заданной плоскости M ( x , y , z ) .В таком случае векторы n → = ( A , B , C ) и M 0 M → = ( x — x 0 , y — y 0 , z — z 0 ) будут перпендикулярны друг другу, а значит их скалярное произведение равно нулю:

n → , M 0 M → = A x — x 0 + B ( y — y 0 ) + C ( z — z 0 ) = A x + B y + C z — ( A x 0 + B y 0 + C z 0 )

Примем D = — ( A x 0 + B y 0 + C z 0 ) , тогда уравнение преобразуется в следующий вид: A x + B y + C z + D = 0 . Оно и будет задавать исходную плоскость. Первая часть теоремы доказана.

  1. Во второй части теоремы утверждается, что любое уравнение вида A x + B y + C z + D = 0 задает некоторую плоскость в прямоугольной системе координат O x y z трехмерного пространства. Докажем это.

В теореме также указано, что действительные числа А , B , C одновременно не являются равными нулю. Тогда существует некоторая точка M 0 ( x 0 , y 0 , z 0 ) , координаты которой отвечают уравнению A x + B y + C z + D = 0 , т.е. верным будет равенство A x 0 + B y 0 + C z 0 + D = 0 . Отнимем левую и правую части этого равенства от левой и правой частей уравнения A x + B y + C z + D = 0 . Получим уравнение вида

A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 , и оно эквивалентно уравнению A x + B y + C z + D = 0 . Докажем, что уравнение A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 задает некоторую плоскость.

Уравнение A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 являет собой условие, необходимое и достаточное для перпендикулярности векторов n → = ( A , B , C ) и M 0 M → = x — x 0 , y — y 0 , z — z 0 . Опираясь на утверждение, указанное перед теоремой, возможно утверждать, что при справедливом равенстве A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 множество точек M ( x , y , z ) задает плоскость, у которой нормальный вектор n → = ( A , B , C ) . При этом плоскость проходит через точку M ( x 0 , y 0 , z 0 ) . Иначе говоря, уравнение A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 задает в прямоугольной системе координат O x y z трехмерного пространства некоторую плоскость. Таким, образом, эквивалентное этому уравнению уравнение A x + B y + C z + D = 0 также определяет эту плоскость. Теорема доказана полностью.

Уравнение вида A x + B y + C z + D = 0 называют общим уравнением плоскости в прямоугольной системе координат O x y z трехмерного пространства.

Допустим, задано некоторое общее уравнение плоскости λ · A x + λ · B y + λ · C z + λ · D = 0 , где λ – некое действительное число, не равное нулю. Это уравнение также задает в прямоугольной системе координат некоторую плоскость, совпадающую с плоскостью, определяемую уравнением A x + B y + C z + D = 0 , поскольку описывает то же самое множество точек трехмерного пространства. Например, уравнения x — 2 · y + 3 · z — 7 = 0 и — 2 · x + 4 · y — 2 3 · z + 14 = 0 задают одну и ту же плоскость, поскольку им обоим отвечают координаты одних и тех же точек трехмерного пространства.

Раскроем чуть шире смысл теорем.

В пределах заданной системы координат плоскость и общее уравнение, ее определяющее, неразрывно связаны: каждой плоскости отвечает общее уравнение плоскости вида A x + B y + C z + D = 0 ( при конкретных значениях чисел A , B , C , D ). В свою очередь, этому уравнению отвечает заданная плоскость в заданной прямоугольной системе координат.

Укажем пример как иллюстрацию этих утверждений.

Ниже приведен чертеж, на котором изображена плоскость в фиксированной прямоугольной системе координат трехмерного пространства. Заданной плоскости отвечает общее уравнение вида 4 x + 5 y – 5 z + 20 = 0 , и ему соответствуют координаты любой точки этой плоскости. В свою очередь, уравнение 4 x + 5 y – 5 z + 20 = 0 описывает в заданной системе координат множество точек, которые составляют изображенную плоскость.

Общее уравнение плоскости, проходящей через точку

Повторимся: точка M 0 ( x 0 , y 0 , z 0 ) лежит на плоскости, заданной в прямоугольной системе координат трехмерного пространства уравнением A x + B y + C z + D = 0 в том случае, когда подставив координаты точки M 0 ( x 0 , y 0 , z 0 ) в уравнение A x + B y + C z + D = 0 , мы получим тождество.

Заданы точки M 0 ( 1 , — 1 , — 3 ) и N 0 ( 0 , 2 , — 8 ) и плоскость, определяемая уравнением 2 x + 3 y — z — 2 = 0 . Необходимо проверить, принадлежат ли заданные точки заданной плоскости.

Решение

Подставим координаты точки М 0 в исходной уравнение плоскости:

2 · 1 + 3 · ( — 1 ) — ( — 3 ) — 2 = 0 ⇔ 0 = 0

Мы видим, что получено верное равенство, значит точка M 0 ( 1 , — 1 , — 3 ) принадлежит заданной плоскости.

Аналогично проверим точку N 0 . Подставим ее координаты в исходное уравнение:

2 · 0 + 3 · 2 — ( — 8 ) — 2 = 0 ⇔ 12 = 0

Равенство неверно. Таким, образом, точка N 0 ( 0 , 2 , — 8 ) не принадлежит заданной плоскости.

Ответ: точка М 0 принадлежит заданной плоскости; точка N 0 – не принадлежит.

Приведенное выше доказательство теоремы об общем уравнении дает нам возможность использовать важный факт: вектор n → = ( A , B , C ) — нормальный вектор для плоскости, определяемой уравнением A x + B y + C z + D = 0 . Так, если нам известен вид общего уравнения, то возможно записать координаты нормального вектора заданной плоскости.

В прямоугольной системе координат задана плоскость 2 x + 3 y — z + 5 = 0 . Необходимо записать координаты всех нормальных векторов заданной плоскости.

Решение

Мы знаем, что заданные общим уравнением коэффициенты при переменных x , y , z служат координатами нормального вектора заданной плоскости. Тогда, нормальный вектор n → исходной плоскости имеет координаты 2 , 3 , — 1 . В свою очередь, множество нормальных векторов запишем так:

λ · n → = λ · 2 , λ · 3 , — λ , λ ∈ R , λ ≠ 0

Ответ: λ · 2 , λ · 3 , — λ , λ ∈ R , λ ≠ 0

Разберем обратную задачу, когда требуется составить уравнение плоскости по заданным координатам нормального вектора.

Очевидным фактом является то, что нормальный вектор n → = ( A , B , C ) является нормальным вектором бесконечного множества параллельных плоскостей. Поэтому для обозначения конкретной плоскости введем дополнительное условие: зададим некоторую точку M 0 ( x 0 , y 0 , z 0 ) , принадлежащую плоскости. Так, задавая в условии нормальный вектор и некоторую точку плоскости, мы ее зафиксировали.

Общее уравнение плоскости с нормальным вектором n → = ( A , B , C ) будет выглядеть так: A x + B y + C z + D = 0 . По условию задачи точка M 0 ( x 0 , y 0 , z 0 ) принадлежит заданной плоскости, т.е. ее координаты отвечают уравнению плоскости, а значит верно равенство: A x 0 + B y 0 + C z 0 + D = 0

Вычитая соответственно правые и левые части исходного уравнения и уравнения A x 0 + B y 0 + C z 0 + D = 0 , получим уравнение вида A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) = 0 . Оно и будет уравнением плоскости, проходящей через точку M 0 ( x 0 , y 0 , z 0 ) и имеющей нормальный вектор n → = ( A , B , C ) .

Возможно получить это уравнение другим способом.

Очевидным фактом является то, что все точки М ( x , y , z ) трехмерного пространства задают данную плоскость тогда и только тогда, когда векторы n → = ( A , B , C ) и M 0 M → = ( x — x 0 , y — y 0 , z — z 0 ) перпендикулярны или, иначе говоря, когда скалярное произведение этих векторов равно нулю:

n → , M 0 M → = A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) = 0

Задана точка М 0 ( — 1 , 2 , — 3 ) , через которую в прямоугольной системе координат проходит плоскость, а также задан нормальный вектор этой плоскости n → = ( 3 , 7 , — 5 ) . Необходимо записать уравнение заданной плоскости.

Решение

Рассмотрим два способа решения.

  1. Исходные условия позволяют получить следующие данные:

x 0 = — 1 , y 0 = 2 , z 0 = — 3 , A = 3 , B = 7 , C = — 5

Подставим их в общее уравнение плоскости, проходящей через точку, т.е. в A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) = 0

3 ( x — ( — 1 ) ) + 7 ( y — 2 ) — 5 ( z — ( — 3 ) ) = 0 ⇔ 3 x + 7 y — 5 z — 26 = 0

  1. Допустим, М ( x , y , z ) – некоторая точки заданной плоскости. Определим координаты вектора M 0 M → по координатам точек начала и конца:

M 0 M → = ( x — x 0 , y — y 0 , z — z 0 ) = ( x + 1 , y — 2 , z + 3 )

Чтобы получить искомое общее уравнение плоскости, необходимо также воспользоваться необходимым и достаточным условием перпендикулярности векторов и тогда:

n → , M 0 M → = 0 ⇔ 3 ( x + 1 ) + 7 ( y — 2 ) — 5 ( z + 3 ) = 0 ⇔ ⇔ 3 x + 7 y — 5 z — 26 = 0

Ответ: 3 x + 7 y — 5 z — 26 = 0

Неполное общее уравнение плоскости

Выше мы говорили о том, что, когда все числа А , B , C , D отличны от нуля, общее уравнение плоскости A x + B y + C z + D = 0 называют полным. В ином случае общее уравнение плоскости является неполным.

Разберем все возможные варианты общих неполных уравнений в прямоугольной системе координат трехмерного пространства.

  1. В случае, когда D = 0 , мы получаем общее неполное уравнение плоскости: A x + B y + C z + D = 0 ⇔ A x + B y + C z = 0

Такая плоскость в прямоугольной системе координат проходит через начало координат. В самом деле, если подставим в полученное неполное уравнение плоскости координаты точки О ( 0 , 0 , 0 ) , то придем к тождеству:

A · 0 + B · 0 + C · 0 = 0 ⇔ 0 ≡ 0

  1. Если А = 0 , В ≠ 0 , С ≠ 0 , или А ≠ 0 , В = 0 , С ≠ 0 , или А ≠ 0 , В ≠ 0 , С = 0 , то общие уравнения плоскостей имеют вид соответственно: B y + C z + D = 0 , или A x + C z + D = 0 , или A x + B y + D = 0 . Такие плоскости параллельны координатным осям О x , O y , O z соответственно. Когда D = 0 , плоскости проходят через эти координатные оси соответственно. Также заметим, что неполные общие уравнения плоскостей B y + C z + D = 0 , A x + C z + D = 0 и A x + B y + D = 0 задают плоскости, которые перпендикулярны плоскостям O y z , O x z , O z y соответственно.

  1. При А = 0 , В = 0 , С ≠ 0 , или А = 0 , В ≠ 0 , С = 0 , или А ≠ 0 , В = 0 , С = 0 получим общие неполные уравнения плоскостей: C z + D = 0 ⇔ z + D C = 0 ⇔ z = — D C ⇔ z = λ , λ ∈ R или B y + D = 0 ⇔ y + D B = 0 ⇔ y = — D B ⇔ y = λ , λ ∈ R или A x + D = 0 ⇔ x + D A = 0 ⇔ x = — D A ⇔ x = λ , λ ∈ R соответственно.

Эти уравнения определяют плоскости, которые параллельны координатным плоскостям O x y , O x z , O y z соответственно и проходят через точки 0 , 0 , — D C , 0 , — D B , 0 и — D A , 0 , 0 соответственно. При D = 0 уравнения самих координатных плоскостей O x y , O x z , O y z выглядят так: z = 0 , y = 0 , x = 0

Задана плоскость, параллельная координатной плоскости O y z и проходящая через точку М 0 ( 7 , — 2 , 3 ) . Необходимо составить общее уравнение заданной плоскости.

Р​​ешение

У​​​​​словием задачи определено, что заданная плоскость параллельна координатной плоскости O y z , а, следовательно, может быть задана общим неполным уравнением плоскости A x + D = 0 , A ≠ 0 ⇔ x + D A = 0 . Поскольку точка M 0 ( 7 , — 2 , 3 ) лежит на плоскости по условию задачи, то очевидно, что координаты этой точки должны отвечать уравнению плоскости x + D A = 0 , иначе говоря, должно быть верным равенство 7 + D A = 0 . Преобразуем: D A = — 7 , тогда требуемое уравнение имеет вид: x — 7 = 0 .

Задачу возможно решить еще одним способом.

Вновь обратим внимание на заданную условием задачи параллельность данной плоскости координатной плоскости O y z . Из этого условия понятно, что возможно в качестве нормального вектора заданной плоскости использовать нормальный вектор плоскости O y z : i → = ( 1 , 0 , 0 ) . Так, нам известны и точка, принадлежащая плоскости (задана условием задачи) и ее нормальный вектор. Таким образом, становится возможно записать общее уравнение заданной плоскости:

A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) = 0 ⇔ ⇔ 1 · ( x — 7 ) + 0 · ( y + 2 ) + 0 · ( z — 3 ) = 0 ⇔ ⇔ x — 7 = 0

Ответ: x — 7 = 0

Задана плоскость, перпендикулярная плоскости O x y и проходящая через начало координат и точку М 0 ( — 3 , 1 , 2 ) .

Решение

Плоскость, которая перпендикулярна координатной плоскости O x y определяется общим неполным уравнением плоскости A x + B y + D = 0 ( А ≠ 0 , В ≠ 0 ) . Условием задачи дано, что плоскость проходит через начало координат, тогда D = 0 и уравнение плоскости принимает вид A x + B y = 0 ⇔ x + B A y = 0 .

Найдем значение B A . В исходных данных фигурирует точка М 0 ( — 3 , 1 , 2 ) , координаты которой должны отвечать уравнению плоскости. Подставим координаты, получим верное равенство: — 3 + B A · 1 = 0 , откуда определяем B A = 3 .

Так, мы имеем все данные, чтобы записать требуемое общее уравнение плоскости: x + 3 y = 0 .

Векторы в пространстве и метод координат

Существует два способа решения задач по стереометрии

Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

Система координат в пространстве

Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:

Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.


Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.

Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .

Произведение вектора на число:

Скалярное произведение векторов:

Косинус угла между векторами:

Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.

Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

Прямые AE и BK — скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.

Запишем координаты векторов:

и найдем косинус угла между векторами и :

2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

Координаты точек A, B и C найти легко:

Из прямоугольного треугольника AOS найдем

Координаты вершины пирамиды:

Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

Найдем координаты векторов и

и угол между ними:

Покажем теперь, как вписать систему координат в треугольную призму:

3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1

Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

Запишем координаты точек:

Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.

Найдем координаты векторов и , а затем угол между ними:

Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

Плоскость в пространстве задается уравнением:

Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

Покажем, как это делается.

Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

Уравнение плоскости выглядит так:

Подставим в него по очереди координаты точек M, N и K.

То есть A + C + D = 0.

Аналогично для точки K:

Получили систему из трех уравнений:

В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.

Пусть, например, D = −2. Тогда:

Выразим C и B через A и подставим в третье уравнение:

Решив систему, получим:

Уравнение плоскости MNK имеет вид:

Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

Вектор — это нормаль к плоскости MNK.

Уравнение плоскости, проходящей через заданную точку имеет вид:

Угол между плоскостями равен углу между нормалями к этим плоскостям:

Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.

4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.

Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.

Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор перпендикулярен этой плоскости.

Итак, первый вектор нормали у нас уже есть:

Напишем уравнение плоскости AEF.

Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

Пусть С = -1. Тогда A = B = 2.

Уравнение плоскости AEF:

Нормаль к плоскости AEF:

Найдем угол между плоскостями:

5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.

Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» :-)

Строим чертеж. Прямую четырехугольную призму можно по-другому назвать «параллелепипед».

Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?

«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.

Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор или, еще проще, вектор .

Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:

Координаты вектора — тоже:

Находим угол между плоскостями, равный углу между нормалями к ним:

Зная косинус угла, находим его тангенс по формуле

Получим:

Ответ:

Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.

Пусть — вектор, лежащий на прямой m (или параллельный ей), — нормаль к плоскости α.

Находим синус угла между прямой m и плоскостью α по формуле:

6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.

Как всегда, рисуем чертеж и выбираем систему координат

Находим координаты вектора .

Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор .

Найдем угол между прямой и плоскостью:

Ответ:

Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:

7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = , AD = . Высота параллелепипеда AA1 = . Найдите расстояние от точки A до плоскости A1DB.

Построим чертеж и выпишем координаты точек:

Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D

Решим эту систему. Выберем

Тогда

Уравнение плоскости A1DB имеет вид:

Дальше все просто. Находим расстояние от точки A до плоскости A1DB:

В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.

Уравнение плоскости онлайн

С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через три точки, и уравнение плоскости, проходящей через одну точку и имеющий заданный нормаль плоскости. Дается подробное решение с пояснениями. Для построения уравнения плоскости выберите вариант задания исходных данных, введите координаты точек в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение плоскости, проходящей через три точки

Рассмотрим цель − вывести уравнение плоскости, проходящей через три различные точки M1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3), не лежащие на одной прямой. Так как эти точки не лежат на одной прямой, векторы и не коллинеарны. Следовательно точка M(x, y, z) лежит в одной плоскости с точками M1, M2, M3 тогда и тольно тогда, когда векторы M1M2, M1M3 и компланарны. Но векторы M1M2, M1M3, M1M компланарны тогда и только тогда, когда их смешанное произведение равно нулю. Используя смешанное произведение векторов M1M2, M1M3, M1M в координатах, получим необходимое и достаточное условие принадлежности точки M(x, y, z) к указанной плоскости:

Разложив определитель в левой части выражения, например, по первому столбцу и упростив, получим уравнение плоскости в общей форме, проходящий по точкам M1, M2, M3:

Пример 1. Построить уравнение плоскости, проходящую через точки A(1, 2, 1), B(4, 5, -4), С(2, 1, 2).

(1)

Подставляя координаты точек A, B, C в (1), получим:

Разложим определитель по первому столбцу:

Уравнение плоскости, проходящей через точки A(1, 2, 1), B(4, 5, -4), С(2, 1, 2) имеет вид:

Уравнение плоскости, проходящей через одну точку и имеющий нормаль n

Пример 2. Построить плоскость, проходящую через точку M0(-1, 2, 1) и имеюший нормаль n(1, 4/5, 1).

(2)

Подставляя координаты векторов M0 и n в (2), получим:

источники:

http://ege-study.ru/ru/ege/materialy/matematika/vektory-v-prostranstve-i-metod-koordinat/

http://matworld.ru/analytic-geometry/uravnenie-ploskosti-online.php

ЛЕКЦИЯ

по
учебной дисциплине

МАТЕМАТИКА

Тема
№ 2. Основы аналитической геометрии

Занятие
.Плоскость в пространстве

Введение

В лекции рассмотрим
различные виды уравнения плоскости в
пространстве, докажем, что уравнение
первой степени определяет в пространстве
плоскость, по уравнениям плоскостей
научимся определять их взаимное
расположение в пространстве.

1.
Основные понятия

Определение.
Пусть задана прямоугольная система
координат, любая поверхность S
и уравнение

F(x,
y,
z)
= 0
(1)

Будем
говорить, что уравнение является (1)
является уравнением поверхности S
в заданной системе координат, если ему
удовлетворяют координаты каждой точки
этой поверхности и не удовлетворяют
координаты никакой точки, которая не
принадлежит этой поверхности. С точки
зрения данного определения поверхность
есть множество точек пространства R3
.

Пример.
Уравнение

x2
+ y2
+ z2
= 52

поверхность,
которая является сферой радиуса 5, с
центром в точке 0(0,0,0).

2.
Уравнения плоскости в пространстве

2.1. Общее уравнение
плоскости

Определение.
Плоскостью
называется
поверхность, вес точки которой
удовлетворяют общему уравнению:

Ax
+ By
+ Cz
+ D
= 0,

где
А, В, С – координаты вектора

вектор нормали
к плоскости.

Возможны
следующие частные случаи:

А
= 0 – плоскость параллельна оси Ох

В
= 0 – плоскость параллельна оси Оу

С
= 0 – плоскость параллельна оси Оz

D
= 0 – плоскость проходит через начало
координат

А
= В = 0 – плоскость параллельна плоскости
хОу

А
= С = 0 – плоскость параллельна плоскости
хОz

В
= С = 0 – плоскость параллельна плоскости
yOz

А
= D
= 0 – плоскость проходит через ось Ох

В
= D
= 0 – плоскость проходит через ось Оу

С
= D
= 0 – плоскость проходит через ось Oz

А
= В = D
= 0 – плоскость совпадает с плоскостью
хОу

А
= С = D
= 0 – плоскость совпадает с плоскостью
xOz

В
= С = D
= 0 – плоскость совпадает с плоскостью
yOz

2.2. Уравнение
плоскости, проходящей через три точки

Для
того, чтобы через три какие- либо точки
пространства можно было провести
единственную плоскость, необходимо,
чтобы эти точки не лежали на одной
прямой.

Рассмотрим
точки М1(x1,
y1,
z1),
M2(x2,
y2,
z2),
M3(x3,
y3,
z3)
в общей декартовой системе координат.

Для
того, чтобы произвольная точка М(x,
y,
z)
лежала в одной плоскости с точками М1,
М2,
М3
необходимо, чтобы векторы

были компланарны.

()
= 0

Таким
образом,

Уравнение
плоскости, проходящей через три точки:

2.3.Уравнение
плоскости по двум точкам и вектору,
коллинеарному плоскости.

Пусть
заданы точки М1(x1,
y1,
z1),
M2(x2,
y2,
z2)
и вектор
.

Составим
уравнение плоскости, проходящей через
данные точки М1
и М2
и произвольную точку М(х, у, z)
параллельно вектору
.

Векторы
и
вектор

должны быть компланарны, т.е.

()
= 0

Уравнение
плоскости:

2.4.Уравнение
плоскости по одной точке и двум векторам,

коллинеарным
плоскости.

Пусть
заданы два вектора

и
,
коллинеарные плоскости. Тогда для
произвольной точки М(х,
у,
z),
принадлежащей плоскости, векторы

должны быть компланарны.

Уравнение
плоскости:

2.5.Уравнение
плоскости по точке и вектору нормали.

Теорема.
Если в пространстве задана точка М
00,
у
0,
z0),
то уравнение плоскости, проходящей
через точку М
0
перпендикулярно вектору нормали

(A,
B,
C)
имеет вид:

A(x
x0)
+
B(y
y0)
+
C(z
z0)
= 0.

Доказательство.
Для произвольной точки М(х, у, z),
принадлежащей плоскости, составим
вектор
.
Т.к. вектор

— вектор нормали, то он перпендикулярен
плоскости, а, следовательно, перпендикулярен
и вектору
.
Тогда
скалярное
произведение

=
0.

Таким
образом, получаем уравнение плоскости

Теорема
доказана.

2.6.Уравнение
плоскости в отрезках.

Если
в общем уравнении Ах
+ Ву + С
z
+
D
= 0
поделить
обе части на –D

,

заменив
,
получим уравнение плоскости в отрезках:

Числа
a,
b,
c
являются точками пересечения плоскости
соответственно с осями х,
у,
z.

2.7.Расстояние от
точки до плоскости.

Расстояние
от произвольной точки М00,
у0,
z0)
до плоскости Ах+Ву+Сz+D=0
равно:

Пример.
Найти уравнение плоскости, зная, что
точка Р(4; –3; 12) – основание перпендикуляра,
опущенного из начала координат на эту
плоскость.

Таким
образом, A
= 4/13; B
= –3/13; C
= 12/13, воспользуемся формулой:

A(x
– x
0)
+ B(y – y
0)
+ C(z – z
0)
= 0.

Пример.
Найти уравнение плоскости, проходящей
через две точки P(2;
0; –1) и Q(1;
–1; 3) перпендикулярно плоскости 3х + 2у
– z
+ 5 = 0.

Вектор
нормали к плоскости 3х + 2у – z
+ 5 = 0
параллелен
искомой плоскости.

Получаем:

Пример.
Найти уравнение плоскости, проходящей
через точки А(2, –1, 4) и В(3, 2, –1)
перпендикулярно плоскости х
+ у
+ 2z
– 3 = 0.

Искомое
уравнение плоскости имеет вид: Ax
+ By
+ Cz
+ D
= 0, вектор нормали к этой плоскости
(A,
B,
C).
Вектор
(1,
3, –5) принадлежит плоскости. Заданная
нам плоскость, перпендикулярная искомой
имеет вектор нормали
(1,
1, 2). Т.к. точки А и В принадлежат обеим
плоскостям, а плоскости взаимно
перпендикулярны, то

Таким
образом, вектор нормали
(11,
–7, –2). Т.к. точка А принадлежит искомой
плоскости, то ее координаты должны
удовлетворять уравнению этой плоскости,
т.е. 112
+ 71
– 24
+ D
= 0; D
= –21.

Итого,
получаем уравнение плоскости: 11x
– 7y
– 2z
– 21 = 0.

Пример.
Найти уравнение плоскости, зная, что
точка Р(4, -3, 12) – основание перпендикуляра,
опущенного из начала координат на эту
плоскость.

Находим
координаты вектора нормали
=
(4, -3, 12). Искомое уравнение плоскости
имеет вид: 4x
– 3y
+ 12z
+ D
= 0. Для нахождения коэффициента D
подставим в уравнение координаты точки
Р:

16
+ 9 + 144 + D
= 0.

D
= –169.

Итого,
получаем искомое уравнение: 4x
– 3y
+ 12z
– 169 = 0

Пример.
Даны координаты вершин пирамиды А1(1;
0; 3), A2(2;
–1; 3), A3(2;
1; 1), A4(1;
2; 5).

  1. Найти
    длину ребра А1А2.

  1. Найти
    угол между ребрами А1А2
    и А1А4.

Найти
угол между ребром А1А4
и гранью А1А2А3.

Сначала
найдем вектор нормали к грани А1А2А3

как векторное произведение векторов
и.

=
(2–1;
1–0;
1–3)
= (1; 1; –2);

Найдем
угол между вектором нормали и вектором
.

–4
– 4 = –8.

Искомый
угол 
между вектором и плоскостью будет равен

= 900
– .

  1. Найти
    площадь грани А1А2А3.

  1. Найти
    объем пирамиды.


(ед3).

  1. Найти
    уравнение плоскости А1А2А3.

Воспользуемся
формулой уравнения плоскости, проходящей
через три точки.

2x
+ 2
y
+ 2
z
– 8 = 0

x
+
y
+
z
– 4 = 0;

3.
Взаимное расположение плоскостей

Пусть
заданы две плоскости

3.1.
Угол между плоскостями

1


0

Рис.
3

Угол
между двумя плоскостями в пространстве

связан с углом между нормалями к этим
плоскостям 1
соотношением: 
= 1
или 
= 1800
– 1,
т.е.

cos
= cos1.

Определим
угол 1.
Известно, что плоскости могут быть
заданы соотношениями:

,

где

(A1,
B1,
C1),

(A2,
B2,
C2).

Угол
между векторами нормали найдем из их
скалярного произведения:

.

Таким
образом, угол между плоскостями находится
по формуле:

Выбор
знака косинуса зависит от того, какой
угол между плоскостями следует найти
– острый, или смежный с ним тупой.

3.2. Условия
параллельности и перпендикулярности
плоскостей.

На
основе полученной выше формулы для
нахождения угла между плоскостями можно
найти условия параллельности и
перпендикулярности плоскостей.

Для
того, чтобы плоскости были перпендикулярны
необходимо и достаточно, чтобы косинус
угла между плоскостями равнялся нулю.
Это условие выполняется, если:

.

Плоскости
параллельны, векторы нормалей коллинеарны:

.Это
условие выполняется, если:
.

7

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Векторы в пространстве и метод координат

Существует два способа решения задач по стереометрии

Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

Система координат в пространстве

Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:

Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.


Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора:

Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .

Сумма векторов:

Разность векторов:

Произведение вектора на число:

Скалярное произведение векторов:

Косинус угла между векторами:

Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

1.  В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.

Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

Прямые AE и BK — скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.

Запишем координаты векторов:

и найдем косинус угла между векторами и :

2.  В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

Координаты точек A, B и C найти легко:

Из прямоугольного треугольника AOS найдем

Координаты вершины пирамиды:

Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

Найдем координаты векторов и :

и угол между ними:

Покажем теперь, как вписать систему координат в треугольную призму.

3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1

Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

Запишем координаты точек:

Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.

Найдем координаты векторов и , а затем угол между ними:

Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

Плоскость в пространстве задается уравнением:

Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

Покажем, как это делается.

Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

Уравнение плоскости выглядит так:

Подставим в него по очереди координаты точек M, N и K.

Для точки M:

То есть A + C + D = 0.

Для точки N:

Аналогично для точки K:

Получили систему из трех уравнений:

.

В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.

Пусть, например, D = −2. Тогда:

;

.

Выразим C и B через A и подставим в третье уравнение:

.

Решив систему, получим:

Уравнение плоскости MNK имеет вид:

Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

Вектор — это нормаль к плоскости MNK.

Уравнение плоскости, проходящей через заданную точку имеет вид:

Угол между плоскостями равен углу между нормалями к этим плоскостям:

Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.

4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.

Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.

Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор перпендикулярен этой плоскости.

Итак, первый вектор нормали у нас уже есть:

Напишем уравнение плоскости AEF.

Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

Упростим систему:

.

Пусть С = -1. Тогда A = B = 2.

Уравнение плоскости AEF:

Нормаль к плоскости AEF:

Найдем угол между плоскостями:

5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.

Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» :-)

Строим чертеж. Прямую четырехугольную призму можно по-другому назвать «параллелепипед».

Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?

«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.

Итак, AA1 = √3

Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор  или, еще проще, вектор .

Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:

Координаты вектора — тоже:

Находим угол между плоскостями, равный углу между нормалями к ним:

Зная косинус угла, находим его тангенс по формуле

Получим:

Ответ:

Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.

Пусть — вектор, лежащий на прямой m (или параллельный ей), — нормаль к плоскости α.

Находим синус угла между прямой m и плоскостью α по формуле:

6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.

Как всегда, рисуем чертеж и выбираем систему координат

Находим координаты вектора .

Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор .

Найдем угол между прямой и плоскостью:

Ответ:

Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:

7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = , AD = . Высота параллелепипеда AA1 = Найдите расстояние от точки A до плоскости A1DB.

Построим чертеж и выпишем координаты точек:

Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D

  

Решим эту систему. Выберем

Тогда

Уравнение плоскости A1DB имеет вид:

Дальше все просто. Находим расстояние от точки A до плоскости A1DB:

В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Векторы в пространстве и метод координат» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.05.2023

Содержание:

Всякая поверхность в пространстве задается в декартовых координатах уравнением вида F(x, у, z)= 0.

Если F(х9 у, z) — многочлен n -й степени, то соответствующая поверхность называется алгебраической поверхностью n-го порядка или просто поверхностью n-го порядка.

Всякая поверхность 1-го порядка есть плоскость, т.е. всякое уравнение 1-й степени:

Ax + By + Cz + D = 0 (6.1)

определяет плоскость. Уравнение (6.1) называется общим уравнением плоскости.

Вектор Плоскость - определение, виды и правила с примерами

Этот факт будет постоянно использоваться в дальнейшем. Вектор n называют нормальным вектором плоскости (6.1).

Уравнение плоскости, проходящей через данную точку Плоскость - определение, виды и правила с примерами

Очевидно, что уравнение (6.1) имеет смысл только тогда, когда хотя бы один из коэффициентов А, В, С не равен нулю.

Рассмотрим частные случаи.

Плоскость - определение, виды и правила с примерами

  1. Если A = 0, то уравнение By + Cz + D = 0 определяет плоскость, параллельную оси Ох, так как вектор нормали к этой плоскости Плоскость - определение, виды и правила с примерами перпендикулярен оси Ох (проекция ненулевого вектора на ось равна нулю тогда, когда он перпендикулярен этой оси).
  2. Аналогично, если В = 0, то уравнение Ax + Cz + D = 0 определяет плоскость, параллельную оси Оу.
  3. Если С = 0. То уравнение Ax + By + D = 0 определяет плоскость, параллельную оси Oz.
  4. Если А = B = 0, то уравнение Cz + D = 0 или Плоскость - определение, виды и правила с примерамиопределяет плоскость, параллельную плоскости хОу. В этом случае вектор нормали п = (о, 0, с) перпендикулярен к осям Од- и Оу, т.е. к плоскости хОу.
  5. При A = С = 0 имеем By + D=0 или Плоскость - определение, виды и правила с примерами — уравнение плоскости, параллельной координатной плоскости xOz.
  6. Если B = С = 0, то уравнение Ax+D = 0 или Плоскость - определение, виды и правила с примерами определяет плоскость, параллельную плоскости yOz.

II. D = 0.

  1. Если D = 0, то уравнение Ax + By + Cz = 0 определяет плоскость, проходящую через начало координат, так как координаты точки O (0, 0, 0) удовлетворяют этому уравнению.
  2. Если A = D = 0, то уравнение By+ Cz = 0 определяет плоскость, вектор нормали которой Плоскость - определение, виды и правила с примерами. Эта плоскость проходит через ось Ох.
  3. Аналогично, если B = D = 0, то уравнение Ax + Cz = 0 определяет плоскость, проходящую через ось Оу.
  4. Если C = D = 0, то уравнение Ах + By = 0 определяет плоскость, проходящую через ось Oz.
  5. Если A = B = D = 0, то уравнение Cz = 0 или 2 = 0 определяет плоскость хОу. Аналогично, уравнения x = 0 и у = 0 определяют соответственно плоскости yOz и xOz.

Если в уравнении (6.1) все коэффициенты А, B, С, D отличны от нуля, то это уравнение может быть преобразовано к уравнению плоскости в отрезках:

Плоскость - определение, виды и правила с примерами (6.3)

Здесь а, b, с — величины отрезков, отсекаемых плоскостью на осях координат.

Нормальное уравнение плоскости

Нормальным уравнением плоскости называется уравнение: Плоскость - определение, виды и правила с примерами (6.4)

гдеПлоскость - определение, виды и правила с примерами — углы между перпендикуляром, опущенным из начала координат на плоскость, и положительным направлением осей координат, а p- расстояние от плоскости до начала координат.

Нормальное уравнение отличается от общего уравнения тем, что в нем коэффициенты при x, у, z являются координатами единичного вектора Плоскость - определение, виды и правила с примерами перпендикулярного плоскости, а свободный член — отрицательный.

Общее уравнение (1) приводится к нормальному виду умножением его на нормирующий множитель Плоскость - определение, виды и правила с примерами при этом знак выбирается противоположным знаку свободного члена D (если D = 0, знак можно выбрать любой).

Плоскость - определение, виды и правила с примерами

Отклонением Плоскость - определение, виды и правила с примерами точки Плоскость - определение, виды и правила с примерами, от плоскости называется ее расстояние d от плоскости, взятое со знаком плюс, если точка Плоскость - определение, виды и правила с примерамии начало координат О лежат по разные стороны от плоскости (Рис. 6.1), и со знаком минус — если Плоскость - определение, виды и правила с примерамии О лежат по одну сторону от плоскости.

Отклонение точки Плоскость - определение, виды и правила с примерамиот плоскости определяется по формуле Плоскость - определение, виды и правила с примерами

Следовательно, чтобы найти расстояние от точки до плоскости, надо привести уравнение плоскости к нормальному виду и в его левую часть вместо х, у, z подставить координаты точки Плоскость - определение, виды и правила с примерами. Получим отклонение Плоскость - определение, виды и правила с примерами. А расстояние Плоскость - определение, виды и правила с примерами.

Взаимное расположение плоскостей

Пусть даны плоскости Плоскость - определение, виды и правила с примерами и Плоскость - определение, виды и правила с примерами. Угол между ними равен углу между перпендикулярными к ним векторам Плоскость - определение, виды и правила с примерами

Косинус этого угла вычисляется по формуле:

Плоскость - определение, виды и правила с примерами(6.5)

Плоскости параллельны, если Плоскость - определение, виды и правила с примерами коллинеарны, т.е.:

Плоскость - определение, виды и правила с примерами (6.6) Условие перпендикулярности плоскостей —Плоскость - определение, виды и правила с примерами, т.е.

Плоскость - определение, виды и правила с примерами (6.7)

Если даны три плоскости:

Плоскость - определение, виды и правила с примерами (6.8)

, то их общие точки определяются системой уравнений (6.8).

В случае, если перпендикулярные этим плоскостям векторы

Плоскость - определение, виды и правила с примераминекомпланарны, три плоскости имеют единственную общую точку.

В самом деле, тогда смешанное произведение

Плоскость - определение, виды и правила с примерами

а записанный определитель является определителем системы уравнений (6.8), и, следовательно, система (6.8) имеет единственное решение.

Плоскость в высшей математике

Плоскость в пространстве также можно задать разными способами (тремя точками; точкой и вектором, перпендикулярным плоскости). В зависимости от этого рассматриваются различные виды ее уравнений.

1. В пространстве Oxyz составим уравнение плоскости Р, проходящей через точку Плоскость - определение, виды и правила с примерами перпендикулярно вектору n=(А,В,С) (нормальному вектору плоскости) (рис.9). Рис.9

Плоскость - определение, виды и правила с примерами

Возьмем любую точку M(x,y,z), лежащую на плоскости, и рассмотрим вектор Плоскость - определение, виды и правила с примерамиТак как векторы Плоскость - определение, виды и правила с примерами являются взаимно перпендикулярными, их скалярное произведение равно нулю:

Плоскость - определение, виды и правила с примерами

или в координатной форме:

Плоскость - определение, виды и правила с примерами

Уравнение Ax+By+Cz+D=0, где А, В и С не равны одновременно нулю Плоскость - определение, виды и правила с примераминазывается общим уравнением плоскости.

2. Составим уравнение плоскости, проходящей через три точки Плоскость - определение, виды и правила с примерами не лежащие на одной прямой. Пусть M(x,y,z) — произвольная точка этой плоскости. Рассмотрим векторы

Плоскость - определение, виды и правила с примерами

Эти векторы компланарны, поэтому их смешанное произведение равно нулю: Плоскость - определение, виды и правила с примерами Условие компланарности трех векторов в координатной форме запишется так: Плоскость - определение, виды и правила с примерами Это и есть искомое уравнение плоскости.

Задачи на прямую и плоскость

Прямая как пересечение двух плоскостей

Рассмотрим две непараллельные плоскости, заданные общими уравнениями. В этом случае плоскости пересекаются по прямой, определяемой уравнениями

Плоскость - определение, виды и правила с примерами

которые называются общими уравнениями прямой.

Замечание. Одна и та же прямая может быть задана различными системами двух линейных уравнений, т.к. через одну прямую можно провести бесчисленное множество плоскостей.

Пример №1

Общие уравнения прямой привести к каноническому виду:

Плоскость - определение, виды и правила с примерами

Решение:

Векторы Плоскость - определение, виды и правила с примерами=(2,-1,-2) и Плоскость - определение, виды и правила с примерами=(4,-2,-3) являются нормальными векторами плоскостей. Направляющий вектор прямой можно вычислить по формуле Плоскость - определение, виды и правила с примерами

т.к. он принадлежит обеим плоскостям и, следовательно, удовлетворяет условиям:

Плоскость - определение, виды и правила с примерами Найдем точку на прямой. Положив в общих уравнениях, например, х=0, получим систему уравнений:

Плоскость - определение, виды и правила с примерами

По точке на прямой (0,-13,9) и направляющему вектору s=(-l,-2,0) составим канонические уравнения прямой:

Плоскость - определение, виды и правила с примерами Т.к. деление на нуль невозможно, то уравнения прямой примут вид:

Плоскость - определение, виды и правила с примерами Задача решена.

Расстояние от точки до прямой на плоскости

Пусть заданы прямая на плоскости своим общим уравнением Ах+Ву+С=0 и точка Плоскость - определение, виды и правила с примерами не лежащая на этой прямой.

Найдем расстояние d от точки до данной прямой. Проведем из точки Плоскость - определение, виды и правила с примерами перпендикуляр Плоскость - определение, виды и правила с примерами на прямую l (рис. 10).

Плоскость - определение, виды и правила с примерами

Искомое расстояние d есть модуль вектора Плоскость - определение, виды и правила с примерами который коллинеарен вектору n=(А,В). Из определения скалярного произведения следует: Плоскость - определение, виды и правила с примерами или в координатной форме:

Плоскость - определение, виды и правила с примерами А так как Плоскость - определение, виды и правила с примерами то

Плоскость - определение, виды и правила с примерами

Аналогично находится расстояние от точки до плоскости. Если заданы плоскость своим общим уравнением Ax+By+Cz+D=0 и точка Плоскость - определение, виды и правила с примерами не принадлежащая этой плоскости, то расстояние d от точки до плоскости находится по формуле:

Плоскость - определение, виды и правила с примерами

  • Заказать решение задач по высшей математике

Пример №2

Вершины треугольной пирамиды находятся в точках А( 1,1 ,-1), В(2,1,-3), С(-1,1,1) и D(0,7,3). Вычислить высоту пирамиды, опущенную из вершины D на основание АВС.

Решение:

Искомая высота есть расстояние от точки D до плоскости АВС. Составим уравнение плоскости, проходящей через три точки А, В и С. Возьмем любую точку M(x,y,z), принадлежащую этой плоскости. Тогда векторы АМ=(х-l,y-l,z+l), АВ=(1,0,-2) и АС=(-2,0,2) будут лежать в плоскости АВС и, следовательно, их смешанное произведение будет равно нулю:

Плоскость - определение, виды и правила с примерами

у-1=0 — общее уравнение плоскости АВС. Применяя формулу расстояния от точки до плоскости, получим

Плоскость - определение, виды и правила с примерами

Задача решена.

Пусть Плоскость - определение, виды и правила с примерами — направляющие векторы двух прямых в пространстве. Угол между двумя прямыми есть угол между их направляющими векторами, т.е.

Плоскость - определение, виды и правила с примерами

Условие параллельности двух прямых: Плоскость - определение, виды и правила с примерами т.е.

Плоскость - определение, виды и правила с примерами Условие перпендикулярности двух прямых: Плоскость - определение, виды и правила с примерами т е-

Плоскость - определение, виды и правила с примерами

Пусть Плоскость - определение, виды и правила с примерами — нормальные векторы двух плоскостей в пространстве. Угол между двумя плоскостями есть угол между их нормальными векторами, т.е.

Плоскость - определение, виды и правила с примерами

Условие параллельности двух плоскостей: Плоскость - определение, виды и правила с примерами— т.е.

Плоскость - определение, виды и правила с примерами

Условие перпендикулярности двух плоскостей: Плоскость - определение, виды и правила с примерами т.е.

Плоскость - определение, виды и правила с примерами

Пусть прямая l задана каноническими уравнениями

Плоскость - определение, виды и правила с примерами

а плоскость Р — общим уравнением

Ax+By+Cz+D=0.

Углом между прямой и плоскостью называется острый угол между пря-мои и ее проекцией на плоскость. Он является дополнительным до Плоскость - определение, виды и правила с примерами к углу между векторами Плоскость - определение, виды и правила с примерами (рис.11):

Плоскость - определение, виды и правила с примерами

Тогда Плоскость - определение, виды и правила с примерами

Условие перпендикулярности прямой и плоскости: Плоскость - определение, виды и правила с примерамит.е.

Плоскость - определение, виды и правила с примерами

Условие параллельности прямой и плоскости: Плоскость - определение, виды и правила с примерами т.е. Am+Bn+Cp=0.

  • Кривые второго порядка
  • Евклидово пространство
  • Матрица — виды, операции и действия с примерами
  • Линейный оператор — свойства и определение
  • Теория множеств — виды, операции и примеры
  • Числовые множества
  • Вектор — определение и основные понятия
  • Прямая — понятие, виды и её свойства

Определение. Направляющими векторами плоскости называются два неколлинеарных вектора, лежащих в этой плоскости.

Уравнения плоскости в координатной форме

Общее уравнение плоскости в декартовой системе координат:

    [Ax + By + Cz + D = 0, qquad (A^2 + B^2 + C^2) 
e 0,]

при этом вектор с координатами является нормальным вектором к плоскости.

Уравнение плоскости, проходящей через три точки, не лежащие на одной прямой, можно получить, если решить систему уравнений

    Уравнение плоскости, формулы и примеры

Здесь и — координаты трёх точек плоскости. Заметим, что уравнений в системе три, а переменных — четыре. То есть решение этой системы мы получаем с точностью до коэффициента. Этот коэффициент роли не играет — после подстановки решения в уравнение плоскости на него можно сократить. Рассмотрим это на примере.

  1. Параметрические уравнения плоскости:
  2.     Уравнение плоскости, формулы и примеры
  3. Здесь — некоторая точка плоскости, и  — координаты направляющих веторов плоскости, — параметры.

Уравнения плоскости в векторном виде

  1. Нормальное векторное уравнение плоскости:
  2.     [(	extbf{r} - 	extbf{r}_0, 	extbf{n}) = 0, qquad (	extbf{n} 
e 0),]
  3. где — нормальный вектор плоскости.
  4. Это уравнение также можно записать в виде
  5.     [(	extbf{r}, 	extbf{n}) = D, qquad (	extbf{n} 
e 0).]

Если вектор — единичный (его длина равна ), то величина есть расстояние от точки до плоскости. Смысл этого уравнения в том, что проекция радиус-вектора любой точки плоскости на нормаль к ней есть постоянная величина, равная расстоянию до этой плоскости.

  • Уравнение плоскости, проходящей через три точки с радиус-векторами и можно записать в векторном виде:
  • Если радиус векторы имеют соответственно координаты то в координатной форме это уравнение запишется так:

Источник: https://umath.ru/theory/uravnenie-ploskosti/

Уравнения плоскости: общее, через три точки, нормальное

Чтобы получить общее уравнение плоскости, разберём плоскость, проходящую через заданную точку.

Пусть в пространстве есть три уже известные нам оси координат — Ox, Oy и Oz. Подержим лист бумаги так, чтобы он оставался плоским. Плоскостью будет сам лист и его продолжение во всех направлениях.

Пусть P произвольная плоскость в пространстве. Всякий перпендикулярный ей вектор называется вектором нормали к этой плоскости. Естественно, речь идёт о ненулевом векторе.

Уравнение плоскости, формулы и примеры

Если известна какая-нибудь точка плоскости P и какой-нибудь вектор нормали к ней, то этими двумя условиями плоскость в пространстве вполне определена (через заданную точку можно провести единственную плоскость, перпендикулярную данному вектору). Общее уравнение плоскости будет иметь вид:

Уравнение плоскости, формулы и примеры

Итак, условия, которыми задаётся уравнение плоскости, есть. Чтобы получить само уравнение плоскости, имеющее приведённый выше вид, возьмём на плоскости P произвольную точку M с переменными координатами x, y, z.

Эта точка принадлежит плоскости только в том случае, когда вектор перпендикулярен вектору (рис. 1).

Для этого, согласно условию перпендикулярности векторов, необходимо и достаточно, чтобы скалярное произведение этих векторов было равно нулю, то есть

.

Уравнение плоскости, формулы и примеры Уравнение плоскости, формулы и примеры Уравнение плоскости, формулы и примеры Уравнение плоскости, формулы и примеры

Так как точка M(x; y; z) выбрана на плоскости произвольно, то последнему уравнению удовлетворяют координаты любой точки, лежащей на плоскости P. Для точки N, не лежащей на заданной плоскости, , т.е. равенство (1) нарушается.

Пример 1. Составить уравнение плоскости, проходящей через точку и перпендикулярной вектору .

Решение. Используем формулу (1), еще раз посмотрим на неё:

Уравнение плоскости, формулы и примеры

В этой формуле числа A, B и C координаты вектора , а числа x0, y0 и z0 — координаты точки .

Вычисления очень простые: подставляем эти числа в формулу и получаем

Уравнение плоскости, формулы и примеры

Умножаем всё, что нужно умножить и складываем просто числа (которые без букв). Результат:

Уравнение плоскости, формулы и примеры

Требуемое уравнение плоскости в этом примере оказалось выражено общим уравнением первой степени относительно переменных координат x, y, z произвольной точки плоскости.

Итак, уравнение вида

Уравнение плоскости, формулы и примеры

называется общим уравнением плоскости.

Пример 2. Построить в прямоугольной декартовой системе координат плоскость, заданную уравнением .

Решение. Для построения плоскости необходимо и достаточно знать какие-либо три её точки, не лежащие на одной прямой, например, точки пересечения плоскости с осями координат.

Как найти эти точки? Чтобы найти точку пересечения с осью Oz, нужно в уравнение, данное в условии задачи, вместо икс и игрека подставить нули: x = y = 0. Поэтому получаем z = 6. Таким образом, заданная плоскость пересекает ось Oz в точке A(0; 0; 6).

Точно так же находим точку пересечения плоскости с осью Oy. При x = z = 0 получаем y = −3, то есть точку B(0; −3; 0).

И, наконец, находим точку пересечения нашей плоскости с осью Ox. При y = z = 0 получим x = 2, то есть точку C(2; 0; 0). По трём полученным в нашем решении точкам A(0; 0; 6), B(0; −3; 0) и C(2; 0; 0) строим заданную плоскость.

Решения типичных задач, которые бывают на контрольных работах — в пособии «Задачи на плоскость: параллельность, перпендикулярность, пересечение трёх плоскостей в одной точке».

Рассмотрим теперь частные случаи общего уравнения плоскости. Это случаи, когда те или иные коэффициенты уравнения (2) обращаются в нуль.

1. При D = 0 уравнение определяет плоскость, проходящую через начало координат, так как координаты точки 0(0; 0; 0) удовлетворяют этому уравнению.

2. При A = 0 уравнение определяет плоскость, параллельную оси Ox, поскольку вектор нормали этой плоскости перпендикулярен оси Ox (его проекция на ось Ox равна нулю). Аналогично, при B = 0 плоскость параллельная оси Oy, а при C = 0 плоскость параллельна оси Oz.

3. При A = D = 0 уравнение определяет плоскость, проходящую через ось Ox, поскольку она параллельна оси Ox (A = 0) и проходит через начало координат (D = 0). Аналогично, плоскость проходит через ось Oy, а плоскость через ось Oz.

4. При A = B = 0 уравнение определяет плоскость, параллельную координатной плоскости xOy, поскольку она параллельна осям Ox (A = 0) и Oy (B = 0). Аналогично, плоскость параллельна плоскости yOz, а плоскость — плоскости xOz.

5. При A = B = D = 0 уравнение (или z = 0) определяет координатную плоскость xOy, так как она параллельна плоскости xOy (A = B = 0) и проходит через начало координат (D = 0). Аналогично, уравнение y = 0 в пространстве определяет координатную плоскость xOz, а уравнение x = 0 — координатную плоскость yOz.

Пример 3. Составить уравнение плоскости P, проходящей через ось Oy и точку .

Решение. Итак, плоскость проходит через ось Oy. Поэтому в её уравнении y = 0 и это уравнение имеет вид . Для определения коэффициентов A и C воспользуемся тем, что точка принадлежит плоскости P.

  • Поэтому среди её координат есть такие, которые можно подставить в уравнению плоскости, которое мы уже вывели (). Смотрим ещё раз на координаты точки:
  • M0(2; −4; 3).
  • Среди них x = 2, z = 3. Подставляем их в уравнение общего вида и получаем уравнение для нашего частного случая:
  • 2A + 3C = 0.
  • Оставляем 2A в левой части уравнения, переносим 3C в правую часть и получаем
  • A = −1,5C.
  • Подставив найденное значение A в уравнение , получим
  • или .
  • Это и есть уравнение, требуемое в условии примера.

Решить задачу на уравнения плоскости самостоятельно, а затем посмотреть решение

Пример 4. Определить плоскость (или плоскости, если больше одной) относительно координатных осей или координатных плоскостей, если плоскость (плоскости) задана уравнением .

Посмотреть правильное решение и ответ.

Решения типичных задач, которые бывают на контрольных работах — в пособии «Задачи на плоскость: параллельность, перпендикулярность, пересечение трёх плоскостей в одной точке».

Нет времени вникать в решение? Можно заказать работу! Пройти тест по теме Прямая и плоскость

Уравнение плоскости, проходящей через три точки

Как уже упоминалось, необходимым и достаточным условием для построения плоскости, кроме одной точки и вектора нормали, являются также три точки, не лежащие на одной прямой.

Пусть даны три различные точки , и , не лежащие на одной прямой. Так как указанные три точки не лежат на одной прямой, векторы и не коллинеарны, а поэтому любая точка плоскости лежит в одной плоскости с точками , и тогда и только тогда, когда векторы , и компланарны, т.е. тогда и только тогда, когда смешанное произведение этих векторов равно нулю.

Используя выражение смешанного произведения в координатах, получим уравнение плоскости

    (3)

После раскрытия определителя это уравнение становится уравнением вида (2), т.е. общим уравнением плоскости.

  1. Пример 5. Составить уравнение плоскости, проходящей через три данные точки, не лежащие на одной прямой:
  2. , ,
  3. и определить частный случай общего уравнения прямой, если такой имеет место.
  4. Решение. По формуле (3) имеем:
  5. Раскрываем определитель по первой строке:
  6. Получили общее уравнение плоскости
  7. или после деления на -2:
  8. .

Это уравнение, в котором A = 0, т.е. оно определяет плоскость, параллельную оси Ox.

Решения типичных задач, которые бывают на контрольных работах — в пособии «Задачи на плоскость: параллельность, перпендикулярность, пересечение трёх плоскостей в одной точке».

Нормальное уравнение плоскости. Расстояние от точки до плоскости

  • Нормальным уравнением плоскости называется её уравнение, записанное в виде
  • ,
  • где — направляющие косинусы нормали плоскости, — расстояние от начала координат до плоскости.

Нормалью к плоскости называется вектор, направление которого совпадает с направлением прямой, проведённой через начало координат перпендикулярно данной плоскости.

(Есть полная аналогия с нормалью к прямой на плоскости, с той лишь разницей, что нормальное уравнение прямой существует в двух измерениях, а нормальное уравнение плоскости — в трёх).

Пусть M — какая угодно точка пространства. Для нахождения отклонения точки M от плоскости следует в левую часть нормального уравнения плоскости подставить на место x, y и z подставить координаты этой точки.

Это правило позволяет найти и расстояние от точки M до плоскости: расстояние равно модулю отклонения, т.е.

,

так как расстояние не может быть отрицательным числом.

  1. Общее уравнение плоскости
  2. приводится к нормальному виду почленным умножением на нормирующий множитель, определяемый формулой
  3. .

Знак нормирующего множителя берётся противоположным знаку свободного члена в общем уравнении плоскости.

Пример 6. Привести уравнение плоскости к нормальному виду.

  • Решение. Вычислим нормирующий множитель:
  • .
  • Знак нормирующего множителя положительный, то есть, противоположен знаку свободного члена в общем уравнении плоскости. Умножим общее уравнение почленно на нормирующий множитель и получим требуемое в условии примера нормальное уравнение плоскости:
  • .

Пример 7. Вычислить величину отклонения и расстояния от точки до прямой, если точка задана координатами (-2; -4; 3), а плоскость задана общим уравнением .

Решение. Сначала приведём уравнение плоскости к нормальному виду. Вычислим нормирующий множитель:

  1. .
  2. Знак нормирующего множителя отрицательный, то есть, противоположен знаку свободного члена в общем уравнении плоскости. Умножим общее уравнение почленно на нормирующий множитель и получим нормальное уравнение плоскости:
  3. .
  4. Вычислим отклонение точки от плоскости:
  5. Найдём теперь расстояние от точки до плоскости как модуль отклонения:

Нет времени вникать в решение? Можно заказать работу! Пройти тест по теме Прямая и плоскость

Всё по теме «Прямая и плоскость»

Источник: https://function-x.ru/equations_of_plane.html

Презентация по математике на тему «Уравнение плоскости»

Инфоурок › Математика ›Презентации›Презентация по математике на тему «Уравнение плоскости»

Уравнение плоскости, формулы и примеры

Уравнение плоскости, формулы и примеры

Уравнение плоскости, формулы и примеры

Уравнение плоскости, формулы и примеры

Уравнение плоскости, формулы и примеры

Уравнение плоскости, формулы и примеры

Уравнение плоскости, формулы и примеры

Уравнение плоскости, формулы и примеры

Уравнение плоскости, формулы и примеры

Уравнение плоскости, формулы и примеры

Описание презентации по отдельным слайдам:

1 слайд Описание слайда:

ЕЩЁ ПОДУМАЙте…

2 слайд Описание слайда:

Уравнение плоскости Преподаватель математики Семяшкина Ирина Васильевна ГПОУ «Ижемкий политехнический техникум»

3 слайд Описание слайда:

Цель: познакомить учащихся с понятием уравнения плоскости и её особыми случаями задания; Выработать практические навыки по изучаемой теме при решении задач.

4 слайд Описание слайда:

Проверка готовности. Греческий, латинский 3 (аксиома А1) , (ABC) Параллельно, пересекаться, совпадать Какой алфавит используют для обозначения плоскости? Сколькоточек достаточно, чтобыобозначить плоскость? Какобозначают плоскость? Как могут располагаться плоскости по отношению друг к другу?

5 слайд Описание слайда:

Общее уравнение плоскости Ax+By+Cz+D=0 где А, В, С, D – числовые коэффициенты

6 слайд Описание слайда:

Уравнения координатных плоскостей x = 0, плоскость Оyz y = 0, плоскость Оxz z = 0, плоскость Оxy

7 слайд Описание слайда:

Особые случаи уравнения: D = 0  Ax+By+Cz = 0 плоскость проходит через начало координат. А = 0  Ву + Cz +D = 0 плоскость параллельна оси Ох. В = 0  Ах + Cz +D = 0 плоскость параллельна оси Оу. C = 0  Ax+By+D = 0 плоскость параллельна оси Oz.

8 слайд Описание слайда:

Особые случаи уравнения: А = В = 0  Сz + D = 0 плоскость параллельна плоскости Оху. А = С = 0  Ву + D = 0 плоскость параллельна плоскости Охz. В = C= 0  Ах+D = 0 плоскость параллельна плоскости Оуz.

9 слайд Описание слайда:

Особые случаи уравнения: A = D = 0  By+Cz = 0 плоскость проходит через ось Ox. B = D = 0  Ax + Cz = 0 плоскость параллельна оси Оy. C = D = 0  Ах + By = 0 плоскость параллельна оси Оz.

10 слайд Описание слайда:

совпадают, если существует такое число k, что Две плоскости в пространстве: параллельны, если существует такое число k, что В остальных случаях плоскости пересекаются.

11 слайд Описание слайда:

Алгоритм составления уравнения плоскости, проходящей через точку перпендикулярно данному вектору Итак, пусть  произвольная плоскость в пространстве. Всякий перпендикулярный ей ненулевой вектор называется вектором нормали к этой плоскости.  n1 n2

12 слайд Описание слайда:

Если известна какая-нибудь точка плоскости M0 и какой-нибудь вектор нормали к ней, то через заданную точку можно провести единственную плоскость, перпендикулярную данному вектору. Общее уравнение плоскости будет иметь вид: Алгоритм составления уравнения плоскости, проходящей через точку перпендикулярно данному вектору M0 A(x-x0)+B(y-y0)+C(z-z0)=0 n (A;B;C)

13 слайд Описание слайда:

Чтобы получить уравнение плоскости, имеющее приведённый вид, возьмём на плоскости произвольную точку M(x;y;z).

Эта точка принадлежит плоскости только в том случае, когда вектор перпендикулярен вектору (рис), а для этого, необходимо и достаточно, чтобы скалярное произведение этих векторов было равно нулю, т.е. Вектор задан по условию.

Координаты вектора найдём по формуле : Теперь, используя формулу скалярного произведения векторов , выразим скалярное произведение в координатной форме: A(x-x0)+B(y-y0)+C(z-z0)=0

14 слайд Описание слайда:

Пример 1. Составить уравнение плоскости, проходящей через точку и перпендикулярной вектору . Используем формулу A(x-x0)+B(y-y0)+C(z-z0)=0 Решение: Ответ: 5x + y — 4z — 3=0

15 слайд Описание слайда:

Уравнение плоскости, проходящей через три точки После раскрытия определителя это уравнение становится уравнением общего вида. Пусть даны три различные точки, не лежащие на одной прямой. Используя выражение смешанного произведения в координатах, получим уравнение плоскости:

16 слайд Описание слайда:

Пример 2. Составить уравнение плоскости, проходящей через три данные точки, не лежащие на одной прямой: ; и . Решение: Ответ: -4y + 2z — 2=0

17 слайд Описание слайда:

При равенстве нулю свободного коэффициента D уравнения общего уравнения плоскости уравнение определяет Плоскость, параллельную координатной плоскости Oxy  Плоскость, проходящую через начало координат  Полуплоскость  Линию пересечения плоскостей ПРОВЕРИМ, ЧТО МЫ ЗАПОМНИЛИ….

18 слайд Описание слайда:

Вектор нормали это… Всякий ненулевой вектор Всякий перпендикулярный ненулевой вектор Всякий перпендикулярный плоскости ненулевой вектор Всякий перпендикулярный плоскости вектор

19 слайд Описание слайда:

Общее уравнение плоскости это… Ax+By+Cz=0 Ax+By+Cz=D Ax+By+Cz+D=0 A(x-x0)+B(y-y0)+C(z-z0)=0

20 слайд Описание слайда:

Домашнее задание рассмотреть другие способы нахождения уравнения плоскости; Решить задачу: В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 сторона основания равна 4, и диагональ боковой грани равна 5. Написать уравнение плоскостей А1В1E и плоскости основания призмы.

21 слайд Описание слайда:

Используемые ресурсы: ПЛОСКОСТИ http://kramshifer.Ub.Ua/ru/board/view/38313/ ГЛАДЬ РЕКИ http://www.Raschetrasstoyanie.Com/%D0%A2%D0%BE%D0%BB%D1%81%D1%82%D0%BE%D0%B2%D1%81%D0%BA%D0%B8%D0%B9_%D0%9B%D0%B8%D1%81%D0%BA%D0%B8/%D1%84%D0%BE%D1%82%D0%BE ПЛОСКИЕ КАМНИ http://aqueouspic.Ru/smotret-komedii-romanticheskie-onlajn.Html ШАХМАТНАЯ ДОСКА http://www.1chess.Ru/index.Php?Show_aux_page=45 СМАЙЛИКИ http://www.baby.ru/blogs/post/314439509-43854232/

22 слайд Описание слайда:

Плоскость Oхy Z Y X O

23 слайд Описание слайда:

Плоскость Oхz Z Y X O

24 слайд Описание слайда:

Плоскость Oyz Z Y X O

25 слайд Описание слайда:

Плоскость параллельная плоскости Охy Z Y X O

26 слайд Описание слайда:

Плоскость параллельная плоскости Охz Z Y X O

27 слайд Описание слайда:

Плоскость параллельная плоскости Оyz Z Y X O

28 слайд Описание слайда:

Плоскость параллельная Оси ох Z Y X O

29 слайд Описание слайда:

СПАСИБО ЗА ВНИМАНИЕ

30 слайд
31 слайд

Скрыть

Важно! Узнайте, чем закончилась проверка учебного центра «Инфоурок»?

Общая информация

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Источник: https://infourok.ru/prezentaciya-po-matematike-na-temu-uravnenie-ploskosti-1753323.html

Уравнение плоскости по трем точкам

Уравнение плоскости, формулы и примеры Сайт репетитора по математике Фельдман Инны Владимировны. Профессиональные услуги репетитора по математике в Москве. Подготовка к ГИА и ЕГЭ, помощь отстающим. Уравнение плоскости, формулы и примеры Уравнение плоскости, формулы и примеры Уравнение плоскости, формулы и примеры 2012-03-18

Главная » СТАТЬИ » 14 Задание (2016) (C2) » Уравнение плоскости по трем точкам

Во многих стереометрических задачах, связанных с нахождением расстояния от точки до плоскости или расстояния между скрещивающимися прямыми, или угла между плоскостями, требуется найти уравнение плоскости. В этой статье я расскажу, как найти уравнение плоскости, если известны координаты трех точек, через которые она проходит.

Уравнение плоскости имеет вид: Уравнение плоскости, формулы и примеры, где , , и  — числовые коэффициенты.

Уравнение плоскости, формулы и примеры

Так как точки принадлежат плоскости, то при подстановке их координат в уравнение плоскости, мы получим верные равенства.

Так как у нас три точки, мы должны получить систему из трех уравнений с четырьмя неизвестными. Примем коэффициент  равным 1. Для этого разделим уравнение плоскости на  .  Получим:

Мы можем переписать  это уравнение в виде: 

Внимание! Если плоскость проходит через начало координат, то принимаем d=0.

  • Чтобы найти коэффициенты А, В и С, подставим координаты точек , и   в уравнение плоскости .
  • Получим систему уравнений:
  • Решив ее, мы найдем значения коэффициентов А, В и С.
  • Решим задачу.

В правильной четырехугольной призме  со стороной основания 12 и высотой 21 на ребре  взята точка  так, что  равно 8. на ребре  взята точка  так, что  равно 8. Написать уравнение плоскости :

  1. Поскольку для нахождения уравнения плоскости нам понадобятся координаты точек, я сразу помещаю призму в систему координат:
  2. Запишем координаты точек:
  3. Подставим их в систему уравнений:
  4. Отсюда:
  5. Подставим найденные коэффициенты в уравнение плоскости:
  6. Чтобы избавиться от дробных коэффициентов, умножим обе части уравнения плоскости на . Получим:
  7. Ответ: уравнение плоскости   

И.В. Фельдман, репетитор по математике.

Источник: https://ege-ok.ru/2012/03/18/uravnenie-ploskosti

Общее уравнение плоскости : описание, примеры, решение задач, найти множество точек координатной

В статье рассмотрим такой тип уравнений плоскости как общее уравнение, получим его вид и разберем на практических примерах. Рассмотрим частные случаи и понятие общего неполного уравнения плоскости.

Общее уравнение плоскости: основные сведения

Перед началом разбора темы вспомним, что такое уравнение плоскости в прямоугольной системе координат в трёхмерном пространстве.

Пусть нам дана прямоугольная система координат Oxyz в трехмерном пространстве, уравнением плоскости в заданной системе координат будет такое уравнение с тремя неизвестными x, y, и z, которому отвечали бы координаты всех точек этой плоскости и не отвечали бы координаты никаких прочих точек.

Иначе говоря, подставив в уравнение плоскости координаты некоторой точки этой плоскости, получаем тождество. Если же в уравнение подставить координаты какой-то другой точки, не принадлежащей заданной плоскости, равенство станет неверным.

Также вспомним определение прямой, перпендикулярной к плоскости: прямая является перпендикулярной к заданной плоскости, если она перпендикулярна любой прямой, принадлежащей этой плоскости.

Теорема 1

Любую плоскость, заданную в прямоугольной системе координат Oxyz трехмерного пространства, можно определить уравнением Ax + By + Cz + D = 0. В свою очередь, любое уравнение Ax + By + Cz + D = 0 определяет некоторую плоскость в данной прямоугольной системе координат трехмерного пространства. A, B, C, D – некоторые действительные числа, и числа A, B, C не равны одновременно нулю.

Доказательство 

Теорема состоит из двух частей. Разберем доказательство каждой из них.

  1. Первая часть теоремы гласит, что любую заданную плоскость возможно описать уравнением вида Ax + By + Cz + D = 0. Допустим, задана некоторая плоскость и точка M0(x0, y0, z0), через которую эта плоскость проходит. Нормальным вектором этой плоскости является n→= (A, B, C). Приведем доказательство, что указанную плоскость в прямоугольной системе координат Oxyz задает уравнение Ax + By + Cz + D = 0.

Возьмем произвольную точку заданной плоскости M(x, y, z).В таком случае векторы n→= (A, B, C) и M0M→=(x-x0, y-y0, z-z0) будут перпендикулярны друг другу, а значит их скалярное произведение равно нулю:

n→, M0M→=Ax-x0+B(y-y0)+C(z-z0)=Ax+By+Cz-(Ax0+By0+Cz0)

Примем D=-(Ax0+By0+Cz0) , тогда уравнение преобразуется в следующий вид: Ax + By + Cz + D = 0. Оно и будет задавать исходную плоскость. Первая часть теоремы доказана.

  1. Во второй части теоремы утверждается, что любое уравнение вида Ax + By + Cz + D = 0 задает некоторую плоскость в прямоугольной системе координат Oxyz трехмерного пространства. Докажем это.

В теореме также указано, что действительные числа А, B, C одновременно не являются равными нулю. Тогда существует некоторая точка M0(x0, y0, z0), координаты которой отвечают уравнению Ax + By + Cz + D = 0, т.е. верным будет равенство Ax0 + By0 + Cz0 + D = 0. Отнимем левую и правую части этого равенства от левой и правой частей уравнения Ax + By + Cz + D = 0. Получим уравнение вида

A(x-x0) + B(y-y0) + C(z-z0) + D = 0, и оно эквивалентно уравнению Ax + By + Cz + D = 0. Докажем, что уравнение A(x-x0) + B(y-y0) + C(z-z0) + D = 0 задает некоторую плоскость.

Уравнение A(x-x0) + B(y-y0) + C(z-z0) + D = 0 являет собой условие, необходимое и достаточное для перпендикулярности векторов n→=(A, B, C) и M0M→=x-x0, y-y0, z-z0.

Опираясь на утверждение, указанное перед теоремой, возможно утверждать, что при справедливом равенстве A(x-x0) + B(y-y0) + C(z-z0) + D = 0 множество точек M(x, y, z) задает плоскость, у которой нормальный вектор n→=(A, B, C). При этом плоскость проходит через точку M(x0, y0, z0).

Иначе говоря, уравнение A(x-x0) + B(y-y0) + C(z-z0) + D = 0 задает в прямоугольной системе координат Oxyz трехмерного пространства некоторую плоскость. Таким, образом, эквивалентное этому уравнению уравнение Ax + By + Cz + D = 0 также определяет эту плоскость. Теорема доказана полностью.

Уравнение плоскости, формулы и примеры

Уравнение вида Ax + By + Cz + D = 0 называют общим уравнением плоскости в прямоугольной системе координат Oxyz трехмерного пространства.

Допустим, задано некоторое общее уравнение плоскости λ·Ax+λ·By+λ·Cz+λ·D=0, где λ – некое действительное число, не равное нулю.

Это уравнение также задает в прямоугольной системе координат некоторую плоскость, совпадающую с плоскостью, определяемую уравнением Ax+By+Cz+D=0, поскольку описывает то же самое множество точек трехмерного пространства.

Например, уравнения x-2·y+3·z-7=0 и -2·x+4·y-23·z+14=0 задают одну и ту же плоскость, поскольку им обоим отвечают координаты одних и тех же точек трехмерного пространства. 

Раскроем чуть шире смысл теорем.

В пределах заданной системы координат плоскость и общее уравнение, ее определяющее, неразрывно связаны: каждой плоскости отвечает общее уравнение плоскости вида Ax+By+Cz+D=0( при конкретных значениях чисел A, B, C, D). В свою очередь, этому уравнению отвечает заданная плоскость в заданной прямоугольной системе координат.

Укажем пример как иллюстрацию этих утверждений.

Ниже приведен чертеж, на котором изображена плоскость в фиксированной прямоугольной системе координат трехмерного пространства.

Заданной плоскости отвечает общее уравнение вида 4x + 5y – 5z + 20 = 0, и ему соответствуют координаты любой точки этой плоскости.

В свою очередь, уравнение 4x + 5y – 5z + 20 = 0 описывает в заданной системе координат множество точек, которые составляют изображенную плоскость.

Уравнение плоскости, формулы и примеры

Общее уравнение плоскости, проходящей через точку

Повторимся: точка M0(x0, y0, z0) лежит на плоскости, заданной в прямоугольной системе координат трехмерного пространства уравнением Ax+By+Cz+D=0 в том случае, когда подставив координаты точки M0(x0, y0, z0) в уравнение Ax+By+Cz+D=0, мы получим тождество.

Пример 1

 Заданы точки M0(1, -1, -3) и N0(0, 2, -8) и плоскость, определяемая уравнением 2x+3y-z-2=0. Необходимо проверить, принадлежат ли заданные точки заданной плоскости.

  • Решение 
  • Подставим координаты точки М0 в исходной уравнение плоскости:
  • 2·1+3·(-1)-(-3)-2=0⇔0=0
  • Мы видим, что получено верное равенство, значит точка M0(1, -1, -3) принадлежит заданной плоскости.
  •  Аналогично проверим точку N0. Подставим ее координаты в исходное уравнение:
  • 2·0+3·2-(-8)-2=0⇔12=0

Равенство неверно. Таким, образом, точка N0(0, 2, -8) не принадлежит заданной плоскости.

Ответ: точка М0 принадлежит заданной плоскости; точка N0 – не принадлежит.

Приведенное выше доказательство теоремы об общем уравнении дает нам возможность использовать важный факт: вектор n→=(A, B, C) — нормальный вектор для плоскости, определяемой уравнением  Ax+By+Cz+D=0. Так, если нам известен вид общего уравнения, то возможно записать координаты нормального вектора заданной плоскости.

Пример 2

В прямоугольной системе координат задана плоскость 2x+3y-z+5=0. Необходимо записать координаты всех нормальных векторов заданной плоскости.

Решение

Мы знаем, что заданные общим уравнением коэффициенты при переменных x, y, z служат координатами нормального вектора заданной плоскости. Тогда, нормальный вектор n→ исходной плоскости имеет координаты 2, 3, -1 . В свою очередь, множество нормальных векторов запишем так:

λ·n→=λ·2, λ·3, -λ, λ∈R, λ≠0

Ответ:  λ·2, λ·3, -λ, λ∈R, λ≠0

Разберем обратную задачу, когда требуется составить уравнение плоскости по заданным координатам нормального вектора.

Очевидным фактом является то, что нормальный вектор n→=(A, B, C)является нормальным вектором бесконечного множества параллельных плоскостей. Поэтому для обозначения конкретной плоскости введем дополнительное условие: зададим некоторую точку M0(x0, y0, z0), принадлежащую плоскости. Так, задавая в условии нормальный вектор и некоторую точку плоскости, мы ее зафиксировали.

Общее уравнение плоскости с нормальным вектором  n→=(A, B, C) будет выглядеть так:  Ax+By+Cz+D=0. По условию задачи точка M0(x0, y0, z0) принадлежит заданной плоскости, т.е. ее координаты отвечают уравнению плоскости, а значит верно равенство:Ax0+By0+Cz0+D=0

Вычитая соответственно правые и левые части исходного уравнения и уравнения Ax0+By0+Cz0+D=0, получим уравнение вида A(x-x0)+B(y-y0)+C(z-z0)=0. Оно и будет уравнением плоскости, проходящей через точку M0(x0, y0, z0) и имеющей нормальный вектор n→=(A, B, C).

  1. Возможно получить это уравнение другим способом.
  2. Очевидным фактом является то, что все точки М (x, y, z) трехмерного пространства задают данную плоскость тогда и только тогда, когда векторы n→=(A, B, C) и M0M→=(x-x0, y-y0, z-z0) перпендикулярны или, иначе говоря, когда скалярное произведение этих векторов равно нулю:
  3. n→, M0M→=A(x-x0)+B(y-y0)+C(z-z0)=0

Пример 3

Задана точка М0(-1, 2, -3), через которую в прямоугольной системе координат проходит плоскость, а также задан нормальный вектор этой плоскости n→=(3, 7, -5). Необходимо записать уравнение заданной плоскости.

Решение

Рассмотрим два способа решения.

  1. Исходные условия позволяют получить следующие данные:

x0=-1, y0=2, z0=-3, A=3, B=7, C=-5

Подставим их в общее уравнение плоскости, проходящей через точку, т.е. в A(x-x0)+B(y-y0)+C(z-z0)=0 

И получим:

3(x-(-1))+7(y-2)-5(z-(-3))=0⇔3x+7y-5z-26=0

  1. Допустим, М (x, y, z) – некоторая точки заданной плоскости. Определим координаты вектора M0M→ по координатам точек начала и конца:
  • M0M→=(x-x0, y-y0, z-z0)=(x+1, y-2, z+3)
  • Чтобы получить искомое общее уравнение плоскости, необходимо также воспользоваться необходимым и достаточным условием перпендикулярности векторов и тогда:
  • n→, M0M→=0⇔3(x+1)+7(y-2)-5(z+3)=0⇔⇔3x+7y-5z-26=0
  • Ответ: 3x+7y-5z-26=0

Неполное общее уравнение плоскости

Выше мы говорили о том, что, когда все числа А, B, C, D отличны от нуля, общее уравнение плоскости Ax+By+Cz+D=0 называютполным. В ином случае общее уравнение плоскости является неполным.

Разберем все возможные варианты общих неполных уравнений в прямоугольной системе координат трехмерного пространства.

  1. В случае, когда D = 0, мы получаем общее неполное уравнение плоскости: Ax+By+Cz+D=0⇔Ax+By+Cz=0

Такая плоскость в прямоугольной системе координат проходит через начало координат. В самом деле, если подставим в полученное неполное уравнение плоскости координаты точки О (0, 0, 0), то придем к тождеству:

A·0+B·0+C·0=0⇔0≡0

Уравнение плоскости, формулы и примеры

  1. Если А = 0, В ≠ 0, С ≠ 0, или А ≠ 0, В = 0, С ≠0, или А ≠ 0, В ≠ 0, С = 0, то общие уравнения плоскостей имеют вид соответственно: By+Cz+D=0, или Ax+Cz+D=0, или Ax+By+D=0. Такие плоскости параллельны координатным осям Оx, Oy, Oz соответственно. Когда D=0, плоскости проходят через эти координатные оси соответственно. Также заметим, что неполные общие уравнения плоскостей By+Cz+D=0, Ax+Cz+D=0 и Ax+By+D=0 задают плоскости, которые перпендикулярны плоскостям Oyz, Oxz, Ozy соответственно.

Уравнение плоскости, формулы и примеры

  1. При А=0, В=0, С≠0, или А=0, В≠0, С=0, или А≠0, В=0, С=0 получим общие неполные уравнения плоскостей: Cz+D=0 ⇔z+DC=0⇔z=-DC⇔z=λ, λ∈R или By+D=0⇔y+DB=0⇔y=-DB⇔y=λ, λ∈R или Ax+D=0⇔x+DA=0⇔x=-DA⇔x=λ, λ∈R соответственно.

Эти уравнения определяют плоскости, которые параллельны координатным плоскостям Oxy, Oxz, Oyz соответственно и проходят через точки 0, 0, -DC, 0, -DB, 0 и -DA, 0, 0 соответственно. При D=0 уравнения самих координатных плоскостей Oxy, Oxz, Oyz выглядят так: z=0, y=0, x=0

соответственно.

Уравнение плоскости, формулы и примеры

Пример 4

Задана плоскость, параллельная координатной плоскости Oyz и проходящая через точку М0(7, -2, 3). Необходимо составить общее уравнение заданной плоскости.

Р​​ешение

У​​​​​словием задачи определено, что заданная плоскость параллельна координатной плоскости Oyz, а, следовательно, может быть задана общим неполным уравнением плоскости Ax+D=0, A≠0⇔x+DA=0.

Поскольку точка M0(7, -2, 3) лежит на плоскости по условию задачи, то очевидно, что координаты этой точки должны отвечать уравнению плоскости  x+DA=0, иначе говоря, должно быть верным равенство  7+DA=0 .

Преобразуем: DA=-7, тогда требуемое уравнение  имеет вид: x-7=0.

Задачу возможно решить еще одним способом.

Вновь обратим внимание на заданную условием задачи параллельность данной плоскости координатной плоскости Oyz.

Из этого условия понятно, что возможно в качестве нормального вектора заданной плоскости использовать нормальный вектор плоскости Oyz: i→=(1, 0, 0).

Так, нам известны и точка, принадлежащая плоскости (задана условием задачи) и ее нормальный вектор. Таким образом, становится возможно записать общее уравнение заданной плоскости:                              

A(x-x0)+B(y-y0)+C(z-z0)=0⇔⇔1·(x-7)+0·(y+2)+0·(z-3)=0⇔⇔x-7=0

Ответ: x-7=0

Пример 5

Задана плоскость, перпендикулярная плоскости Oxy и проходящая через начало координат и точку М0(-3, 1, 2).

Решение 

Плоскость, которая перпендикулярна координатной плоскости Oxy определяется общим неполным уравнением плоскости Ax+By+D=0 (А≠0, В≠0). Условием задачи дано, что плоскость проходит через начало координат, тогда D=0 и уравнение плоскости принимает вид Ax+By=0⇔x+BAy=0.

Найдем значение BA. В исходных данных фигурирует точка М0(-3, 1, 2), координаты которой должны отвечать уравнению плоскости. Подставим координаты, получим верное равенство: -3+BA·1=0, откуда определяем BA=3.

Так, мы имеем все данные, чтобы записать требуемое общее уравнение плоскости: x+3y=0.

Ответ: x+3y=0.

Источник: https://Zaochnik.com/spravochnik/matematika/prjamaja-ploskost/obschee-uravnenie-ploskosti/

Решение типовых задач по теме «Плоскость». Уравнение плоскости. Часть 1

Уравнение плоскости, формулы и примеры

Решение типовых задач по теме «Плоскость». Составить уравнение плоскости
Задача №1. Даны точки и . Написать уравнение плоскости, проходящей через точку и перпендикулярно к вектору .
Решение. Уравнение связки плоскостей, проходящей через точку , будет

Уравнение плоскости, формулы и примеры

Нормальный вектор

Уравнение плоскости, формулы и примеры

Подставляем проекции 2, 6 и 5 вектора на место A, В и С в уравнение связки, будем иметь:

  • Уравнение плоскости, формулы и примеры

или
Это и есть уравнение искомой плоскости (рис.1).

Ответ:
Задача №2. Написать уравнение плоскости, проходящей через точки , и .
Решения задач №1 и №2 подробно изложены в следующем видео

Задача №3. Написать уравнение плоскости, проходящей через точки и и перпендикулярной к плоскости 2x+4y+6z-7=0. Решение. Пусть М(х,у,z) произвольная точка искомой плоскости. Тогда векторы и принадлежат этой плоскости. Векторы и компланарны с нормальным вектором данной плоскости 2х+4y+бz-7=0.
Поэтому смешанное произведение этих трех векторов равно нулю:
или

Источник: https://math-helper.ru/vyisshaya-matematika/reshenie-tipovyih-zadach-po-teme-ploskost-uravnenie-ploskosti

Как составить уравнение плоскости

Плоскость является одним из основных понятий, связывающих планиметрию и стереометрию (разделы геометрии). Эта фигура также часто встречается в задачах по аналитической геометрии. Чтобы составить уравнение плоскости, достаточно иметь координаты трех ее точек.

Для второго основного способа составления уравнения плоскости необходимо указать координаты одной точки и направление нормального вектора. Уравнение плоскости, формулы и примеры Если известны координаты трех точек, через которые проходит плоскость, то запишите уравнение плоскости в виде определителя третьего порядка. Пусть (х1, х2, х3), (у1, у2, у3) и (z1, z2, z3) – координаты первой, второй и третьей точки соответственно. Тогда уравнение плоскости, проходящей через эти три точки, выглядит следующим образом:│ x-x1 y-y1 z-z1 ││x2-x1 y2-y1 z2-z1│ = 0

│x3-x1 y3-y1 z3-z1│

Пример: составить уравнение плоскости, проходящей через три точки с координатами: (-1; 4; -1), (-13; 2; -10), (6; 0; 12). Решение: подставляя координаты точек в вышеприведенную формулу, получим:│x+1 y-4 z+1 ││-12 -2 -9 │ =0│ 7 -4 13 │В принципе, это и есть уравнение искомой плоскости. Однако если разложить определитель по первой строке, то получится более простое выражение:-62*(х+1) + 93*(у-4) + 62*(z+1) = 0.

Разделив обе части уравнения на 31 и приведя подобные, получим:

-2х+3у+2z-12=0.Ответ: уравнение плоскости, проходящей через точки с координатами(-1; 4; -1), (-13; 2; -10) и (6; 0; 12)

-2х+3у+2z-12=0.

Если уравнение плоскости, проходящей через три точки, требуется составить без использования понятия «определитель» (младшие классы, тема – системы линейных уравнений), то воспользуйтесь следующим рассуждением.

Уравнение плоскости в общем виде имеет вид Ах+ВуСz+D=0, причем одной плоскости соответствует множество уравнений с пропорциональными коэффициентами. Для простоты вычислений параметр D обычно принимают равным 1, если плоскость не проходит через начало координат (для плоскости, проходящей через начало координат, D=0).

Так как координаты точек, принадлежащих плоскости, должны удовлетворять вышеприведенному уравнению, то в итоге получается система из трех линейных уравнений:-A+4B-C+1=0-13A+2B-10C+1=06A+12C+1=0,решив которую и избавившись от дробей, получим вышеприведенное уравнение

(-2х+3у+2z-12=0).

Если заданы координаты одной точки (х0, у0, z0) и координаты вектора нормали (А, В, С), то чтобы составить уравнение плоскости, просто запишите уравнение:А(х-х0)+В(у-у0)+С(z-z0)=0.

После приведения подобных это и будет уравнением плоскости.

Если требуется решить задачу составления уравнения плоскости, проходящей через три точки, в общем виде, то разложите уравнение плоскости, записанной через определитель, по первой строке:(x-x1)*(у2-y1)*(z3-z1) – (x-x1)*(z2-z1)*(y3-y1) – (y-y1)*(x2-x1)*(z3-z1) + (y-y1)*(z2-z1)*(x3-x1) + (z-z1)*(x2-x1)*(y3-y1) – (z-z1)*(y2-y1)*(x3-x1) = 0.

Хотя это выражение и более громоздкое, зато в нем не используется понятие определителя и оно более удобно для составления программ.

  • составить уравнение плоскости проходящей
  • Войти на сайт
  • или

Источник: https://www.kakprosto.ru/kak-92763-kak-sostavit-uravnenie-ploskosti

9.7. Уравнение плоскости

Рассмотрим произвольную точку в пространстве и некоторый вектор Очевидно, что геометрическим местом точек таких, что вектор перпендикулярен вектору будет плоскость, проходящая через точку M перпендикулярно прямой, для которой вектор является направляющим. Нашей задачей будет установить уравнение плоскости, то есть найти соотношение, которому удовлетворяют координаты точки A.

  • Запишем условие перпендикулярности векторов с использованием скалярного произведения:
  • Запишем последнее равенство в координатах:
  • Поскольку все наши выкладки были равносильными, то это и есть уравнение плоскости, проходящей через заданную точку. Преобразуем его к виду
  • Обозначая получим
  • Это и есть так называемое общее уравнение плоскости.

Определение 9.19. 

Вектор называется нормальным вектором (или просто нормалью) для плоскости, заданной общим уравнением (1).

Нормальный вектор к плоскости перпендикулярен ей, что следует из самого вывода уравнения плоскости.

Рассмотрим плоскость 3x + 2y + z – 6 = 0. Пусть A – точка пересечения этой плоскости с осью Ox, то есть A(2; 0; 0). Точка B(0; 3; 0) – это точка пересечения данной плоскости с осью Oy, точка C(0; 0; 6) – с осью Oz (чертеж 9.7.1). Уравнение называется уравнением плоскости в отрезках на осях.

Эта плоскость пересекает оси Ox, Oy, Oz соответственно в точках A(a; 0; 0), B(0; b; 0), C(0; 0; c).

Плоскость, изображенная на чертеже 9.7.1, имеет такое уравнение в отрезках на осях:

High end escorts Paris
High end escorts Paris
cipriani-models.com

Источник: https://mathematics.ru/courses/stereometry/content/chapter9/section/paragraph7/theory.html

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Торчащие уши как исправить без операции
  • Как можно найти пароля других
  • Как правильно составить рацион кормления для крс
  • Как быстро найти гоблина изобретателя в террарии
  • Как составить акт об аварии автомобиля

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии