Область определения функции обратной пропорциональности как найти

Функция обратной пропорциональности




Определение

Функция обратной пропорциональности — это функция, заданная формулой

    [y = frac{k}{x},]

где x — независимая переменная, k — число, отличное от нуля.

Графиком обратной пропорциональности является гипербола. Гипербола состоит из двух ветвей. (так называют две части графика).

Для построения гиперболы нужно знать несколько точек (больше точек — точнее график). Лучше выбирать те значения x, на которые удобно делить k.

Свойства функции обратной пропорциональности

1) Область определения обратной пропорциональности состоит из всех значений x, кроме нуля:

D: x∈(-∞;0) U (0;∞).

2) Область значений обратной пропорциональности — все значения y, кроме нуля:

E: y∈(-∞;0) U (0;∞).

3) Функция обратной пропорциональности не имеет нулей.

4) При k>0

ветви гиперболы расположены в I и III координатных четвертях:

funkciya-obratnoj-proporcionalnosti

Обратная пропорциональность убывает на каждом из промежутков области определения, то есть при x∈(-∞;0) U (0;∞).

Функция принимает положительные значения при x>0, или

y>0 при x∈ (0;∞).

Функция принимает отрицательные значения при x<0, или

y<0 при x∈(-∞;0).

При k<0

ветви гиперболы расположены вo II и IV координатных четвертях:

funkciya-obratnaya-proporcionalnost

Обратная пропорциональность возрастает на каждом из промежутков области определения, то есть при x∈(-∞;0) U (0;∞).

Функция принимает положительные значения при x<0, или

y<0 при x∈(-∞;0).

Функция принимает отрицательные значения при x>0, или

y>0 при x∈ (0;∞).

Оси Ox и Oy для обратной пропорциональности являются асимптотами — прямыми, к которым ветви гиперболы неограниченно приближаются  (но никогда их не достигнут).

В следующий раз на конкретных примерах рассмотрим, как строить график обратной пропорциональности.

Математика

Тестирование онлайн

Определение. График

Обратной пропорциональностью называется функция вида

где и является числом.

Графиком функции является гипербола.

Свойства функции

1) Областью определения функции является множество всех действительных чисел, кроме x=0, т.е.

2) Множеством значений функции являются все числа, кроме y=0, т.е. промежуток

3) Наименьшего и наибольшего значений функция не имеет.

4) Функция является нечетной, график симметричен относительно начала координат (0; 0)

5) Функция непериодическая.

6) График функции не пересекает координатных осей.

7) Функция не имеет нулей.

8) Функция на каждом из промежутков является убывающей.

Функция на каждом из промежутков является возрастающей.

9) Функция принимает отрицательные значения на промежутке и принимает положительные значения на промежутке

Функция принимает отрицательные значения на промежутке и принимает положительные значения на промежутке

I.
Обратной пропорциональностью

называется
 функция, заданная формулой    где k ≠ 0.

 Графиком
обратной пропорциональности
является
гипербола, расположенная в
I и III четверти, если k>0;
во II и IV четверти, если k<0.

Свойства обратной пропорциональности:  
1) Область определения функции — множество всех
действительных чисел, кроме нуля:

    D(y)=(−; 0)(0; +).

2) Область значений функции – множество всех действительных
чисел, кроме нуля:

    Е(y)=(−; 0)(0; +).
3)
, Функция   является
нечётной, её график симметричен относительно начала координат, т.е. точки
(0;0).

4) При k > 0 функция убывает,
а при k < 0 возрастает на всей области определения.
                     

Для
точного построения графика, например, функции
, возьмём несколько значений
х и для каждого вычислим значение у.

  
Так как график функции симметричен относительно начала координат, то точки в
III четверти будут иметь противоположные координаты.

                         

II.
Обратная пропорциональность
   где k ≠ 0.

 Графиком
данной функции является
гипербола, которая получается из графика функции
 смещением
вдоль оси Ох на т единиц вправо, если т > 0, и влево,
если т < 0. Чтобы построить график этой функции, проводим
дополнительную прямую х = т, параллельную оси Оу, затем
строим график функции
 относительно получившихся
осей.

Свойства:  
1) Область определения функции — множество всех
действительных чисел, кроме х = т:

    D(y)=(−; т)(т;
+
).

2) Область значений функции – множество всех действительных
чисел, кроме нуля:

    Е(y)=(−; 0)(0; +).
3)
, значит, функция не является ни чётной, ни нечётной,    её график не
симметричен относительно оси Оу. и не симметричен относительно начала
координат.

4) При k > 0 функция убывает,
а при k < 0 возрастает на всей области определения.
                     

III.
Обратная пропорциональность
   где k ≠ 0.

 Графиком
данной функции является
гипербола, которая получается из графика функции
 смещением
вдоль оси Оу на п единиц вверх, если п > 0, и вниз,
если п < 0. Чтобы построить график этой функции, проводим
дополнительную прямую у = п, параллельную оси Ох, затем
строим график функции
 относительно получившихся
осей.

Свойства:  
1) Область определения функции — множество всех
действительных чисел, кроме нуля:

    D(y)=(−; 0)(0; +).

2) Область значений функции – множество всех действительных
чисел, кроме у = п:

    Е(y)=(−; п)(п;
+
).
3)
, значит, функция не является ни чётной, ни нечётной,    её график
не симметричен относительно оси Оу. и не симметричен относительно начала
координат.

4) При k > 0 функция убывает,
а при k < 0 возрастает на всей области определения.
                     

IV.
Обратная пропорциональность
   где k ≠ 0.

 Графиком
данной функции является
гипербола, которая получается из графика функции
 смещением
вдоль оси Ох на т единиц вправо, если т > 0, и влево,
если т < 0, и вдоль оси Оу на п единиц вверх, если п
> 0, и вниз, если п < 0. Чтобы построить график этой функции,
проводим дополнительные прямые х = т, параллельную оси Оу , и 
у
= п, параллельную оси Ох, затем строим график функции
 относительно получившихся
осей.

Свойства:  
1) Область определения функции — множество всех
действительных чисел, кроме х = т:

    D(y)=(−; т)(т;
+
).

2) Область значений функции – множество всех действительных
чисел, кроме у = п:

    Е(y)=(−; п)(п;
+
).
3)
, значит, функция не является ни чётной, ни нечётной,    её график
не симметричен относительно оси Оу. и не симметричен относительно начала
координат.

4) При k > 0 функция убывает,
а при k < 0 возрастает на всей области определения.
                     

Функция у =k/x (обратная пропорциональность) и ее график

Функция вида у = k/x (k≠0) называется обратной пропорциональностью; k называется коэффициентом обратной пропорциональности. Областью определения функции является множество D(f) = (-∞;0) и (0;+∞) = R{0}.
Графиком функции у = k/x является гипербола.
77

Рис. 1


Если k>0, то ветви гиперболы расположены в I и III координатных угла если k<0, то ветви гиперболы расположены в II и IV координатных углах (рис. 1, 2).
78

Рис. 2

Рассмотрим более подробно функцию у = k/x при k = 1 (у = 1/х).

Функция у = 1/x

Составляем таблицу, учитывая, что при х = 0 функция не определена (табл. 1).
Таблица 1
80
Строим график функции у = 1/x. Это гипербола (рис. 3).
image042

Рис. 3

Свойства функции у = 1/x:
а) D(f) = (-∞;0) и (0;+∞) = R{0};
б) E(f) = (-∞;0) и (0;+∞) =R{0};
в) функция у = 1/х не имеет нулей, так как уравнение 1/х = 0 не имеет корней, график функции у = 1/х не пересекает ось Ох;
г) функция принимает отрицательные значения при хє(-∞;0) и положительные значения при хє(0;+∞);
д) функция у=1/х убывает при хє(-∞;0), а также при хє(0;+оо);
е) функция не имеет экстремумов;
ж) f(—х) = —f(x) => функция у = 1/х нечетная, ее график симметричен относительно начала координат;
з) график функции у = 1/хне пересекает ось Оу, но при неограниченном приближении х к нулю ветви гиперболы неограниченно приближаются к оси Оу. При неограниченном увеличении х ветви гиперболы неограниченно приближаются к оси Ох, нигде ее не пересекая. Говорят, что оси Ох и Оу асимптоты гиперболы у = 1/х, ось Оу — вертикальная асимптота графика функции у = 1/х, ось Ох — горизонтальная асимптота графика функции у = 1/х.

Обратная пропорциональность — коротко о главном

Определение:

Функция, описывающая обратную пропорциональность, – это функция вида ( displaystyle y=frac{k}{x-a}+b ), где ( kne 0), ( xne 0) и ( xne а)

По-другому эту функцию называют обратной зависимостью.

Область определения и область значений функции:

( Dleft( y right)=left( -infty ;0 right)cup left( 0;+infty right)) или, что то же самое, ( Dleft( y right)=mathbb{R}backslash left{ 0 right})

( Eleft( y right)=left( -infty ;0 right)cup left( 0;+infty right)) или ( Eleft( y right)=mathbb{R}backslash left{ 0 right}).

График обратной пропорциональности (зависимости) – гипербола.

Коэффициент ( displaystyle k)

( displaystyle k) – отвечает за «пологость» и направление графика. Чем больше этот коэффициент, тем дальше от начала координат располагается гипербола, и, следовательно, она менее круто «поворачивает» (см. рисунок).

Знак коэффициента ( displaystyle k) влияет на то, в каких четвертях расположен график:

если ( displaystyle k>0), то ветви гиперболы расположены в ( displaystyle I) и ( displaystyle III) четвертях;

если ( displaystyle k<0), то во ( displaystyle II) и ( displaystyle IV).

Коэффициент ( displaystyle a)

Если внимательно посмотреть на знаменатель, видим, что ( displaystyle a) – это такое число, которому не может равняться ( displaystyle x).

То есть ( x=a) – это вертикальная асимптота, то есть вертикаль, к которой стремится график функции

Коэффициент ( b) 

Число ( b) отвечает за смещение графика функции вверх на величину ( b), если ( b>0), и смещение вниз, если ( b<0).

Следовательно, ( y=b) – это горизонтальная асимптота.

Алгоритм построения графика функции ( displaystyle y=frac{k}{x-a}+b)

  1. Определяем коэффициенты ( displaystyle k), ( displaystyle a) и ( displaystyle b).
  2. Строим график функции ( displaystyle y=frac{k}{x}) (сначала по 3-4 точкам правую ветвь, потом симметрично рисуем левую ветвь).
  3. График должен быть сдвинут вправо на ( displaystyle a). Но проще двигать не график, а оси, так что ось ( displaystyle Oy) сдвигаем влево на ( displaystyle a).
  4. График должен быть сдвинут вверх на ( displaystyle b). Но проще двигать не график, а оси, так что ось ( displaystyle Ox) сдвигаем вниз на ( displaystyle b).
  5. Старые оси (прямые, которые служили нам осями в пункте 2) оставляем в виде пунктирных линий. Это теперь просто вертикальная и горизонтальная асимптоты.

Что такое функция

Ты помнишь, что функция – это определенного рода зависимость?

Если ты еще не читал тему «Функции», настоятельно рекомендую бросить все и прочитать, ведь нельзя изучать какую-либо конкретную функцию, не понимая, что это такое – функция.

Также очень полезно перед началом этой темы освоить две более простые функции: линейную и квадратичную.

Там ты закрепишь понятие функции и научишься работать с коэффициентами и графиками.

Ну и на всякий случай немного повторим…

Функция – это правило, по которому каждому элементу одного множества (аргументу) ставится в соответствие некоторый (единственный!) элемент другого множества (множества значений функции).

То есть, если у тебя есть функция ( y=fleft( x right)), это значит что каждому допустимому значению переменной ( x) (которую называют «аргументом») соответствует одно значение переменной ( y) (называемой «функцией»).

Что значит «допустимому значению»?

Если не можешь ответить на этот вопрос, еще раз вернись к теме «Функции»!

Все дело в понятии «область определения»: для некоторых функций не все аргументы можно подставить в зависимость. Например, для функции ( y=sqrt{x}) отрицательные значения аргумента ( x) – недопустимы.

Функция, описывающая обратную зависимость

Это функция вида ( displaystyle y=frac{k}{x}), где ( kne 0).

По-другому ее называют обратной пропорциональностью: увеличение аргумента вызывает пропорциональное уменьшение функции.

Давай определим область определения. Чему может быть равен ( x)? Или, по-другому, чему он не может быть равен?

Единственное число, на которое нельзя делить – это ( 0), поэтому ( xne 0):

( Dleft( y right)=left( -infty ;0 right)cup left( 0;+infty right))

или, что то же самое,

( Dleft( y right)=mathbb{R}backslash left{ 0 right})

Такая запись означает, что ( x) может быть любым числом, кроме ( 0).

  • Знак «( mathbb{R})» обозначает множество действительных чисел, то есть всех возможных чисел.
  • Знаком «( backslash )» обозначается исключение чего-нибудь из этого множества (аналог знака «минус»).
  • Число ( 0) в фигурных скобках означает просто число ( 0).

Получается, что из всех возможных чисел мы исключаем ( 0)).

Множество значений функции, оказывается, точно такое же: ведь если ( kne 0), то на что бы мы его не делили, ( 0) не получится:

( Eleft( y right)=left( -infty ;0 right)cup left( 0;+infty right)) или ( Eleft( y right)=mathbb{R}backslash left{ 0 right}).

Также возможны некоторые вариации формулы ( y=frac{k}{x}). Например, ( y=frac{k}{x+a}) – это тоже функция, описывающая обратную зависимость.

Определи самостоятельно область определения и область значений этой функции. Должно получиться:

  • ( Dleft( y right)=left( -infty ;-a right)cup left( -a;+infty right))
  • ( Eleft( y right)=left( -infty ;0 right)cup left( 0;+infty right)).

Давай посмотрим на такую функцию: ( displaystyle y=frac{x-5}{{{x}^{2}}-25}). 

Является ли она обратной зависимостью?

На первый взгляд сложно сказать: ведь при увеличении ( x) увеличивается и знаменатель дроби, и числитель, так что непонятно, будет ли функция уменьшаться, и если да, то будет ли она уменьшаться пропорционально?

Чтобы понять это, нам необходимо преобразовать выражение таким образом, чтобы в числителе не было переменной:

( displaystyle y=frac{x-5}{{{x}^{2}}-25}=frac{x-5}{left( x-5 right)left( x+5 right)}=frac{1}{x+5},text{ }xne 5).

Действительно, мы получили обратную зависимость, но с оговоркой: ( xne 5).

Почему так? А потому, что выражение ( left( x-5 right)) было в исходном выражении в знаменателе, поэтому если мы возьмём значение ( x=5) и подставим его в исходную функцию (а ведь именно её нам нужно исследовать), то что мы получим?

Ноль, делённый на ноль. Но ведь на ноль нельзя делить ничего, даже другой ноль. Поэтому ( x) никак не может быть равен ( 5).

Но почему тогда мы также не пишем ( xne -5)? Оно ведь тоже в знаменателе!

А всё потому, что оно как было в знаменателе, так там и осталось, следовательно мы и так видим, что такое значение икса невозможно.

А поэтому — зачем лишний раз писать? Да-да, математики — народ ленивый, без надобности напрягаться не станут:)

Решения

Пример 1

( displaystyle y=1-frac{3}{x+2})

Пример 2

Здесь нужно вспомнить, как квадратный трехчлен раскладывается на множители (это подробно описано в теме «Разложение на множители»).

Напомню, что для этого надо найти корни соответствующего квадратного уравнения: ( displaystyle {{x}^{2}}+4{x}-5=0).

Я найду их устно с помощью теоремы Виета: ( displaystyle {{x}_{1}}=-5), ( displaystyle {{x}_{2}}=1). Как это делается? Ты можешь научиться этому, прочитав тему «Квадратные уравнения».

Итак, получаем: ( displaystyle {{x}^{2}}+4{x}-5=left( x+5 right)left( x-1 right)), следовательно:

( displaystyle y=frac{x+5}{left( x+5 right)left( x-1 right)}=frac{1}{x-1},text{ }xne -5)

Пример 3

Ты уже попробовал решить сам? В чем загвоздка?

Наверняка в том, что в числителе у нас ( displaystyle 2x), а в знаменателе – просто ( displaystyle x).

Это не беда. Нам нужно будет сократить на ( displaystyle left( x+2 right)), поэтому в числителе следует вынести ( displaystyle 2) за скобки (чтобы в скобках ( displaystyle x) получился уже без коэффициента):

( displaystyle y=frac{2{x}-3}{x+1}=frac{2left( x-frac{3}{2} right)}{x+1}=2cdot frac{x-1,5}{x+1}=2cdot frac{x+1-1-1,5}{x+1}=…) дальше сам.

Ответ: ( displaystyle y=2-frac{5}{x+1}).

График обратной пропорциональности

Как всегда, начнем с самого простого случая: ( displaystyle y=frac{1}{x}).

Составим таблицу.

Таблица обратной пропорциональности (зависимости)

( displaystyle mathbf{x}) ( displaystyle -3) ( displaystyle -2) ( displaystyle -1) ( displaystyle -0,5) ( displaystyle 0,5) ( displaystyle 1) ( displaystyle 2) ( displaystyle 3) ( displaystyle 4)
( displaystyle mathbf{y}) ( displaystyle -frac{1}{3}) ( displaystyle -frac{1}{2}) ( displaystyle -1) ( displaystyle -2) ( displaystyle 2) ( displaystyle ;1) ( displaystyle frac{1}{2}) ( displaystyle frac{1}{3}) ( displaystyle frac{1}{4})

Нарисуем точки на координатной плоскости:

Теперь их надо плавно соединить, но как?

Видно, что точки в правой и левой частях образуют будто бы несвязанные друг с другом кривые линии. Так оно и есть.

Это график гиперболы и выглядит он так:

Этот график называется «гипербола» (есть что-то похожее на «параболу» в этом названии, правда?). Как и у параболы, у гиперболы две ветки, только они не связаны друг с другом.

Каждая из них стремится своими концами приблизиться к осям ( displaystyle Ox) и ( displaystyle Oy), но никогда их не достигает. Если посмотреть на эту же гиперболу издалека, получится такая картина:

Оно и понятно: так как ( displaystyle xne 0), график не может пересекать ось ( displaystyle Oy). Но и ( displaystyle yne 0), так что график никогда не коснется и оси ( displaystyle Ox).

Ну что же, теперь посмотрим на что влияют коэффициенты.

На что влияют коэффициенты

Рассмотрим такие функции:

( displaystyle y=frac{1}{x};text{ }y=frac{2}{x};text{ }y=frac{4}{x};text{ }y=-frac{1}{x};text{ }y=-frac{3}{x}):

Ух ты, какая красота!

Все графики построены разными цветами, чтобы легче было их друг от друга отличать.

Итак, на что обратим внимание в первую очередь?

Например, на то, что если у функции перед дробью стоит минус, то график переворачивается, то есть симметрично отображается относительно оси ( displaystyle Ox).

Второе: чем больше число в знаменателе, тем дальше график «убегает» от начала координат.

А что, если функция выглядит сложнее, например, ( displaystyle y=frac{1}{x-1}+2)?

В этом случае гипербола будет точно такой же, как обычная ( displaystyle y=frac{1}{x}), только она немного сместится. Давай думать, куда?

Чему теперь не может быть равен ( x)? Правильно, ( xne 1). Значит, график никогда не достигнет прямой ( x=1).

А чему не может быть равен ( y)? Теперь ( yne 2). Значит, теперь график будет стремиться к прямой ( y=2), но никогда ее не пересечет.

Итак, теперь прямые ( x=1) и ( y=2) выполняют ту же роль, которую выполняют координатные оси для функции ( displaystyle y=frac{1}{x}).

Такие прямые называются асимптотами (линии, к которым график стремится, но не достигает их):

Более подробно о том, как строятся такие графики, мы выучим чуть позже.

А теперь попробуй решить несколько примеров для закрепления.

Обратная пропорциональность в жизни

Где же нам встречается такая функция на практике? Примеров множество. Самый распространенный – это движение: чем больше скорость, с которой мы движемся, тем меньшее время нам потребуется, чтобы преодолеть одно и то же расстояние.

И правда, вспомним формулу скорости: ( displaystyle v=frac{S}{t}), где ( v) – скорость, ( t) – время в пути, ( S) – расстояние (путь).

Отсюда можно выразить время: ( displaystyle t=frac{S}{v})

Пример:

Человек едет на работу со средней скоростью ( 40) км/ч, и доезжает за ( 1) час. Сколько минут он потратит на эту же дорогу, если будет ехать со скоростью ( 60) км/ч?

Решение:

Вообще, такие задачи ты уже решал в 5 и 6 классе. Ты составлял пропорцию:

( displaystyle 60) км/ч – ( 60) мин.

( displaystyle 60) км/ч – ( x) мин.

Далее ты определял, что это обратная пропорциональность, так как чем больше скорость, тем меньше время. Значит, чтобы решить эту пропорцию, нужно поделить числа «крест-накрест»:

( displaystyle frac{40}{x}=frac{60}{60}text{ }Rightarrow text{ }x=40)(мин).

То есть понятие обратной пропорциональности тебе уже точно знакомо. Вот и вспомнили. А теперь то же самое, только по-взрослому: через функцию.

Функция (то есть зависимость) времени в минутах от скорости:

( displaystyle tleft( v right)=frac{S}{v}).

Известно, что ( tleft( 40 right)=60), тогда:

( frac{S}{40}=60text{ }Rightarrow text{ }S=40cdot 60=2400).

Нужно найти ( tleft( 60 right)):

( displaystyle tleft( 60 right)=frac{2400}{60}=40) (мин).

Теперь придумай сам несколько примеров из жизни, в которых присутствует обратная пропорциональность.

Придумал? Молодец, если да. Удачи!

Принципы построения графика обратной пропорциональности (гиперболы)

Теперь давай научимся строить простейшую гиперболу – ( displaystyle y=frac{k}{x}).

Достаточно помнить, как она выглядит, и тогда нам хватит всего трех-четырех точек.

Например, построим гиперболу ( displaystyle y=frac{3}{x}).

Составим таблицу из ( 4) точек, которые принадлежат одной ветке (например, правой):

( x) ( frac{1}{2}) ( displaystyle 1) ( displaystyle 3) ( displaystyle 6)
( y) ( displaystyle 6) ( displaystyle 3) ( displaystyle 1) ( frac{1}{2})

Отмечаем точки на рисунке:

Проводим через них плавную линию, которая краями приближается к осям:

Это одна ветвь гиперболы

Проверить правильность построения этой кривой можно так: она должна быть симметрична относительно биссектрисы угла между осями координат:

Отлично, осталось вспомнить, что собой представляет вторая ветвь?

Это точно такая же кривая, расположенная симметрично относительно начала координат. То есть как будто оси теперь направлены не снизу вверх и слева направо, а наоборот: сверху вниз и справа налево, и мы рисуем ту же самую ветвь гиперболы.

Вот:

Еще один полезный факт.

Посмотри на красные точки на графике. Видно, что их абсцисса совпадает с ординатой. Так вот, эти абсцисса с ординатой равны ( sqrt{k}) для правой ветви гиперболы, и ( -sqrt{k}) для левой.

Для функций, у которых ( k) – точный квадрат (например, ( 1), ( 4) или ( displaystyle frac{1}{4})), эту точку, относительно которой ветвь гиперболы симметрична, будет очень легко поставить.

В этом случае достаточно даже трех точек, чтобы построить график.

Например, построим график функции ( displaystyle y=frac{4}{x})

Как и в прошлый раз, начнем с правой ветви.

Точка симметрии: ( displaystyle x=y=2). Выберем еще одну точку, например, ( displaystyle x=1), ( displaystyle y=4). У третьей точки координаты будут наоборот: ( displaystyle x=4), ( displaystyle y=1).

Рисуем:

И теперь симметрично отображаем эту ветвь в третью координатную четверть:

Теперь выясним, что будет, если ( displaystyle k<0)?

Очень просто: если есть график функции с таким же по величине, но положительным ( displaystyle k), то нужно просто отразить его относительно оси ( displaystyle Ox)

То есть правая ветвь теперь будет ниже оси ( displaystyle Ox) (в ( displaystyle IV) четверти), а левая – выше (в ( displaystyle III) четверти).

Принцип построения же останется прежним:

Ну что же, осталось объединить все то, что мы уже выяснили в один алгоритм:

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти юридическое лицо по реквизитам
  • Прожег пуховик как исправить
  • Ошибка при синтаксическом анализе пакета андроид как исправить на телевизоре sony
  • Install the directx sdk to get the full reference device как исправить
  • Ошибка соединения shadow fight 2 как исправить

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии