Математика 6 класс как найти наибольший делитель

Наибольшим общим делителем (НОД) двух целых чисел называется наибольший из их общих делителей. К примеру для чисел 12 и 8, наибольшим общим делителем будет 4.

Как найти НОД?

Способов найти НОД несколько. Мы рассмотрим один из часто используемых в математике — это нахождение НОД при помощи разложения чисел на простые множители. В общем случае алгоритм будет выглядеть следующим образом:

  1. разложить оба числа на простые множители (подробнее о разложении чисел на простые множители смотрите тут);
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Примеры нахождения наибольшего общего делителя

Рассмотрим приведенный алгоритм на конкретных примерах:

Пример 1: найти НОД 12 и 8

1. Раскладываем 12 и 8 на простые множители:

2. Выбираем одинаковые множители, которые есть в обоих разложениях. Это: 2 и 2

3. Перемножаем эти множители и получаем: 2 · 2 = 4

Ответ: НОД (8; 12) = 2 · 2 = 4.

Пример 2: найти НОД 75 и 150

Этот пример, как и предыдущий с легкостью можно высчитать в уме и вывести ответ 75, но для лучшего понимания работы алгоритма, проделаем все шаги:

1. Раскладываем 75 и 150 на простые множители:

2. Выбираем одинаковые множители, которые есть в обоих разложениях. Это: 3, 5 и 5

3. Перемножаем эти множители и получаем: 3 · 5 · 5 = 75

Ответ: НОД (75; 150) = 3 · 5 · 5 = 75.

Частный случай или взаимно простые числа

Нередко встречаются ситуации, когда оба числа взаимно простые, т.е. общий делитель равен единице. В этом случае, алгоритм будет выглядеть следующим образом:

Пример 3: найти НОД 9 и 5

1. Раскладываем 5 и 9 на простые множители:

Видим, что одинаковых множителей нет, а значит, что это частный случай (взаимно простые числа). Общий делитель — единица.

Наибольший общий делитель


Наибольший общий делитель

4.3

Средняя оценка: 4.3

Всего получено оценок: 224.

4.3

Средняя оценка: 4.3

Всего получено оценок: 224.

Наибольший общий делитель – это еще один показатель, позволяющий упростить работу с дробями. Очень часто в результате вычислений получаются дроби с очень большими значениями числителя и знаменателя. Сокращать поэтапно такие числа можно, но это крайне долго, поэтому проще сразу найти НОД и сократить на него. Разберемся в теме подробнее.

Что такое НОД?

Наибольший общий делитель (НОД) ряда чисел – это наибольшее число, на которое можно без остатка разделить каждое из чисел ряда.

Это значение чаще всего используется для ряда из двух чисел. Просто потому, что сокращаются обычно два числа: числитель и знаменатель дроби. Нахождение НОД для большего количества значений не всегда оправдано, но вырабатывает навык.

Как найти НОД?

Для того, чтобы найти НОД необходимо каждое из чисел разложить на простые множители и выделить общую часть.

Специальной формулы для этого не придумали, зато есть алгоритм вычисления.

Приведем пример нахождения наибольшего общего делителя двух натуральных чисел: 540 и 252. Разложим 640 на простые множители. Последовательность действий такова:

  • Делим число на наименьший из возможных простых чисел. То есть, если число можно разделить на 2, 3 или 5, то сначала нужно делить на 5. Просто, чтобы не запутаться.
  • Получившийся результат делим на наименьшее из возможных простых чисел.
  • Повторяем деление каждого полученного результата, пока не получим простое число.

Теперь проведем ту же процедуру на практике.

  • 540 : 2=270
  • 270:2=135
  • 135 : 3 =45
  • 45 : 3=15
  • 15 : 5 = 3

Запишем результат в виде равенства 540=2*2*3*3*3*5. Для того, чтобы записать результат, нужно последнее получившееся число умножить на все делители.

Аналогично поступим с числом 252:

  • 252 : 2=126
  • 126: 2=63
  • 63 : 3=21
  • 21 : 3 = 7

Запишем результат: 252=2*2*3*3*7.

В каждом разложении есть одинаковые числа. Найдем их, это два числа 2 и два числа 3. Отличаются только 7 и 3*5.

Для того, чтобы найти НОД нужно перемножить общие множетели. То есть в произведении будет две двойки и две тройки.

НОД=2*2*3*3=36

Как можно это использовать?

Задача: сократить дробь $$252over540$$.

НОД для двух этих чисел мы уже находили, теперь просто воспользуемся уже посчитанным значением.

НОД = 36

Сократим числитель и знаменатель дроби на 36 и получим ответ.

$${252over540} ={7over15}$$ – чтобы быстро сократить, достаточно посмотреть на разложение чисел.

Если 540=2*2*3*3*3*5, а НОД=36=2*2*3*3, то 540 = 36*3*5. И если мы поделим 540 на 36, то получим 3*5=15.

Без НОД нам пришлось бы в одну длинную строку писать сокращения. К тому же, бывают случаи, когда непонятно, можно ли сократить дробь вообще. Для таких ситуаций в математике и придумали разложение чисел на простые множители и НОД.

Заключение

Что мы узнали?

Мы узнали, что такое наибольший общий делитель пары чисел, разобрались, как можно использовать показатель на практике, решили задачу на нахождение НОД и применение НОД для сокращения дробей. Поняли, что с использованием НОД можно проще и быстрее сократить громоздкие дроби, найдя НОД для числителя и знаменателя.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

    Пока никого нет. Будьте первым!

Оценка статьи

4.3

Средняя оценка: 4.3

Всего получено оценок: 224.


А какая ваша оценка?

План урока:

Наибольший общий делитель

Взаимно простые числа

Минутка истории

Наибольший общий делитель

Встречаются ситуации, когда хочется понимать, на какое максимальное количество делится одновременно несколько числовых значений.

Например:

В городском парке проводился ежегодный марафон. Для участия в марафоне пришло 36 мальчиков, 24 девочки. По условиям соревнования, всех участников необходимо поделить на команды, в которые войдут  и мальчики, и девочки. Сколько одинаковых команд можно сформировать из данного количества детей?

erer

Чтобы ответь на вопрос задачи, вычислим максимальное числовое значение, являющееся делителем для количества всех ребят одновременно.

Выполним необходимые вычисления – определим существующие множители. Вычисления запишем в столбик.

Начнем с 36.

2

36 | 2

18

Полученное частное – 18, оно четное. Делитель остается прежним:

36 | 2

18 | 2

9

9 – нечетное, поэтому берем следующий делитель – 3:

36 | 2

18 | 2

9  | 3

3

Частное – простое числовое значение, делится само на себя:

36 | 2

18 | 2

9  | 3

3  | 3

1

Частное – единица, разложение окончено.

Выпишем составляющие:

36 = 2×2×3×3

Переходим к 24.

24 заканчивается четной цифрой, значит, кратно двум:

242

12

Делитель оставляем прежним, частное 12 – четное:

242

122

6

Результат деления 6, снова делим на 2:

24 | 2

12 | 2

6  | 2

3

Получили простое числовое значение, которое делится само на себя:

24 | 2

12 | 2

6  | 2

3  | 3

1

Разложение окончено. Запишем полученные компоненты:

24 = 2 × 2 × 2 × 3.

В финале выполненных вычислений мы получили:

36 = 2 × 2 × 2 × 3× 3;

24 = 2 × 2 × 2 × 3.

Давайте выберем одинаковые составляющие. Видно, что в каждом выражении такими составляющими будут: 2 ×2 × 3.

Перемножим выделенные компоненты:

2 ×2 × 3 = 12.

12 – самое большое числовое значение, на которое можно разделить оба делимых.

Мы выяснили, что всех участников можно распределить на 12 одинаковых команд.

Решая задачу, нашли самый большой делитель двух данных чисел. В арифметике число, являющееся самым большим делителем, одновременно для нескольких делимых, называют наибольшим общим делителем.

3

Для определения наибольшего общего делителя, нужно придерживаться определенного порядка выполнения математических действий:

4

Выполним задание.

Определите НОД (наибольший общий делитель) 66 и 44.

Чтобы выполнить задание будем придерживаться рассмотренного алгоритма действий.

Определим компоненты, входящие в состав числового значения.

5

Значит:

66 | 2

33

Результат деления оканчивается нечетной цифрой, проверяем по признакам делимости на 3:

6

66 | 2

33 | 3

11

Мы получили простое числовое значение

7

66 | 2

33 | 3

11 | 11

 1

     В итоге вычислений – 1, разложение окончено.

Переходим ко второму известному значению.

  • 1) Определим составляющие, входящие в состав:

Проверяем по признакам делимости. Данное числовое значение заканчивается четной цифрой, значит, оно делится на 2.

44 | 2

          22

Частное снова делится на 2:

          44 | 2    

          22 | 2

          11

В результате простое число, делим само на себя:

44 | 2    

22 | 2

11 | 11

1

Разложение окончено.

  • 2) Выпишем компоненты обоих делимых, определим одинаковые:

66 = 2 × 3 × 11

44 = 2 ×2 × 11

  • 3) Перемножим выделенные составляющие:

2 × 11=22

Выходит, что наибольший общий делитель – 22.

На письме, рядом с обозначением НОД в скобочках записывают делимые, для которых определяли наибольший общий делитель:

НОД (66;44) = 22.

Разберем задачу

Выпускники на праздник последнего звонка, приготовили цветы своим учителям. Они принесли 69 роз и 46 гладиолусов и разделили поровну между всеми учителями. Сколько учителей поздравили выпускники?

8

Зная, что цветы были поделены поровну, нам необходимо найти максимальную численность учителей,на которую можно разделить и розы и гладиолусы.

Для определения НОД данных делимых, воспользуемся алгоритмом вычисления:

  • 1) Разложим на составляющие:

69 | 3               46 | 2

23 | 23             23 | 23

1                       1

  • 2) Выберем общее числовое значение находящееся в составляющих :

69 = 3 × 23

46 = 2 × 23.

Нам подходит только  23.

НОД (69;46) = 23.

Наибольшим общим делителем для данных чисел будет 23. 

Выпускники поздравили 23 учителя.

Взаимно простые числа

Рассмотрим ситуацию.

В первой банке лежало 9 декоративных камней, во второй – 14 . Сколько  предметов интерьера, можно украсить  имеющимся материалом, если на каждое изделие использовать равное, при этом, наибольшее количество,камней из первой и второй коробки?

9

Чтобы ответить на главный вопрос задачи, нужно выполнить определенные вычисления. Для этого, разложим данные значения на простые составляющие:

14 | 2             9 | 3

 7  | 7             3 | 3

 1                   1

Выписываем компоненты, входящие в состав известных значений:

14 = 2 × 7

9 = 3 × 3

 Повторяющихся составляющих нет. Мы знаем, если любое натуральное число  умножить на 1, числовое значение не изменится. Значит, единственный, наибольший общий множитель чисел – 1.

Данным количеством камней получится  украсить только один предмет интерьера, если использовать равное, наибольшее количество материала из обеих банок.

 В арифметике числа, наибольшим общим множителем которых является 1, называют взаимно простыми.

10

Чтобы ответить на главный вопрос задачи, нужно выполнить определенные вычисления. Для этого, разложим данные значения на простые составляющие:

14 | 2             9 | 3

 7  | 7             3 | 3

 1                   1

Выписываем компоненты, входящие в состав известных значений:

14 = 2 × 7

9 = 3 × 3

 Повторяющихся составляющих нет. Мы знаем, если любое натуральное число  умножить на 1, числовое значение не изменится. Значит, единственный, наибольший общий множитель чисел – 1.

Данным количеством камней, получится  украсить только один предмет интерьера, если использовать равное, наибольшее количество материала из обеих банок.

 В арифметике, числа, наибольшим общим множителем которых является 1, называют взаимно простыми

11

Чтобы ответить на главный вопрос задачи, необходимо определить самое маленькое числовое значение, которое будет, без остатка делиться на 4, на 5, то есть будет кратно 4, 5.

Сначала, подберем значения, кратные четырем: 4,8,12,16,20,24,28.

Теперь, значения, кратные пяти: 5,10,15,20,25,30.

После этого, необходимо найти самое маленькое число, которое будет кратным 4, 5 одновременно.

Из перечисленных числовых значений,  подходит только 20. Оно делится без остатка на 4, на 5. Наименьшим общим кратным двух чисел будет 20.

Важно!

12

В математике существует специальный алгоритм для нахождения наименьшего общего кратного нескольких натуральных числовых значений:

13

Например:

Вычислим НОК для 30 и 32.

Чтобы выполнить нужные вычисления воспользуемся алгоритмом нахождения НОК.

14ris

Разберем задачу

В городе Москва, для  качественной съемки парада, приуроченного к празднику 9 Мая, организаторы подготовили квадрокоптеры с видеокамерами. Из одной точки  одновременно, будут запущены три аппарата. Время полета первого 8 минут, второго – 12.Через какое время,квадрокоптеры снова будут запущены одновременно, если по возвращению в точку запуска им меняют батарею и сразу отправляют назад.

15

Чтобы получить ответ на главный вопрос задачи, найдем наименьшее числовое значение, кратное двум данным величинам.

Для этого будем использовать рассмотренный алгоритм:

16ris

Квадрокоптеры будут одновременно запущены через 24 минуты.

Последняя задачка  на внимательность.

На уроке Ваня около доски выполнял задание. Он написал: НОК (25; 115) = 100. Подскажите Ване, верно ли он выполнил задание (не выполняя вычислений)?

17

Вначале, давайте вспомним определение НОК:

18

Из определения следует, НОК нацело делится на известные данные. Однако,видим, что 100 на 115 нацело разделить невозможно. Поэтому Ваня, допустил ошибку в своих расчетах!

Вот так легко и просто можно решить огромное количество задач, даже не совершая сложных вычислений!

Пока, вы только ученики 6 класса. Пройдет совсем немного времени и каждому придется делать главный выбор в своей жизни – «Кем стать?». Если  решите связать жизнь с программированием, интернет-ресурсами, научной деятельностью, вам нужно запомнить все правила и определения. Рассмотренные сегодня алгоритмы лежат в основе разработки, создания, компьютерных программ, сайтов, игр.

Минутка истории

1. Древнегреческий математик Эвклид, создавший алгоритм нахождения НОД, совершил множество математических открытий, аналогов которым ученые не нашли. Самым интересным, является то, что биографических сведений о самом Эвклиде не существует.

2. Среди бесконечного множества простых чисел, заканчивающихся на два и пять, существует только два: 2 и 5.

3. Результат суммирования  цифр числа 18, в два раза меньше этого числа. Существует только одно число такого плана.

4. Однажды, математик Абрахам де Муавр, живший в Англии, находясь в преклонном возрасте, выяснил, что временной период, занимающий сон, увеличивается ежедневно на четвертую часть часа. Проведя вычисления, он определил день, когда длительность сна достигнет суток. По его расчетам это должно произойти двадцать седьмого ноября 1754 года. Именно эта дата стала датой смерти английского ученого.

Запомните!
!

Если натуральное число делится только на 1 и на само себя, то оно называется простым.

Любое натуральное число всегда делится на 1 и на само себя.

Число 2 — наименьшее простое число. Это единственное чётное простое число, остальные простые числа — нечётные.

Простых чисел много, и первое среди них — число 2. Однако нет последнего простого числа. В
разделе «Для учёбы»
вы можете скачать таблицу простых чисел до 997.

Но многие натуральные числа делятся нацело ещё и на другие натуральные числа.

Например:

  • число 12
    делится на 1,
    на 2, на 3, на 4,
    на 6, на 12;
  • число 36
    делится на 1,
    на 2,
    на 3,
    на 4,
    на 6,
    на 12,
    на 18,
    на 36.

Числа, на которые число делится нацело
(для 12 это
1, 2, 3, 4, 6 и 12) называются
делителями числа.

Запомните!
!

Делитель натурального числа a — это такое
натуральное число, которое делит данное
число «a» без остатка.

Натуральное число, которое имеет более двух делителей называется составным.

Обратите внимание, что числа 12 и
36 имеют общие делители.
Это числа: 1, 2, 3, 4, 6, 12.
Наибольший из делителей этих чисел — 12.

Общий делитель двух данных чисел «a» и «b» — это число, на которое делятся без остатка
оба данных числа «a» и «b».

Запомните!
!

Наибольший общий делитель (НОД) двух данных чисел
«a» и
«b» — это наибольшее число, на которое оба
числа «a» и
«b» делятся без остатка.

Кратко наибольший общий делитель чисел «a» и «b» записывают так:

НОД (a; b).

Пример: НОД (12; 36) = 12.

Делители чисел в записи решения обозначают большой буквой «Д».

Пример.

Д (7) = {1, 7}

Д (9) = {1, 9}

НОД (7; 9) = 1

Числа
7 и 9 имеют
только один общий делитель — число 1.
Такие числа называют взаимно простыми числами.

Запомните!
!

Взаимно простые числа — это натуральные числа, которые имеют только
один общий делитель — число 1. Их НОД
равен 1.

Как найти наибольший общий делитель

Чтобы найти НОД двух или более натуральных чисел нужно:

  1. разложить делители чисел на простые множители;

Вычисления удобно записывать с помощью вертикальной черты. Слева от черты сначала записываем делимое,
справа — делитель. Далее в левом столбце записываем значения частных.

Поясним сразу на примере. Разложим на простые множители числа 28 и 64.

разложение чисел на простые множители и нахождение НОД

  1. Подчёркиваем одинаковые простые множители в обоих числах.

    28 = 2 · 2 · 7

    64 = 2 · 2 · 2 · 2 · 2 · 2

  2. Находим произведение одинаковых простых множителей и записать ответ;

    НОД (28; 64) = 2 · 2 = 4

    Ответ: НОД (28; 64) = 4

Оформить нахождение НОД можно двумя способами:
в столбик (как делали выше) или «в строчку».

Первый способ записи НОД

Найти НОД 48 и 36.

запись поиска НОД
НОД (48; 36) = 2 · 2 · 3 = 12

Второй способ записи НОД

Теперь запишем решение поиска НОД в строчку. Найти НОД 10 и 15.

Д (10) = {1, 2, 5, 10}

Д (15) = {1, 3, 5, 15}

Д (10, 15) = {1, 5}

НОД (10; 15) = 5


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

15 ноября 2016 в 17:18

Олеся Ткаченко
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Олеся Ткаченко
Профиль
Благодарили: 0

Сообщений: 1

Как найти нод чисел 

 и

  ???

0
Спасибоthanks
Ответить

15 ноября 2016 в 21:01
Ответ для Олеся Ткаченко

Антон Ершов
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Антон Ершов
Профиль
Благодарили: 0

Сообщений: 2

0
Спасибоthanks
Ответить

17 ноября 2016 в 10:07
Ответ для Олеся Ткаченко

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Если интересно, есть урок на эту тему.

0
Спасибоthanks
Ответить

12 октября 2015 в 17:28

Илья Ткачёв
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Илья Ткачёв
Профиль
Благодарили: 0

Сообщений: 1

НОК чисел 12 6 4 и объяснить как ты это сделал! :D

0
Спасибоthanks
Ответить

1 июля 2016 в 17:09
Ответ для Илья Ткачёв

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Методика подробно и понятно изложена вот на этой странице http://math-prosto.ru/index.php?page=pages/find_nod_and_nok/find_nod.php

А ответ к твоей задаче можно получить в супер решателе на сайте: http://math-prosto.ru/index.php?page=pages/calculators/find_nok_online.php

И он 12 =) Удачи и учитесь пользоваться поиском =)

0
Спасибоthanks
Ответить

2 октября 2015 в 17:37

Булат Махмудов
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Булат Махмудов
Профиль
Благодарили: 0

Сообщений: 1

Как найти НОК двух чисел если известно их произведение и НОД

0
Спасибоthanks
Ответить

9 июня 2016 в 14:26
Ответ для Булат Махмудов

Евгений Фёдоров
(^-^)
Профиль
Благодарили: 0

Сообщений: 60

(^-^)
Евгений Фёдоров
Профиль
Благодарили: 0

Сообщений: 60


a · b = НОД(a; b) · НОК(a; b)

0
Спасибоthanks
Ответить

21 сентября 2015 в 22:37

Angelina Vorontsovskaya
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Angelina Vorontsovskaya
Профиль
Благодарили: 0

Сообщений: 1

27=3,3,3. 36=3,3,3.
Наименьшее общее кратное — ?

0
Спасибоthanks
Ответить

22 сентября 2015 в 19:32
Ответ для Angelina Vorontsovskaya

Ольга Морозова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Ольга Морозова
Профиль
Благодарили: 0

Сообщений: 1


27=3,3,3
36=2,2,3,3
НОК=3 · 3=9

0
Спасибоthanks
Ответить

6 мая 2015 в 9:20

Сергей Михель
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Сергей Михель
Профиль
Благодарили: 0

Сообщений: 1

Часиное двух чисел равно наибольшему общему делителю чисел 12 и 16.Сумма этих чисел равна наименьшему общему кратному чисел 50 и 75. Найдите эти числа

0
Спасибоthanks
Ответить

16 апреля 2016 в 8:49
Ответ для Сергей Михель

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Вот тут можно найти объяснение темы НОД и НОК : http://math-prosto.ru/index.php?page=pages/find_nod_and_nok/find_nod.php

А вот тут можно найти математический кальклятор: http://math-prosto.ru/index.php?page=pages/calculators/calculators.php

Решение:
Найдём НОД чисел 12 и 16. Это число 4
Найдём НОК чисел 50 и 75. Это число 150
Обозначим искомые числа как Х и Y и составим уравнения:

x: y=4
x + y=150
x=150-y
150-y: y = 4
y?0
150-y=4y
5y=150
y=30
x=150-30
x=120

Проверка:
120:30=4
4=4
120+30=150
150=150
Ответ: эти числа 120 и 30

0
Спасибоthanks
Ответить


Как найти НОД

  • Нахождение путём разложения на множители
  • Алгоритм Евклида

Рассмотрим два способа нахождения наибольшего общего делителя.

Нахождение путём разложения на множители

Первый способ заключается в нахождении наибольшего общего делителя путём разложения данных чисел на простые множители.

Чтобы найти НОД нескольких чисел, достаточно, разложить их на простые множители и перемножить между собой те из них, которые являются общими для всех данных чисел.

Пример 1. Найти НОД (84, 90).

Решение: Раскладываем числа  84  и  90  на простые множители:

как найти наибольший общий делитель

Итак, мы подчеркнули все общие простые множители, осталось перемножить их между собой:

2 · 3 = 6.

Таким образом, НОД (84, 90) = 6.

Пример 2. Найти НОД (15, 28).

Решение: Раскладываем  15  и  28  на простые множители:

наибольший общий делитель двух чисел

Числа  15  и  28  являются взаимно простыми, так как их наибольший общий делитель — единица.

НОД (15, 28) = 1.

Алгоритм Евклида

Второй способ (иначе его называют способом Евклида) заключается в нахождении НОД путём последовательного деления.

Сначала мы рассмотрим этот способ в применении только к двум данным числам, а затем разберёмся в том, как его применять к трём и более числам.

Если большее из двух данных чисел делится на меньшее, то число, которое меньше и будет их наибольшим общим делителем.

Пример 1. Возьмём два числа  27  и  9.  Так как  27  делится на  9  и  9  делится на  9,  значит,  9  является общим делителем чисел  27  и  9.  Этот делитель является в тоже время и наибольшим, потому что  9  не может делиться ни на какое число, большее  9.  Следовательно:

НОД (27, 9) = 9.

В остальных случаях, чтобы найти наибольший общий делитель двух чисел используется следующий порядок действий:

  1. Из двух данных чисел большее число делят на меньшее.
  2. Затем, меньшее число делят на остаток, получившийся от деления большего числа на меньшее.
  3. Далее, первый остаток делят на второй остаток, который получился от деления меньшего числа на первый остаток.
  4. Второй остаток делят на третий, который получился от деления первого остатка на второй и т. д.
  5. Таким образом деление продолжается до тех пор, пока в остатке не получится нуль. Последний делитель как раз и будет наибольшим общим делителем.

Пример 2. Найдём наибольший общий делитель чисел  140  и  96:

1) 140 : 96 = 1 (остаток 44)

2) 96 : 44 = 2 (остаток 8)

3) 44 : 8 = 5 (остаток 4)

4) 8 : 4 = 2

Последний делитель равен  4  — это значит:

НОД (140, 96) = 4.

Последовательное деление так же можно записывать столбиком:

как найти нод чисел

Чтобы найти наибольший общий делитель трёх и более данных чисел, используем следующий порядок действий:

  1. Сперва находим наибольший общий делитель любых двух чисел из нескольких данных.
  2. Затем находим НОД найденного делителя и какого-нибудь третьего данного числа.
  3. Затем находим НОД последнего найденного делителя и четвёртого данного числа и так далее.

Пример 3. Найдём наибольший общий делитель чисел  140,  96  и  48.  НОД чисел  140  и  96  мы уже нашли в предыдущем примере (это число  4).  Осталось найти наибольший общий делитель числа  4  и третьего данного числа —  48:

48 : 4 = 12

48  делится на  4  без остатка. Таким образом:

НОД (140, 96, 48) = 4.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти знак радиана
  • Error subscript used on non accessible variable как исправить
  • Как найти человека по всем базам данных
  • Как составить резюме для email
  • Магнитный поток как найти угол

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии