План урока:
Действие сложение. Знак «+». Название компонентов действия сложения. Переместительное свойство сложения
Действие вычитание. Знак «–». Название компонентов действия вычитания
Взаимосвязь между действием сложения и действием вычитания
Действие сложение. Знак +
Название компонентов действия сложения. Переместительное свойство сложения
Добрый день! Готов к новому уроку? Сегодня у нас будет очень важное занятие. Мы получим самые драгоценные и сокровенные знания. Без этих знаний невозможно существование науки математики!
В таком сложном деле нам нужны помощники. Мы их найдем в сказочном лесу.
— Догадался? В этом лесу живут настоящие профессионалы по поиску драгоценностей и сокровищ. Это сказочные гномики.
Посмотри на них, какие они веселые и доброжелательные. Гномики улыбаются тебе и желают хорошего настроения на весь урок. Улыбнись им в ответ и давай приступим к занятию.
Гномики целый день работали в шахте. Они искали драгоценные камни.
Посмотри, сколько камней собрал гном Том и гном Тим. Посчитай.
Гном Том собрал 4 камня.
А гном Тим собрал 3 камня.
Чтобы не нести эту тяжесть в руках, они сложили все свои камни в тачку.
Теперь в тачке лежат и камни, которые собрал Том, и камни, которые собрал Тим. Давай-ка мы их все достанем и пересчитаем.
В тачке оказалось 7 камней.
Ого, как много! Как ты думаешь, почему?
Верно, потому что в тачку сложили камни оба гномика. А это всегда будет больше, чем у каждого по отдельности.
Итак, что сделали гномики?
Точно, они сложили свои камни вместе. В математике такое действие тоже называется сложение. Его суть в том, что элементы двух множеств объединяются в одно целое.
Смотри, множество камней Тома и множество камней Тима объединились в тачке в одно множество. При этом в объединенном множестве количество элементов становится больше.
Чтобы узнать результат сложения чисел, нужно пересчитать все элементы и первого, и второго множества вместе.
Гномики сложили камни вместе. А какие еще действия приводят к тому, что предметов становится больше?
Таких действий довольно много. Например, если в добавок к тому, что уже есть, кто-то:
- еще что-то даст или подарит;
- купит;
- принесет или привезет;
- смастерит еще несколько предметов;
- еще кто-то придет или прилетит.
Любое действие, которое ведет к увеличению количества предметов, подразумевает выполнение действия сложения. Часто это действие еще называют «прибавление».
Чтобы записать действие сложение в виде математического выражения, используется специальный знак. Знак сложения выглядит так.
Посмотри, в этом знаке тоже произошло объединение: две палочки соединились в одно целое. Этот знак называется «плюс».
Посмотри, как знак «плюс» пишется в тетради.
Порядок написания следующий.
- Начинаем чуть ниже середины верхней границы клетки. Ведем прямую линию вниз и останавливаемся, немного не дописав до середины нижней границы клетки.
- Вторую линию начинаем писать чуть правее середины левой границы клетки. Ведем ее вправо и останавливаемся, немного не дописав до середины правой границы клетки.
Потренируйся писать знак плюс в тетради.
Теперь разберемся, как именно надо составлять математическое выражение, описывающее действие сложения. Давай вспомним, что было сначала.
Том собрал 4 камня и Тим собрал 3 камня.
Они вместе высыпали свои камни в тачку, т.е. объединили их. Поэтому мы ставим между числами знак «+».
В результате объединения все камни оказались в тачке. Мы их все пересчитали – в тачке 7 камней. Их ровно столько, сколько было у обоих гномиков вместе. Поэтому между левой и правой частью выражения нужно поставить знак равенства «=».
В тетради надо записать так.
Теперь я расскажу, как называются компоненты действия сложения. Числа, которые обозначают количество элементов в каждом отдельном множестве, называются слагаемые. А число, которое обозначает результат, полученный при объединении этих множеств, называется сумма.
Поскольку левая сторона записи равна правой, то и само выражение тоже называют «сумма». Читают так «сумма чисел 4 и 3».
Поэтому, когда говорят «найди сумму», нужно выполнить действие сложение.
Итак, наше выражение можно прочитать несколькими способами:
- Четыре плюс три равно семь.
- К четырем прибавить три получим семь.
- Первое слагаемое – четыре, второе слагаемое – три, а сумма – семь.
- Сумма чисел четыре и три равна семи.
Идем дальше. Нам нужно выучить очень важное правило для действия сложения. Давай вернемся к нашим гномикам. Ты же помнишь, что каждый из них положил свои камни в тачку и потом мы их посчитали вместе, т.е. нашли сумму. Как ты думаешь, кто из гномиков первый положил камушки в тачку?
Мы записали, что первое слагаемое четыре. Получается, что первым был гномик Том, а потом гномик Тим.
Теперь давай представим, что порядок был другой. Сначала в тачку положил свои камушки Тим, а потом Том. Значит первое слагаемое – это три, а второе – четыре. Изменится ли от этого общее количество камней в тачке, т.е. наша сумма?
Теперь в тачке три камня Тима и четыре камня Тома. Посчитай их вместе.
Всего камней семь. Ровно столько же, сколько был и первый раз.
Получается, что не важно, кто из гномиков положил камушки первый, а кто второй. Их общее количество не меняется. Значит, сумма не меняется.
Посмотри. И четыре плюс три будет семь, и три плюс четыре тоже будет семь.
В математике это называется переместительное свойство сложения. Оно звучит так: от перестановки слагаемых местами сумма не изменяется. Запишем.
Это переместительное свойство очень пригодится тебе при изучении таблиц сложения. Запомни его!
Чтобы закрепить все, что мы узнали о действии сложения, потренируемся составлять примеры по картинкам.
Посчитай, сколько синих фигур на картинке. Запиши.
Правильно, 3.
Теперь посчитай красные фигуры и запиши.
Их 2.
Нам нужно посчитать их вместе. Это подразумевает объединение всех фигур. А значит, надо выполнить действие сложение. Поэтому поставим между нашими числами знак «плюс».
3 + 2
Теперь нужно пересчитать ВСЕ фигуры ВМЕСТЕ. Сколько у тебя получится?
У меня вышло 5. Уверена, у тебя тоже. Запишем это, поставив сначала знак равенства.
3 + 2 = 5
Вот и все. Ничего сложного.
Теперь рассмотрим, как нужно решать примеры на сложение. Давай прочитаем это выражение.
2 + 4
Можно так «два плюс четыре».
Чтобы найти результат, нужно следовать алгоритму выполнения действия сложения.
- Посмотри, какой знак используется в выражении.
Это знак «плюс», значит нужно объединить, посчитать все вместе.
- Назови первое слагаемое и положи перед собой нужное количество кружочков (можно взять палочки, спички, кубики или любые другие предметы).
- Теперь назови второе слагаемое и положи необходимое количество кружочков рядом с предыдущими.
- Пересчитай все кружочки вместе и запиши полученный результат.
2 + 4 = 6
Вот и все. Теперь ты знаешь, что такое действие сложение, как называются компоненты сложения, а также как составлять и решать примеры, в которых нужно выполнить это действие.
Действие вычитание. Знак-
Название компонентов действия вычитания
Давай продолжим раскрывать тайны науки математики. Ведь есть еще одно очень важное математическое действие, с которым нам обязательно нужно познакомиться.
Итак, гномики закончили свою работу и возвращаются домой.
Дома их ждет Белоснежка.
Она приготовила для гномиков угощение – испекла пирожные. Посчитай, сколько их получилось.
У тебя тоже получилось девять пирожных? Значит, ты посчитал правильно!
Когда гномики пришли домой, каждый из них съел по пирожному. Помнишь, сколько было гномов у Белоснежки? Точно, семь. Они съели столько же пирожных, т.е. тоже семь.
Давай зачеркнем съеденные пирожные.
Мы видим, что осталось совсем мало – всего два пирожных. Наверное, они достанутся Белоснежке.
В математике действие, которое ведет к уменьшению количества предметов, называется вычитание. Его смысл в следующем. Из целого множества удаляется его часть. В итоге остается меньше элементов, чем их было в целом множестве.
Чтобы узнать результат действия вычитания, нужно пересчитать элементы, которые остались.
Давай подумаем, в каких случаях предметов станет меньше. Пирожных стало меньше, потому что гномики съели часть из них. Еще могут быть такие ситуации:
- отдали;
- забрали;
- улетели (ушли, уехали);
- продали;
- использовали;
- сломали.
Для того, чтобы записать действие вычитания в виде математического выражения используют специальный знак. Знак вычитания выглядит так.
Он называется «минус».
В тетради знак «минус» пишется так.
Порядок написания знака «минус» следующий.
- Ставим ручку чуть правее середины левой границы клетки.
- Ведем горизонтальную прямую линию вправо.
- Останавливаемся, немного не доходя до середины правой границы клетки.
Потренируйся писать знак «минус» в тетради.
А теперь я расскажу, как составлять математическое выражение, которое описывает действие вычитание.
Вспомни, сколько пирожных было сначала?
Правильно, 9. Запиши.
9
Гномики съели пирожные и их стало меньше, поэтому ставим знак «минус».
9 –
Они съели 7 пирожных. Запишем это число.
9 – 7
Ставим знак равенства и запишем количество пирожных, которые остались. Их оставалось 2.
9 – 7 = 2
В тетради запись выглядит так.
Названия компонентов действия вычитания запомнить довольно легко.
- Первое число в результате вычитания станет меньше. Поэтому его называют уменьшаемое.
- Второе число показывает, сколько надо вычесть. Значит оно вычитаемое.
- В результате мы определяем какая разница между тем, что было и тем, что осталось. Поэтому результат действия вычитания называется разность.
Левая сторона этого выражения тоже называется разность.
Если в задании говорится, что нужно «найти разность чисел», значит, следует составить математическое выражение с действием вычитания.
Такое выражение можно прочитать по-разному.
- Из девяти вычесть семь будет два.
- Девять минус семь получим два.
- Уменьшаемое девять, вычитаемое семь, разность два.
- Разность чисел девять и семь равна двум.
Закрепим все, что ты узнал о действии вычитания и составим математическое выражение по такой картинке.
Посмотри, сколько всего было шариков у гномика сначала? Запиши.
Правильно, пять.
Что случилось с некоторыми шариками? Сколько таких шаров?
Верно, два шарика сдулись и у гномика шариков осталось меньше. Значит нужно написать «минус два».
5 – 2
Ставим знак равенства и пересчитаем, сколько осталось целых шариков.
Их три.
5 – 2 = 3
Вот мы и составили выражение.
А теперь разберемся, как нужно решать примеры на вычитание. Например, посчитаем, сколько будет:
6 — 4
Назови уменьшаемое. Выложи столько же кружочков. Их должно быть 6.
Теперь назови вычитаемое. Убери (отодвинь, зачеркни) четыре кружочка.
Пересчитай кружочки, которые остались, и ты узнаешь ответ. Запиши его после знака равенства.
6 – 4 = 2
Мы решили пример на вычитание. Теперь ты знаешь, что обозначает это математическое действие, как называются компоненты вычитания, и как нужно составлять и решать математические выражения с действием вычитания.
Взаимосвязь между действием сложения и действием вычитания
Итак, ты выучил два математических действия: сложение и вычитание. Одно из них используется при объединении предметов в единое множество, а другое при удалении из целого множества его части.
Ты вспомнил, что обозначает каждое действие?
Эти действия связаны между собой, но имеют противоположное значение. При сложении мы получаем больший результат, а при вычитании предметов становится меньше. Вот, например, представь, что у тебя было несколько конфет и тебе дадут еще пару штук. Что получится?
Правильно, у тебя конфет станет больше.
А если ты съешь несколько конфет? Что у тебя останется?
Правильно, у тебя останется меньше конфет.
А теперь давай проверим, какая именно взаимосвязь между действиями сложения и вычитания. Разберем одну ситуацию и составим по ней математическое выражение.
У Белоснежки День рождения. Гномики решили устроить для нее праздник. Посчитай, сколько их всех на картинке.
Правильно, их трое.
К Белоснежке на День рождения пришли зверята. Посчитай, сколько их.
Верно, пять зверят.
Подумай, какое действие мы должны использовать, чтобы составить выражение?
Ну конечно, действие сложение. Ведь теперь их всех вместе стало больше.
Было три, пришло еще пять. Посчитай, сколько теперь всех вместе.
Правильно, восемь.
Запишем в виде выражения.
3 + 5 = 8
3 – это первое слагаемое, оно показывает, сколько элементов было в первом множестве.
5 – это второе слагаемое, оно показывает, сколько элементов было во втором множестве.
8 – это сумма, она обозначает количество элементов в общем множестве.
Теперь на полянке и гномики с Белоснежкой (это наше первое множество), и зверята (это второе множество). Они все вместе.
Получается, что на празднике веселились 8 друзей. Когда праздник закончился, зверята ушли домой. Как ты думаешь, какое математическое действие надо использовать в этом случае?
Правильно, действие вычитание. Ведь зверята ушли и на полянке останется меньше друзей.
Итак, 5 зверят ушло. Кто остался? Сколько их?
Верно, остались гномики с Белоснежкой. Их 3.
Составим математическое выражение.
8 – 5 = 3
Мы видим, что если из общего множества (суммы) убрать элементы второго множества (второе слагаемое), то останутся только элементы первого множества (первое слагаемое).
А если было наоборот, из 8 друзей первыми с полянки ушли гномики с Белоснежкой (их 3). Кто на ней останется?
Правильно, останутся зверята. Их 5.
Посмотри, как это запишем.
8 – 3 = 5
Теперь мы из общего множества (суммы) убрали элементы первого множества (первое слагаемое) и остались только элементы второго множества (второе слагаемое).
Итак, у нас получается, что мы при сложении два множества объединяем в одно целое. А если из этого общего множества убрать какое-то одно из составляющих множеств, то останется другое.
В математике это правило взаимосвязи между компонентами сложения звучит так: если из суммы вычесть одно слагаемое, то получим другое слагаемое.
Мы видим, что в примере на сложение есть два слагаемых. Поэтому можно сделать следующий вывод: из одного математического выражения с действием сложения можно составить два выражения с действием вычитания.
8 – 3 = 5
8 – 5 = 3
Это очень важное правило, которое поможет тебе в дальнейшем быстро и легко учить таблицы вычитания.
А на сегодня все. Гномики помогли нам получить очень важные и ценные знания. Нужно обязательно поблагодарить их за это.
В материалах урока использованы кадры из а/ф «Белоснежка и семь гномов», 1937
Содержание:
Действие вычитание и компоненты вычитания
Связь вычитания и сложения
Свойства разности
Как вычесть сумму из числа и число из суммы
Изменение разности при изменении вычитаемого и/или уменьшаемого
Правила вычитания разности
Вычитание однозначного числа
Вычитание в столбик многозначных чисел
Проверка действий сложение и вычитание
Пройти тест по теме «Сложение и вычитание натуральных чисел» можно по ссылке. Проверьте свои знания!
Мы можем не только собирать в группы различные предметы, то есть, складывать их, но и забирать из существующей группы определенное их количество.
Например, в кошельке было 1850 рублей. В магазине было потрачено 780 рублей. Чтобы узнать, сколько осталось денег, можно вытащить кошелек и пересчитать их. Но можно поступить по-другому: из той суммы, которая была в кошельке, отнять ту сумму, что была потрачена в магазине. Разница этих чисел, то есть, на сколько единиц изначальная сумма денег больше той суммы, которую потратили, и будет остатком денег.
Разность (или остаток) – это такое число, которое получится, если от одного числа отнять другое, то есть, от всех единиц одного числа отнять все единицы, которые содержатся в другом числе.
Уменьшаемое – это то число, от которого мы отнимаем единицы другого числа.
Вычитаемое – это число, которое мы вычитаем из другого числа. То есть, то число, на количество единиц которого мы уменьшаем другое число.
Вычитание – это арифметическое действие, которое выполняется для получения разности двух или нескольких чисел.
то есть, совершить действие вычитания – это найти такое число, которое получится, если от данного числа отнять определенное количество единиц другого числа.
Компоненты вычитания:
Про действие вычитание также говорят, что нужно из одного числа вычесть другое, или одно число уменьшить на другое.
Совершая вычитание натуральных чисел, вы должны помнить, что из одного натурального числа можно вычесть только равное ему или меньшее натуральное число. Действительно, мы никак не можем отобрать единиц предметов больше, чем их есть в наличии.
Поэтому, уменьшаемое натуральное число всегда больше или равное вычитаемому. Другими словами, мы всегда вычитаем из большего меньшее или из равного равное.
Связь вычитания и сложения
Действие вычитание непосредственно связано с действием сложение.
Действительно, когда мы ищем сумму, мы складываем все единицы, из которых состоят числа, вместе. То есть, получаем число, которое складывается из разных чисел.
А когда мы ищем разность, мы из одного числа (уменьшаемое) отнимаем некоторое количество единиц (вычитаемое), которые входят в его состав, и получаем другое количество единиц. То есть, получаем число (разность), которое также составляло уменьшаемое, пока от него не отняли вычитаемое. Поэтому разность и имеет второе название – остаток – то, что осталось от числа, после вычитания его части.
Из этого мы можем сделать вывод, что, если сложить обратно обе части одного числа (разность и вычитаемое), то мы получим уменьшаемое.
Поэтому, вычитание и сложение – это взаимно обратные действия. Если нам известна сумма двух слагаемых, мы можем превратить ее в разность двух чисел, и наоборот, разность можно перевести в сумму.
Уменьшаемое – это сумма вычитаемого и разности. То есть, разность и вычитаемое – это слагаемые.
Когда мы складываем числа, слагаемые нам известны, и нужно вычислить их сумму. А когда мы вычитаем, нам даются сумма (уменьшаемое) и одно из слагаемых (вычитаемое) этой суммы, а второе слагаемое (разность) нам нужно вычислить.
Рассмотрим это на примере. Мы нашли разность 8-5=3. Это означает, что мы разложили одно данное нам число 8 на два: 5 (данное нам уменьшаемое) и 3 (найденная нами разность). Но мы знаем, что состав числа – это слагаемые, которые в сумме дают нам это самое число. Поэтому, найденную нами разность чисел мы можем превратить в сумму чисел, сложив остаток с вычитаемым: 3+5=8.
Свойства разности натуральных чисел
Свойства разности натуральных чисел состоят из:
- Правила вычитания суммы из числа и числа из суммы;
- Зависимость разности от изменения уменьшаемого или вычитаемого.
- Правило вычитания разности из числа;
Рассмотрим каждый пункт подробнее.
Правила вычитания суммы из числа и числа из суммы
Как вычесть сумму из числа
Чтобы найти разность числа и суммы чисел нужно из данного числа вычесть последовательно каждое слагаемое суммы.
То есть, сначала мы находим разность между данным числом и первым слагаемым, потом от этой полученной разности отнимаем второе слагаемое, третье, и так далее до последнего слагаемого суммы.
Действительно, так как сумма – это объединение всех слагаемых, то очевидно, что, отнимая последовательно каждое слагаемое, каждое ее составляющее число, мы в конце концов отнимем всю сумму.
Рассмотрим это на примере из урока сложение чисел.
325+(12+64+5) = 325+81 = 406
Я запишу это в виде разности:
406-(12+64+5) = 325
и покажу, что результат будет равен первому слагаемому:
406—12 = 394;
394-64 = 330;
330-5 = 325.
Как видите, все верно.
Как вычесть число из суммы
Чтобы найти разность суммы чисел и некоторого числа, нужно отнять это число от какого-нибудь подходящего слагаемого этой суммы.
То есть, мы сначала находим разность одного из слагаемых и данного числа, а потом складываем получившийся результат последовательно с остальными слагаемыми.
Действительно, вы знаете, что, если уменьшить одно из слагаемых на какое-то число, то и сумма уменьшится на это же самое число. Следовательно, если нам нужно сумму чисел уменьшить на какое-то число, то для этого достаточно уменьшить на это число одно из слагаемых суммы.
Для рассмотрения я возьму тот же пример, только сумму расчленю на слагаемые, а слагаемое в скобках заменю суммой:
325+81 = (191+65+150)
Превращаю выражение в разность:
(191+65+150)-81 = 325
и покажу, что результат также будет равен первому слагаемому:
191-81 = 110;
110+65 = 175;
175+150 = 325
или
150-81 = 69;
69+191 = 260;
260+65 = 325.
Я недаром написал в правиле, что нужно отнимать от подходящего слагаемого суммы, потому что, если оно будет меньше вычитаемого, то оно нам не подходит. Так, в нашем примере 65<81.
Отсюда следует, что это правило применимо не к любой сумме натуральных чисел, а только к той, в которой хотя бы одно из слагаемых больше, чем вычитаемое.
Как меняется разность при изменении вычитаемого или уменьшаемого
Изменение разности при изменении вычитаемого и уменьшаемого является следствием описанных в уроке изменений суммы чисел с изменением ее слагаемых.
Если уменьшаемое увеличить на некоторое количество единиц, то и разность увеличится на такое же количество единиц.
Если уменьшаемое уменьшить на некоторое количество единиц, то и разность уменьшится на такое же количество единиц.
Если вычитаемое увеличить на некоторое количество единиц, то разность уменьшится на такое же количество единиц.
Если вычитаемое уменьшить на некоторое количество единиц, то разность увеличится на такое же количество единиц.
Если сразу оба числа, и уменьшаемое, и вычитаемое, увеличить или уменьшить на одно и то же количество единиц, то разность не изменится.
Правила вычитания разности
Если нужно вычесть из числа разность других чисел, можно воспользоваться одним из двух способов:
1. Прибавить к данному числу вычитаемое, и из получившейся суммы вычесть уменьшаемое;
2. Вычесть из данного числа уменьшаемое, а потом результат этого действия сложить с вычитаемым.
Это свойство выводится из предыдущих, рассмотренных нами.
Рассмотрим на примере 22-(17—3).
Для начала вычислим обычным способом: сперва узнаем разность в скобках (это будет 17-3=14), а потом вычтем 14 из 22. Получится 22-14=8.
22-(17—3) = 8
Теперь вернемся к исходному примеру и отнимем от 22 не разность 17-3, то есть, не 17 без 3 единиц, а все число 17.
22—17 = 5
Но мы ведь отняли больше, чем нужно было, поэтому нам нужно вернуть лишне взятые 3 единицы обратно, а именно, прибавить их к полученному результату.
5+3 = 8
Попробуем решить другим путем: увеличим и уменьшаемое (данное число), и вычитаемое (разность в скобках) на одно и то же число 3. Получим:
22+3-(17+3-3)
Так как 22+3=25, а 3-3=0, то в итоге получается:
25-17+0 = 8
Как видите, оба способа показали верный результат.
Вычитание однозначного числа
Вы сможете без каких-либо трудностей совершать вычитание любых чисел, если сперва хорошо натренируете себя вычитать однозначные числа в уме из однозначных и двухзначных.
А поскольку вычитание – это действие обратное сложению, тогда необходимо просто выучить на память все суммы однозначных чисел. Пользуясь ими, мы легко сможем получить необходимые вам разности.
Например, нам нужно найти разность чисел 17 и 8. Для этого нам необходимо вспомнить, какое число при сложении с числом 8 дает сумму 17? Это число 9, потому что 8+9=17. Значит, если от 17 отнять 8, мы получим: 17-8=9.
Хорошо натренировавшись в нахождении разности чисел из суммы однозначных чисел, можно переходить к более сложным случаям вычитания. Подробно эти приемы рассмотрены в разделе рубрики «Устный счет».
Вычитание в столбик многозначных чисел
Так же, как и сложение, разность многозначных чисел удобно находить, используя вычитание в столбик.
Вычитание в столбик – это способ нахождения разности чисел при помощи их записи друг под другом таким образом, чтобы соответствующие разряды разных чисел находились на одной вертикали (один под другим), и последующего вычисления.
Давайте найдем разность чисел 52063-4825.
Запишем их друг под другом таким образом, чтобы совпадали соответствующие разряды обоих чисел, т.е. единицы под единицами, десятки под десятками и т.д. После этого, под вторым слагаемым проводим горизонтальную черту, а между слагаемыми ставим знак действия, т.е. минус. У нас получилась такая запись:
Вычитание в столбик выполняется подобным способом, как и при сложении, только теперь мы отнимаем единицы от единиц, десятки от десятков и так далее.
От 3 единиц в уменьшаемом мы не можем отнять 5 единиц вычитаемого, поскольку 3<5. Поэтому, мы раскладываем соседние 6 десятков на 5 десятков и 1 десяток. Этот десяток содержит 10 единиц, которые мы складываем с 3 имеющимися в уменьшаемом единицами. Теперь у нас есть 13 единиц, и мы можем отнять от них 5, получим 8 единиц. Записываем их под чертой в разряде простых единиц, а над цифрой разряда десятков в уменьшаемом ставим одну точку, чтобы не забыть, что 1 десяток единиц мы оттуда уже забрали.
Переходим к десяткам. У уменьшаемого в разряде десятков мы уже забрали 1 десяток, о чем нам напоминает поставленная точка. Поэтому, мы отнимаем 2 десятка вычитаемого не от 6, а от 5 десятков, потому что 6-1=5.
5>2, значит, действие вычитания возможно: 5-2=3. Пишем цифру 3 под чертой в разряде десятков, и переходим к сотням.
Сотен в уменьшаемом у нас нет, поэтому мы смотрим, сколько в числе содержится тысяч? Их тоже 0. Смотрим следующий разряд. Здесь у нас 5 десятков тысяч. Из них мы берем 1 десяток тысяч (ставим точку над цифрой 5 в уменьшаемом), что составляет 10 тысяч единиц. Из них (из взятых в десятках тысячах) мы занимаем 1 тысячу для того, чтобы закончить вычитание в разряде сотен (ставим точку над цифрой 0 в разряде тысяч уменьшаемого).
1 тысяча единиц – это 10 сотен. Кроме этих занятых, больше в уменьшаемом сотен нет. В вычитаемом 8 сотен, поэтому находим разность сотен уменьшаемого и вычитаемого: 10-8=2. Пишем результат под чертой в разряде сотен.
В разряде тысяч уменьшаемого у нас осталось 9 тысяч единиц (потому что 1 тысячу мы отдали для разряда сотен в качестве 10 сотен). Отнимаем от нее 4 тысячи вычитаемого, получаем: 9-4=5, которые записываем под чертой в разряде тысяч.
Десятков тысяч в уменьшаемом осталось 5-1=4 (помните, мы для разряда сотен занимали?), в вычитаемом их нет совсем, то есть, 0. Поэтому мы просто сносим цифру 4 в результат под черту в разряд десятков тысяч.
После нахождения разности чисел способом вычитания в столбик записываем ответ в строчном примере:
50063-4825 = 45238.
Как проверить действия сложение и вычитание?
После того, как вы закончили арифметическое действие, нужно проверить правильность ответа, то есть, удостовериться, что вычисление было сделано без ошибок.
Проверить сложение можно двумя способами: обратным сложением и вычитанием.
Обратное сложение означает, что мы меняем слагаемые местами, и складываем их еще раз. Если результат будет такой же, как и после первого сложения, значит, вычисление было верным.
Например, в уроке сложение чисел мы находили сумму: 5728+803 = 6531. Проверим правильность результата способом обратного сложения:
Как видите, сложив слагаемые в другом порядке, мы получили тот же самый результат, а значит, вычисление было правильным.
Проверка сложения вычитанием – это способ, при котором нужно из суммы, которую получили после выполнения действия сложение, отнять одно из слагаемых. Если результат этого вычитания будет равен второму слагаемому (или сумме остальных слагаемых, если их больше двух), значит сложение было выполнено верно.
Проверим эту же сумму вычитанием: отнимем от результата 6531 слагаемое 5728.
И этот способ проверки показал правильность нашего решения.
Проверить вычитание также возможно и сложением, и другим вычитанием.
Проверка вычитания сложением основана на взаимосвязи вычитания и сложения. Зная, что уменьшаемое – это сумма, а остаток и вычитаемое – это слагаемые, мы можем сложить между собой вычитаемое и остаток, и, если получим в результате уменьшаемое, значит, мы правильно сделали действие.
Вот так выглядит проверка вычитания сложением на примере вычисленной на этом уроке разницы 50063-4825 = 45238:
Проверка вычитания вычитанием также основывается на взаимосвязи вычитания и сложения, а также на переместительном законе сложения. Так как уменьшаемое – это сумма двух слагаемых: вычитаемого и остатка, и сумма не зависит от порядка сложения слагаемых, то очевидно, что мы можем отнять от уменьшаемого остаток. Если результат этого действия будет равен вычитаемому, значит наша первая разность вычислена верно.
Проверка той же самой разницы вычитанием:
- Категория: Математика
В этой статье мы рассмотрим все свойства вычитания, которые могут понадобиться при упрощении выражений и решении уравнений.
Вычитание нуля из числа:
a — 0 = a.
Вычитание нуля из числа не изменяет этого числа.
Пример:
25 – 0 = 25
Вычитание числа из самого себя:
a — a = 0.
Если из числа вычесть само это число, то разность равна нулю.
Пример:
75 – 75 = 0
Вычитание суммы из числа:
a – (b + c) = a – b – c.
Чтобы вычесть сумму из числа, можно вычесть из этого числа одно слагаемое, из полученной разности – второе слагаемое.
Пример:
183 – (43 + 19) = 183 – 43 – 19 = 140 – 19 = 121
Вычитание числа из суммы:
(a + b) – c = (a – c) + b = a + (b – c).
Чтобы вычесть число из суммы, можно вычесть это число из какого-нибудь одного слагаемого и полученную разность прибавить к сумме остальных слагаемых.
Примеры:
(143 + 27) – 33 = (143 – 33) + 27 = 110 +27 = 137
(277 + 31 + 759) – 559 = (277 + 31) + (759 – 559) = 308 + 200 = 508
Прибавление разности к числу:
а + (b — c) = a + b – c.
Чтобы прибавить разность к числу, можно прибавить к нему уменьшаемое и из полученной суммы вычесть вычитаемое.
Пример:
543 + (202 – 45) = 543 + 202 – 45 = 745 – 45 = 700
Вычитание
Разность говорит, насколько разные числа, какая между ними разница. Понятие разности встречается в математике повсеместно вплоть до старших классов, где проходят и косинус разности и разность косинусов.
Как называются числа при вычитании?
Число, из которого мы вычитаем, называется уменьшаемое. Число, которое мы вычитаем, называется вычитаемое. Число, которое получается в результате вычитания, называется разностью. Выражение, составленное из уменьшаемого и вычитаемого, называется разностью.
17 — 13 = 4
17 — это уменьшаемое
13 — это вычитаемое
4 — это разность
17 — 13 — это разность
Как найти неизвестное уменьшаемое?
Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое.
? — 13 = 4
? = 4 + 13
Как найти неизвестное вычитаемое?
Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность.
17 — ? = 4
? = 17 — 4
Изменение разности с изменением уменьшаемого
При увеличении уменьшаемого на x разность увеличивается на x. При уменьшении уменьшаемого на x разность уменьшается на x.
18 — 13 = 5
17 — 13 = 4
16 — 13 = 3
Изменение разности с изменением вычитаемого
При увеличении вычитаемого на x разность уменьшается на x. При уменьшении вычитаемого на x разность увеличивается на x.
17 — 14 = 3
17 — 13 = 4
17 — 12 = 5
Изменение разности с изменением уменьшаемого и вычитаемого одновременно
При увеличении уменьшаемого на x и увеличении вычитаемого на x — разность не меняется. При уменьшении уменьшаемого на x и уменьшении вычитаемого на x — разность не меняется.
5289 — 5231 = 58
89 — 31 = 58
59 — 1 = 58