В декартовых координатах каждая прямая
определяется уравнением первой степени
и, обратно, каждое уравнение первой
степени определяет прямую.
Уравнение
вида
(1)
называется
общим уравнением прямой.
Угол ,
определяемый, как показано на рис.,
называется углом наклона прямой к оси
Ох. Тангенс угла наклона прямой к оси
Ох называется угловым коэффициентом
прямой; его обычно обозначают буквой
k:
Уравнение называется
уравнением прямой с угловым коэффициентом;
k — угловой коэффициент, b — величина
отрезка, который отсекает прямая на оси
Оу, считая от начала координат.
Если
прямая задана общим уравнением
,
то
ее угловой коэффициент определяется
по формуле
.
Уравнение является
уравнением прямой, которая проходит
через точку (
,
)
и имеет угловой коэффициент k.
Если
прямая проходит через точки (
,
),
(
,
),
то ее угловой коэффициент определяется
по формуле
.
Уравнение
является
уравнением прямой, проходящей через
две точки (
,
)
и (
,
).
Если
известны угловые коэффициенты и
двух
прямых, то один из углов между
этими прямыми определяется по формуле
.
Признаком
параллельности двух прямых является
равенство их угловых коэффициентов:.
Признаком
перпендикулярности двух прямых является
соотношение
,
или .
Иначе говоря, угловые коэффициенты
перпендикулярных прямых обратны по
абсолютной величине и противоположны
по знаку.
4.Общее уравнение прямой
Уравнение
Ах+Ву+С=0
(где А, В, Смогут иметь любые
значения, лишь бы коэффициентыА,
Вне были нулями оба сразу)
представляетпрямую
линию. Всякую прямую можно
представить уравнением этого вида.
Поэтому его называютобщим уравнением
прямой.
Если А=0, то есть уравнение не
содержитх, то оно представляет
прямую,параллельную
оси ОХ.
Если В=0, то есть уравнение не
содержиту, то оно представляет
прямую,параллельную
оси ОY.
Когла Вне равно нулю, то общее
уравнение прямой можноразрешить
относительно ординаты у,
тогда оно преобразуется к виду
y=ax+b
(где a=-A/B; b=-C/B).
Аналогично, при Аотличным от
нуля общее уравнение прямой можно
разрешить относительнох.
Если С=0, то есть общее уравнение
прямой не содержит свободного члена,
то оно представляет прямую, проходящую
через начало координат
5. Уравнение прямой, проходящей через данную точку с данным угловым коэффициентом
Уравнение прямой, проходящей
через данную точку A(x1, y1)
в данном направлении, определяемом
угловым коэффициентом k,
y — y1 = k(x — x1). (1)
Это уравнение определяет
пучок прямых, проходящих через
точку A(x1, y1),
которая называется центром пучка.
6. уравнение прямой,
проходящей через две данные точки.
. Уравнение
прямой, проходящей через две точки: A(x1, y1)
и B(x2, y2),
записывается так:
(2)
Угловой коэффициент прямой, проходящей
через две данные точки, определяется
по формуле
(3)
7.
Уравнение прямой в отрезках
Если в общем уравнении
прямой ,
то разделив (1) на ,
получаем уравнение прямой в отрезках
,
где ,
.
Прямая пересекает ось в
точке ,
ось в
точке .
8.
Формула: Угол между прямыми на плоскости
Уголα между
двумя прямыми, заданными
уравнениями: y=k1x+b1 (первая
прямая) и y=k2x+b2 (вторая
прямая), может быть вычислен по формуле
(угол отсчитывается от 1й прямой
ко 2й против
часовой стрелки):
tg(α)=(k2-k1)/(1+k1k2) |
9. Взаимное
расположение двух прямых на плоскости.
Пусть сейчас
оба уравнения прямых
записаны в общем виде.
Теорема. Пусть
и
– общие уравнения двух
прямых на координатной плоскости
Оху. Тогда
1) если ,
то прямые и
совпадают;
2) если ,
то прямые и
параллельные;
3) если ,
то прямые пересекаются.
Доказательство.
Условие равносильно
коллинеарности нормальных векторов данных
прямых:
.
Поэтому, если ,
то и прямыепересекаются.
Если же ,
то ,
,
иуравнение прямой
принимает
вид:
или
,
т.е. прямые совпадают.
Заметим, что коэффициент пропорциональности ,
иначе все коэффициенты общего уравнения были
бы равны нулю, что невозможно.
Если же прямые не
совпадают и не пересекаются, то остается
случай ,
т.е. прямые параллельны.
Теорема доказана.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Прямая имеет несколько видов задающих ее уравнений. Рассмотрим некоторые из них и разберем примеры.
Здесь будет калькулятор
Уравнение прямой с угловым коэффициентом
y=kx+by=kx+b,
где kk — угловой коэффициент, а bb — свободный коэффициент.
Уравнения данного вида составляются следующим образом по формуле:
y−y0=k(x−x0)y-y_0=k(x-x_0),
где (x0;y0)(x_0; y_0) — координаты любой точки, лежащей на данной прямой.
Составить уравнение прямой, если координаты точки, принадлежащей данной прямой, таковы: x0=1,y0=2x_0=1, y_0=2. Угловой коэффициент принять равным 11.
Решение
Подставляем значения в формулу:
y−y0=k(x−x0)y-y_0=k(x-x_0)
y−2=1⋅(x−1)y-2=1cdot(x-1)
Приводим подобные слагаемые:
y=x+1y=x+1
Ответ
y=x+1y=x+1
Общее уравнение прямой
Для приведения прямой к такому виду из предыдущего вида достаточно просто перенести все слагаемые в одну часть. Возьмем уравнение прямой из предыдущей задачи y=x+1y=x+1. Тогда общее уравнение этой прямой запишется в виде:
y−x−1=0y-x-1=0
Уравнение прямой по двум точкам
Если в задаче даны координаты двух точек и необходимо составить уравнение прямой, то это делается при помощи такой формулы:
x−x2x1−x2=y−y2y1−y2frac{x-x_2}{x_1-x_2}=frac{y-y_2}{y_1-y_2},
где (x1;y1),(x2;y2)(x_1; y_1), (x_2; y_2) — координаты двух точек, через которые проходит данная прямая.
Найти уравнение прямой, если координаты точек имеют значения: (2;3)(2;3) и (4;−1)(4;-1).
Решение
x1=2x_1=2
y1=3y_1=3
x2=4x_2=4
y2=−1y_2=-1
x−x2x1−x2=y−y2y1−y2frac{x-x_2}{x_1-x_2}=frac{y-y_2}{y_1-y_2}
x−42−4=y−(−1)3−(−1)frac{x-4}{2-4}=frac{y-(-1)}{3-(-1)}
x−4−2=y+14frac{x-4}{-2}=frac{y+1}{4}
x−4=−y−12x-4=frac{-y-1}{2}
y+1=2⋅(4−x)y+1=2cdot(4-x)
y=8−2x−1y=8-2x-1
y=−2x+7y=-2x+7
Ответ
y=−2x+7y=-2x+7
Уравнение прямой при помощи точки и вектора нормали
(x−x0)⋅n1+(y−y0)⋅n2=0(x-x_0)cdot n_1+(y-y_0)cdot n_2=0,
где (x0;y0)(x_0; y_0) — координаты точки, лежащей на данной прямой, а (n1;n2)(n_1; n_2) — координаты вектора нормали к этой прямой.
Составить уравнение прямой, если координаты нормального вектора — (1;−5)(1;-5), а точка, через которую проходит данная прямая имеет координаты (7;8)(7;8).
Решение
x0=7x_0=7
y0=8y_0=8
n1=1n_1=1
n2=−5n_2=-5
(x−x0)⋅n1+(y−y0)⋅n2=0(x-x_0)cdot n_1+(y-y_0)cdot n_2=0,
(x−7)⋅1+(y−8)⋅(−5)=0(x-7)cdot 1+(y-8)cdot (-5)=0,
x−7+40−5y=0x-7+40-5y=0
x−5y=−40+7x-5y=-40+7
x−5y=−33x-5y=-33
5y=x+335y=x+33
y=x5+335y=frac{x}{5}+frac{33}{5}
Проверка
Чтобы проверить правильность решения, достаточно подставить координаты точки в данное уравнение и, если оно будет верным, то задача решена верно.
8=75+3358=frac{7}{5}+frac{33}{5}
8=88=8 — верно, ответ правильный.
Ответ
y=x5+335y=frac{x}{5}+frac{33}{5}
Прямая в пространстве
Уравнение прямой, заданной в пространстве имеет такой вид:
x−x0ν1=y−y0ν2=z−z0ν3frac{x-x_0}{nu_1}=frac{y-y_0}{nu_2}=frac{z-z_0}{nu_3},
где (x0;y0;z0)(x_0;y_0;z_0) — координаты точки, через которую проходит прямая, а (ν1,ν2,ν3)(nu_1,nu_2,nu_3) — координаты напрявляющего вектора данной прямой.
Написать уравнение прямой по заданной точке (1;5;−23)(1;5;-23) и вектору направления (3;11;7)(3;11;7).
Решение
x0=1x_0=1
y0=5y_0=5
z0=−23z_0=-23
ν1=3nu_1=3
ν2=11nu_2=11
ν3=7nu_3=7
x−x0ν1=y−y0ν2=z−z0ν3frac{x-x_0}{nu_1}=frac{y-y_0}{nu_2}=frac{z-z_0}{nu_3}
x−13=y−511=z−(−23)7frac{x-1}{3}=frac{y-5}{11}=frac{z-(-23)}{7}
Проверка
Проверим, удовлетворяет ли это уравнение прямой точке (x0;y0;z0)(x_0;y_0;z_0). Для этого подставим в него координаты этой точки:
1−13=5−511=−23−(−23)7frac{1-1}{3}=frac{5-5}{11}=frac{-23-(-23)}{7} — верно, значит ответ правильный.
Такой вид уравнения прямой называется каноническим.
Ответ
x−13=y−511=z−(−23)7frac{x-1}{3}=frac{y-5}{11}=frac{z-(-23)}{7}
Тест по теме “Составление уравнения прямой”
2.1. Уравнение прямой с угловым коэффициентом
Прямая – это одна из простейших геометрических фигур. Она бесконечна:
и обозначается маленькими латинскими буквами , как вариант,
с подстрочным индексом, например, . Также прямую можно обозначить двумя различными точками, которые ей принадлежат, например,
.
Прямую часто задают уравнением, и начнём мы опять со школьного материала. Всем известное «школьное» уравнение называется уравнением прямой с угловым коэффициентом
. Вспомним геометрический смысл данного коэффициента и то, как его значение влияет на расположение прямой:
Угловой коэффициент прямой равен тангенсу угла (см. Приложение Тригонометрия) между положительным направлением оси и данной прямой:
. Чтобы не загромождать чертёж, я нарисовал углы только для двух прямых:
Это «красная» прямая с коэффициентом
. Согласно вышесказанному,
(угол «альфа» обозначен зелёной дугой). Для «синей» прямой
с
справедливо равенство
(угол «бета» обозначен коричневой дугой).
Если известен тангенс угла, то при необходимости легко найти и сам угол с помощью обратной функции – арктангенса. Так, для «черной» прямой тангенс угла наклона равен
, а сам угол наклона составляет:
радиан или 45 градусов, что хорошо видно по чертежу. Значения углов можно находить по Таблице или с помощью Калькулятора (Приложения в помощь).
Таким образом, угловой коэффициент характеризует степень наклона прямой к оси абсцисс. При этом возможны следующие случаи:
1) Если угловой коэффициент отрицателен: , то линия, грубо говоря, идёт «сверху вниз». Примеры – «синяя» и «малиновая» прямые на чертеже.
2) Если угловой коэффициент положителен: , то линия идёт «снизу вверх». Примеры – «чёрная» и «красная» прямые на чертеже.
3) Если угловой коэффициент равен нулю: , то уравнение
принимает вид
, и соответствующая прямая параллельна оси
. Пример – «жёлтая» прямая. Неформальный смысл уравнения: «игрек» ВСЕГДА (при любом «икс») равен «бэ».
4) Для семейства прямых , параллельных оси
(на чертеже нет примера, кроме самой оси
), угловой коэффициент не определён. В данной ситуации
, а тангенса угла 90 градусов не существует. Неформальный смысл уравнения: «икс» ВСЕГДА (при любом «игрек») равен «цэ».
Чем больше угловой коэффициент по модулю, тем круче идёт график прямой.
Рассмотрим прямые и
. Здесь
, поэтому прямая
имеет более крутой наклон. Напоминаю, что модуль позволяет не учитывать знак, нас интересуют только абсолютные значения угловых коэффициентов.
В свою очередь, прямая более крутА, чем прямые
.
Обратно: чем меньше угловой коэффициент по модулю, тем прямая является более пологой. Так, для прямых справедливо неравенство
, таким образом, прямая
более пологая.
Зачем эта информация? Продлить ваши мучения. Знания вышеперечисленных фактов позволяет немедленно увидеть свои ошибки, в частности, ошибки при построении графиков – когда на чертеже получилось явно «что-то не то». Желательно, чтобы вам сразу было понятно, что прямая весьма крутА и идёт «снизу вверх», а прямая
– очень полога, близко прижата к оси
и идёт «сверху вниз».
Сомневался, напоминать ли, но на всякий пожарный: как построить прямую, если известно её уравнение?
Для того чтобы построить прямую, нужно знать две её точки (любые). Их легко найти из уравнения. Рассмотрим, например, уравнение и выберем произвольное значение «икс», удобно взять
, тогда:
, и первая точка найдена:
. Теперь выбираем другое значение
, например,
и находим
– точка
. Отмечаем точки на чертеже и аккуратно проводим линию по линейке.
Ах да, чуть не забыл: прямая вида называется прямой пропорциональностью. Она проходит через начало координат, и для её построения достаточно найти одну точку. На чертеже выше изображены две таких прямых + ось
.
Как составить уравнение прямой с угловым коэффициентом?
Если известна точка , принадлежащая некоторой прямой, и угловой коэффициент
этой прямой, то уравнение данной прямой выражается формулой:
Задача 59
Составить уравнение прямой с угловым коэффициентом , если известно, что точка
принадлежит данной прямой.
Решение: уравнение составим по формуле . В данном случае:
Ответ:
Проверка выполняется элементарно. Во-первых, смотрим на полученное уравнение и убеждаемся, что наш угловой коэффициент
на своём месте. Во-вторых, координаты точки
должны удовлетворять данному уравнению. Подставим их в уравнение:
– получено верное равенство, значит, точка
удовлетворяет полученному уравнению.
Вывод: уравнение найдено правильно.
Более хитрая задачка для самостоятельного решения:
Задача 60
Составить уравнение прямой, если известна её точка , а угол наклона к положительному направлению оси
составляет
.
Ну что же, прозвенел «последний звонок», отгремел выпускной бал (как это быстро у меня происходит ), и за воротами родной школы нас поджидает, собственно, аналитическая геометрия:
2.2.1. Общее уравнение и направляющий вектор прямой
1.10.3. Как вычислить объём треугольной пирамиды?
| Оглавление |
Автор: Aлeксaндр Eмeлин