Как легко составить уравнение параболы по графику
В данной статье репетитор по математике рассказывает о простом и эффективном способе составления уравнения параболы по её графику, которому вас не научат в школе. Дочитайте эту статью до конца или посмотрите видео с подробным объяснением, потому что эта информация может вам пригодиться на экзамене.
Задача состоит в том, чтобы по графику параболы (см. рисунок) определить коэффициенты a, b и c соответствующей квадратичной функции :
Существует стандартный и крайне неэффективный способ решения этой задачи. Он заключается в том, чтобы через координату вершины параболы связать коэффициенты a и b, используя формулу
. Затем взять координаты двух точек, которые принадлежат параболе, составить систему уравнений и решить её относительно искомых коэффициентов. Считать придётся долго и муторно.
Мы не пойдём этим путём. Предлагаемый в данной статье способ намного более прост и изящен. Введём новую систему координат с центром в вершине параболы и осями, сонаправленными с исходной системой координат. В данной системе координат уравнение нашей параболы будет иметь вид:
, где
. Изобразим в новой системе координат график квадратичной функции
(синяя пунктирная линия на рисунке):
Абсциссы точек C и B в новой системе координат равны. Ордината точки C в 2 раза больше ординаты точки B. Значит график исходной параболы в новой системе координат получен умножением на всех ординат точек графика функции
. Откуда получаем, что
. Значит исходная парабола может быть представлена в виде следующего выражения в новой системе координат:
.
Осталось перейти в исходную систему координат. Поскольку новая система координат получена путём параллельного переноса исходной системы координат на 4 единичных отрезка вправо и 2 единичных отрезка вверх, то в исходной системе координат наша парабола может быть представлена в виде следующего выражения:
Как видите, данный способ требует минимум вычислений и фактически является полуустным. Запомните этот способ, он может пригодиться вам при решений задач из ЕГЭ, ОГЭ или вступительных экзаменов в вузы и школы с углубленным изучением математики.
Квадратичная функция. Построение параболы
Функция — это зависимость «y» от «x», при которой «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.
Задать функцию означает определить правило, в соответствии с которым каждому значению аргумента соответствует единственное значение функции. Вот какими способами ее можно задать:
- Табличный способ. Помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
- Графический способ: наглядно.
- Аналитический способ, через формулы. Компактно и можно посчитать функцию при произвольном значении аргумента из области определения.
- Словесный способ.
График функции — это объединение всех точек координатной плоскости, когда вместо «x» можно подставить в функцию произвольные значения и найти координаты этих точек.
Еще быстрее разобраться в теме и научиться строить график квадратичной функции можно на курсах по математике в онлайн-школе Skysmart.
Построение квадратичной функции
Квадратичная функция задается формулой y = ax 2 + bx + c, где x и y — переменные, a, b, c — заданные числа, обязательное условие — a ≠ 0.
График квадратичной функции — парабола, которая имеет следующий вид для y = x 2 в частном случае при b = 0, c = 0:
Точки, обозначенные фиолетовыми кружками, называют базовыми точками. Чтобы найти их координаты для функции y = x 2 , нужно составить таблицу:
x
y
Если в уравнении квадратичной функции старший коэффициент равен единице, то график имеет ту же форму, как y = x 2 при любых значениях остальных коэффициентов. При увеличении старшего коэффициента график сужается, при уменьшении — расширяется.
График функции y = –x 2 выглядит, как перевернутая парабола:
Зафиксируем координаты базовых точек в таблице:
x
y
Посмотрев на оба графика можно заметить их симметричность относительно оси ОХ. Отметим важные выводы:
- Если старший коэффициент больше нуля (a > 0), то ветви параболы напрaвлены вверх.
- Если старший коэффициент меньше нуля (a < 0), то ветви параболы напрaвлены вниз.
Как строить график квадратичной функции — учитывать значения х, в которых функция равна нулю. Иначе это можно назвать нулями функции. На графике нули функции f(x) — это точки пересечения у = f(x) с осью ОХ.
Так как ордината (у) любой точки на оси ОХ равна нулю, поэтому для поиска координат точек пересечения графика функции у = f(x) с осью ОХ, нужно решить уравнение f(x) = 0.
Для наглядности возьмем функцию y = ax 2 + bx + c. Чтобы найти точки пересечения с осью Ox, нужно решить квадратное уравнение ax 2 + bx + c = 0. В процессе найдем дискриминант D = b 2 — 4ac, который даст нам информацию о количестве корней квадратного уравнения.
Рассмотрим три случая:
- Если D < 0, то уравнение не имеет решений и парабола не имеет точек пересечения с осью ОХ. Если a > 0,то график выглядит так:
- Если D = 0, то уравнение имеет одно решение, а парабола пересекает ось ОХ в одной точке. Если a > 0, то график имеет такой вид:
- Если D > 0, то уравнение имеет два решения, а парабола пересекает ось ОХ в двух точках, которые можно найти следующим образом:
Если a > 0, то график выглядит как-то так:
Теперь понятно, что, зная направление ветвей параболы и знак дискриминанта, мы можем схематично представить график конкретной функции.
Координаты вершины параболы также являются важным параметром графика квадратичной функции и находятся следующим способом:
Ось симметрии параболы — прямая, которая проходит через вершину параболы параллельно оси OY.
Чтобы построить график, нам нужна точка пересечения параболы с осью OY. Так как абсцисса каждой точки оси OY равна нулю, чтобы найти точку пересечения параболы y = ax 2 + bx + c с осью OY, нужно в уравнение вместо х подставить ноль: y(0) = c. То есть координаты этой точки будут соответствовать: (0; c).
На изображении отмечены основные параметры графика квадратичной функции:
Алгоритм построения параболы
Рассмотрим несколько способов построения квадратичной параболы. Наиболее удобный способ можно выбрать в соответствии с тем, как задана квадратичная функция.
Уравнение квадратичной функции имеет вид y = ax 2 + bx + c.
Разберем общий алгоритм на примере y = 2x 2 + 3x — 5.
Как строим:
- Определим направление ветвей параболы. Так как а = 2 > 0, ветви параболы направлены вверх.
- Найдем дискриминант квадратного трехчлена 2x 2 + 3x — 5.
D = b 2 — 4ac = 9 — 4 * 2 * (-5) = 49 > 0
В данном случае дискриминант больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ. Чтобы найти их координаты, решим уравнение:
- Координаты вершины параболы:
Точка пересечения с осью OY находится: (0; -5) относительно оси симметрии.
Нанесем эти точки на координатную плоскость и построим график параболы:
Уравнение квадратичной функции имеет вид y = a * (x — x₀) 2 + y₀
Зная координаты вершины параболы и старший коэффициент, можно записать уравнение квадратичной функции в виде у = a(x − x0) + y0, где x0, y0 — координаты вершины параболы.
Координаты его вершины: (x₀; y₀). В уравнении квадратичной функции y = 2x 2 + 3x — 5 при а = 1, то второй коэффициент является четным числом.
Рассмотрим пример: y = 2 * (x — 1) 2 + 4.
Как строим:
- Воспользуемся линейным преобразованием графиков функций. Для этого понадобится:
- построить график функции y = x 2 ,
- умножить ординаты всех точек графика на 2,
- сдвинуть его вдоль оси ОХ на 1 единицу вправо,
- сдвинуть его вдоль оси OY на 4 единицы вверх.
Построить график параболы для каждого случая.
Уравнение квадратичной функции имеет вид y = (x + a) × (x + b)
Рассмотрим следующий пример: y = (x − 2) × (x + 1).
Как строим:
Данный вид функции позволяет быстро найти нули функции:
(x − 2) × (x + 1) = 0, отсюда х₁ = 2, х₂ = −1.
Определим координаты вершины параболы:
Найти точку пересечения с осью OY:
с = ab = (−2) × (1) = −2 и ей симметричная относительно оси симметрии параболы.
Отметим эти точки на координатной плоскости и соединим плавной прямой линией.
Как построить параболу
Соавтор(ы): Jake Adams. Джейк Адамс — репетитор и владелец онлайн-сервиса Simplifi EDU с офисом в Санта-Монике, Калифорния, который предлагает образовательные ресурсы и услуги репетиторов по предметам от уровня детского сада до колледжа, помощь в подготовке к тестам SAT и ACT и консультирование по вопросам поступления в колледж. Имеет более 14 лет опыта в качестве профессионального репетитора, нацелен на предоставление клиентам репетиторских услуг высочайшего качества и доступа к сети, объединяющей выскоквалифицированных репетиторов с высшим образованием из лучших колледжей страны. Получил диплом бакалавра по международному бизнесу и маркетингу в Университете Пеппердайна.
Количество источников, использованных в этой статье: 7. Вы найдете их список внизу страницы.
Как легко составить уравнение параболы по графику
Среда, 3 августа, 2016
В данной статье репетитор по математике рассказывает о простом и эффективном способе составления уравнения параболы по её графику, которому вас не научат в школе. Дочитайте эту статью до конца или посмотрите видео с подробным объяснением, потому что эта информация может вам пригодиться на экзамене.
Задача состоит в том, чтобы по графику параболы (см. рисунок) определить коэффициенты a, b и c соответствующей квадратичной функции :
Существует стандартный и крайне неэффективный способ решения этой задачи. Он заключается в том, чтобы через координату вершины параболы связать коэффициенты a и b, используя формулу
. Затем взять координаты двух точек, которые принадлежат параболе, составить систему уравнений и решить её относительно искомых коэффициентов. Считать придётся долго и муторно.
Мы не пойдём этим путём. Предлагаемый в данной статье способ намного более прост и изящен. Введём новую систему координат с центром в вершине параболы и осями, сонаправленными с исходной системой координат. В данной системе координат уравнение нашей параболы будет иметь вид:
, где
. Изобразим в новой системе координат график квадратичной функции
(синяя пунктирная линия на рисунке):
Абсциссы точек C и B в новой системе координат равны. Ордината точки C в 2 раза больше ординаты точки B. Значит график исходной параболы в новой системе координат получен умножением на всех ординат точек графика функции
. Откуда получаем, что
. Значит исходная парабола может быть представлена в виде следующего выражения в новой системе координат:
.
Осталось перейти в исходную систему координат. Поскольку новая система координат получена путём параллельного переноса исходной системы координат на 4 единичных отрезка вправо и 2 единичных отрезка вверх, то в исходной системе координат наша парабола может быть представлена в виде следующего выражения:
Как видите, данный способ требует минимум вычислений и фактически является полуустным. Запомните этот способ, он может пригодиться вам при решений задач из ЕГЭ, ОГЭ или вступительных экзаменов в вузы и школы с углубленным изучением математики.
Статья написана репетитором по математике в Москве, Сергеем Валерьевичем
Home » 8 класс » Как построить параболу? Что такое парабола? Как решаются квадратные уравнения?
Урок: как построить параболу или квадратичную функцию?
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
Парабола — это график функции описанный формулой ax2+bx+c=0.
Чтобы построить параболу нужно следовать простому алгоритму действий:
1 ) Формула параболы y=ax2+bx+c,
если а>0 то ветви параболы направленны вверх,
а<0 то ветви параболы направлены вниз.
Свободный член c эта точке пересекается параболы с осью OY;
2 ) Вершина параболы, ее находят по формуле x=(-b)/2a, найденный x подставляем в уравнение параболы и находим y;
3) Нули функции или по другому точки пересечения параболы с осью OX они еще называются корнями уравнения. Чтобы найти корни мы уравнение приравниваем к 0 ax2+bx+c=0;
Виды уравнений:
a) Полное квадратное уравнение имеет вид ax2+bx+c=0 и решается по дискриминанту;
b) Неполное квадратное уравнение вида ax2+bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0:
ax2+bx=0,
х(ax+b)=0,
х=0 и ax+b=0;
c)Неполное квадратное уравнение вида ax2+c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a);
Как решать квадратные уравнения посмотреть тут.
4) Найти несколько дополнительных точек для построения функции.
ПРАКТИЧЕСКАЯ ЧАСТЬ
И так теперь на примере разберем все по действиям:
Пример №1:
y=x2+4x+3
c=3 значит парабола пересекает OY в точке х=0 у=3. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=4 c=3 x=(-b)/2a=(-4)/(2*1)=-2 y= (-2)2+4*(-2)+3=4-8+3=-1 вершина находится в точке (-2;-1)
Найдем корни уравнения x2+4x+3=0
По дискриминанту находим корни
a=1 b=4 c=3
D=b2-4ac=16-12=4
x=(-b±√(D))/2a
x1=(-4+2)/2=-1
x2=(-4-2)/2=-3
Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=-2
х -4 -3 -1 0
у 3 0 0 3
Подставляем вместо х в уравнение y=x2+4x+3 значения
y=(-4)2+4*(-4)+3=16-16+3=3
y=(-3)2+4*(-3)+3=9-12+3=0
y=(-1)2+4*(-1)+3=1-4+3=0
y=(0)2+4*(0)+3=0-0+3=3
Видно по значениям функции,что парабола симметрична относительно прямой х=-2
Пример №2:
y=-x2+4x
c=0 значит парабола пересекает OY в точке х=0 у=0. Ветви параболы смотрят вниз так как а=-1 -1<0.
a=-1 b=4 c=0 x=(-b)/2a=(-4)/(2*(-1))=2 y=-(2)2+4*2=-4+8=4 вершина находится в точке (2;4)
Найдем корни уравнения -x2+4x=0
Неполное квадратное уравнение вида ax2+bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0.
х(-x+4)=0, х=0 и x=4.
Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=2
х 0 1 3 4
у 0 3 3 0
Подставляем вместо х в уравнение y=-x2+4x значения
y=02+4*0=0
y=-(1)2+4*1=-1+4=3
y=-(3)2+4*3=-9+13=3
y=-(4)2+4*4=-16+16=0
Видно по значениям функции,что парабола симметрична относительно прямой х=2
Пример №3
y=x2-4
c=4 значит парабола пересекает OY в точке х=0 у=4. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=0 c=-4 x=(-b)/2a=0/(2*(1))=0 y=(0)2-4=-4 вершина находится в точке (0;-4)
Найдем корни уравнения x2-4=0
Неполное квадратное уравнение вида ax2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a)
x2=4
x1=2
x2=-2
Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=0
х -2 -1 1 2
у 0 -3 -3 0
Подставляем вместо х в уравнение y= x2-4 значения
y=(-2)2-4=4-4=0
y=(-1)2-4=1-4=-3
y=12-4=1-4=-3
y=22-4=4-4=0
Видно по значениям функции,что парабола симметрична относительно прямой х=0
Подписывайтесь на канал на YOUTUBE, чтобы быть в курсе всех новинок и готовится с нами к экзаменам.
Парабола — это график функции описанный определённой формулой. Чтобы построить параболу нужно следовать формуле, определениям и уравнениям.
Парабола
Парабола – это множество точек плоскости, которые равноотделённые от заданной точки, что называется фокусом и заданной прямой под названием директриса.
Чтобы получить каноническое уравнение параболы, расположим директрису перпендикулярно оси , а фокус
на оси
так, чтобы начало координат
помещался на одинаковом расстоянии от них (см. рис. 1). Обозначим через
расстояние от фокуса к директрисе, тогда у фокуса будут координаты
,
.
Для произвольной точки параболы расстояний
, а расстояние к директрисе
. По определению
из рис. 1 видим, что
, а
и поэтому:
Рис. 1
(1)
– каноническое уравнение параболы.
Нужна помощь в написании работы?
Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.
Заказать работу
Что такое вершина параболы
Вершина параболы – это парабола, которая проходит через точки . Если точка
принадлежит параболе, то и
тоже принадлежит параболе, так как из:
.
Значит, парабола симметрична относительно оси , её график достаточно построить в первой четверти, где из канонического уравнения параболы получается, что:
Чтобы найти вершину параболы, необходимо знать формулу: .
Давайте посмотрим, как данная формула действует, допустим дано уравнение:
Тогда:
,
,
. Чтобы найти величины
,
и
, в квадратном уравнении коэффициент при
, при
, постоянная (коэффициент без переменной) =
. Если взять тот же пример,
, получается, что:
,
,
.
Форма и характеристики параболы
Исследуем за каноническим уравнением форму и расположение параболы:
1. В уравнении переменная входит в парной степени откуда получается, что парабола симметрична относительно оси
. Ось
– это ось, которая симметрична параболе.
2. Так как , тогда
, откуда получается, что парабола расположена справа от оси
.
3. При мы имеем
, то есть парабола проходит через начало координат. Точка
– это вершина параболы.
4. При увеличении значений переменной модуль
тоже возрастает. Изобразим параболу на рисунке:
Рис. 2
5. В полярной системе координат, у канонического уравнения параболы такой вид:
6. Уравнение ,
,
, тоже описывают параболы:
Рис. 3
Оптическое свойство параболы
У параболы “оптическое” свойство, если: в фокусе параболы поместить источник света, тогда отбитые от параболы лучи будут параллельными оси . Это свойство учитывают при изготовлении прожекторов, зеркальных телескопов, теле- и радио антенн.
При положительном уравнении:
описывают параболу симметричную относительно с вершиной в точке
, ветви которой направлены влево (рис. 3 (а)).
Аналогично изложенному, уравнение и
описывают параболы с вершиной в точке
симметрично относительно
, ветви которой направлены соответственно вверх и вниз (см. рис. 3 (б) и (в)). Если например, уравнение
решить относительно
и обозначить
, тогда получим известное со школьного курса уравнение параболы
. Теперь её фокусное расстояние
.
Примеры решения
Задача
Найти координаты фокуса и составить уравнение директрисы параболы .
Решение
Сравнивая каноническое уравнение и данное
, получим
,
, тогда
. Так как уравнение директрисы
, тогда в данном случае
.
Ответ
координаты фокуса: , а уравнение директрисы параболы:
.
Задача
Составить каноническое уравнение параболы:
а) с фокусом в точке ;
б) с фокусом в точке .
Решение
а). Так как фокус на положительной полуоси
, тогда парабола симметрична относительно
с вершиной в точке
и
, поэтому
и согласно формуле (1)
.
б). Фокус лежит на отрицательной полуоси
с вершиной в точке
, ветви направлены вниз, каноническое уравнение следует искать в виде
. Фокусное расстояние параболы
и уравнение запишется
.
Ответ
а) каноническое уравнение параболы с фокусом в точке :
;
б) каноническое уравнение с фокусом в точке :
.
Задача
Показать путём выделения полного квадрата, что уравнение – это уравнение параболы. Привести его к каноническому виду. Найти вершину, фокус, ось и директрису этой параболы.
Решение
Выделим относительно переменной полный квадрат
=
=
=
=
=
=
.
Обозначим ,
. Тогда в результате параллельного переноса координатных осей в новое начало, то есть в точку
, получим каноническое уравнение параболы
.
Ветви этой параболы направлены вниз симметрично относительно оси ,
,
– фокусное расстояние. В новой системе координат фокус находится в точке
, уравнение директрисы в новой системе
.
Повернёмся к старым координатам при помощи замены ,
. Уравнение оси в новой системе
, а в старой
– уравнение оси параболы.
Уравнение директрисы в новой системе координат , а в старой
.
В новой системе для фокуса
,
, а в старой системе
,
, то есть
.
Ответ
Каноническое уравнение параболы – ;
вершина – ветви параболы направлены вниз;
,
,
– фокусное расстояние, а фокус находится в точке
;
уравнение оси ;
уравнение директрисы .
С квадратными уравнениями мы уже встречались в курсе алгебры (7)-го класса.
Квадратное уравнение — это уравнение второй степени. Общий вид квадратного уравнения
ax2+bx+c=0
, где (а, b, с) могут быть любыми числами и
a≠0
,
Применяя знания о функциях и их графиках, которые нам известны, мы можем решать некоторые квадратные уравнения. Рассмотрим (5) графических способов решения квадратного уравнения
x2−2x−8=0
.
Первый способ
Построим график функции
x2−2x−8=0
.
1. Имеем: (a = 1), (b = -2),
x0=−b2a=1,y0=f(1)=12−2−8=−9
. Значит, вершиной параболы служит точка ((1; -9)), а осью параболы является прямая (x = 1).
2. Возьмём на оси (x) две точки, симметричные относительно оси параболы, например, точки (x = -2) и (x = 4). Имеем (f(-2) = f(4) = 0). Построим на координатной плоскости точки ((-2; 0)) и ((4; 0)).
3. Построим параболу по точкам ((-2; 0)), ((1; -9)), ((4; 0)).
Корни уравнения
x2−2x−8=0
— это первые координаты точек, в которых функция равна нулю (то есть в которых график пересекает ось (х)); поэтому имеем решение:
x1=−2;x2=4
.
Второй способ
Запишем уравнение в другом виде
x2=2x+8
. Рассмотрим функции в левой и правой частях уравнения
y=x2;y=2x+8
. В одной системе координат построим их графики и найдём точки пересечения графиков:
Получили две точки:: (C(- 2; 4)) и (D(4; 16)). Решением уравнения будут первые координаты точек (C) и (D), имеем:
x1=−2;x2=4
.
Преобразуем уравнение к виду
x2−8=2x
. Построим в одной системе координат графики функций:
y=x2−8;y=2x
и определим точки их пересечения:
Получили две точки: (C(-2; — 4)) и (D(4; 8)). Решением уравнения будут первые координаты точек (C) и (D), то есть
x1=−2;x2=4
.
Четвёртый способ
Преобразуем уравнение к виду
x2−2x+1−9=0
и далее
x2−2x+1=9→x−12=9
.
Построим в одной системе координат параболу
y=x−12
, прямую (y = 9) и определим точки их пересечения:
Получили две точки: (C(-2; 9)) и (D(4; 9)). Решением уравнения будут первые координаты точек (C) и (D), поэтому
x1=−2;x2=4
.
Пятый способ
Так как (x=0) не является корнем уравнения, то разделим левую и правую части на (x):
x−2−8x=0;x−2=8x.
Рассмотрим функции в левой и правой частях уравнения
y=8x
, (y = x — 2) и определим точки их пересечения:
Получили две точки: (A (-2; -4)) и (B(4; 2)). Решением уравнения будут первые координаты точек (A) и (B), следовательно,
x1=−2;x2=4
.