Рассмотрим решение задачи по составлению и определению суммы моментов внешних сил приложенных к заданной системе относительно её точек.
Задача
К составной планке, показанной на рисунке
приложены следующие нагрузки:
- Внешние сосредоточенные силы F1=10кН и F2=50кН расположенная под углом
- Сосредоточенный момент m=70кНм
- Равномерно-распределённая нагрузка q интенсивностью 20кН/м
Требуется составить и определить алгебраическую сумму моментов относительно точек A, B и D.
Решение
Обозначим характерные точки системы буквами и покажем систему координат x-y.
Для записи и расчета уравнений суммы моментов надо мысленно закрепить систему в рассматриваемой точке и записать все внешние усилия, которые стремятся повернуть систему.
Момент силы определяется по формуле
где h — расстояние от точки до линии действия силы называемое плечом.
Другие видео
При этом, по правилу знаков, нагрузки, поворачивающие систему против хода часовой стрелки записываются положительными и наоборот.
При записи уравнений суммы моментов:
- Силы умножаются на плечо;
- Равномерно распределенные нагрузки умножаются на длину (получается равнодействующая сила), полученное произведение умножается на плечо, которым служит расстояние от её середины до рассматриваемой точки;
- Сосредоточенный момент в сумме моментов записывается как есть (с учётом знака).
Примеры составления суммы моментов сил
Определим алгебраические суммы моментов сил относительно произвольных точек системы.
Для некоторого упрощения решения задачи, распределенную нагрузку можно заменить её равнодействующей
которая при равномерном распределении приложена посередине:
а сосредоточенную силу F2 можно разложить на составляющие, спроецировав её на оси x и y.
Получается упрощенная расчетная схема:
Расчет суммы моментов относительно точки, к которой приложена сила
Для точки A:
Силы Rq и F2X создают момент, вращающий по ходу часовой стрелки, поэтому будут записаны со знаком минус.
Сила F2Y относительно точки A имеет обратное направление и создает положительный момент.
Здесь h1, h2 и h3 плечи моментов соответствующих сил и равнодействующей распределенной нагрузки относительно точки A.
Линия действия силы F1 проходит через саму точку A, следовательно, плечо равно нулю, поэтому момент этой силой в данном случае не создается.
Таким образом, относительно точки A уравнение суммы моментов будет иметь вид:
Здесь сумма моментов относительно точки A отрицательна, поэтому, если данную систему закрепить в этой точке, она будет вращаться по ходу часовой стрелки.
Определение суммы моментов относительно точки, в которой приложен момент
Для точки B надо помнить что момент приложенный в точке, относительно которой записывается сумма, в уравнении участвует.
Поэтому алгебраическая сумма моментов относительно точки B равна:
Знак «-» так же показывает на вращение системы по ХЧС.
Сумма моментов относительно точки, где действует распределенная нагрузка
Для точки D:
Здесь надо смотреть, как расположена равнодействующая нагрузки по отношению к рассматриваемой точке.
В данном случае она находится справа от точки и направлена вниз, следовательно, создает вращение по ходу часовой стрелки.
Плечом момента нагрузки служит расстояние между равнодействующей и точкой.
Уравнение суммы моментов для точки под распределенной нагрузкой (в точке D) запишется в виде:
Положительный результат показывает вращение системы против ХЧС.
Направления определенных сумм моментов относительно заданных точек
При определении суммы моментов следует помнить, что в отличие от сил и распределенных нагрузок, сосредоточенный момент будет иметь один и тот же знак относительно любой точки системы.
Уравнения суммы моментов можно составить относительно любых других точек системы, в том числе точек, которые лежат вне заданной системы. Но, как правило, при решении задач этого не требуется.
Для статичных, геометрически неизменяемых систем сумма моментов всегда равна нулю.
Другие примеры решения задач статики >
Моменты импульса и силы связаны между
собой важным соотношением, которое
называется уравнением моментов. Вначале
получим это соотношение для одной
материальной точки. С этой целью
продифференцируем момент импульса
(5.5) по времени
.
(5.9)
Учитывая, что
и
,
с учетом (5.1), получим
.
(5.10)
Это и есть уравнение моментов для одной
материальной точки.
Распространим теперь уравнение (5.10) на
систему материальных точек. Для этого
сложим все уравнения (5.10) для каждой
точки, понимая под М момент всех
действующих на нее сил, как внешних, так
и внутренних
.
(5.11)
Суммарный момент всех внутренних сил
равен нулю. Действительно, внутренние
силы входят в систему попарно. Эти силы
направлены противоположно и действуют
вдоль одной и той же прямой, поэтому
момент таких двух сил, а значит и момент
всех внутренних сил равны нулю. В
результате получаем уравнение моментов
для системы материальных точек:
,
(5.12)
где
— суммарный момент всех внешних сил,
—
момент импульса системы.
Таким образом, скорость изменения
момента импульса системы относительно
неподвижной точки (полюса) равна
результирующему моменту относительно
той же точки всех внешних сил, действующих
на систему.
Соотношение (5.12) справедливо, в частности,
для твердого тела, закрепленного в одной
точке. В этом случае оно выражает основной
закон динамики для тела, вращающегося
вокруг неподвижной точки. Из него
следует, что момент импульса является
основной динамической характеристикой
тела, вращающегося вокруг неподвижной
точки.
Из уравнения моментов (5.12) непосредственно
вытекает закон сохранения момента
импульса механической системы. Если
момент внешних сил равен нулю (),
то момент импульса системы остается
постоянным ().
Таким образом, момент импульса замкнутой
системы относительно произвольного
центра остается постоянным во времени.
Такова формулировка закона сохранения
момента импульса механической системы.
Этот закон, наряду с законами сохранения
импульса и энергии, является одним из
фундаментальных законов природы. В
теоретической механике, изучающей самые
общие законы движения, закон сохранения
момента импульса связывается с
изотропностью пространства, т.е. с
инвариантностью относительно вращений
пространства.
5.3. Момент силы и момент импульса относительно неподвижной оси
Следует различать и никоим образом не
смешивать понятия момента импульса и
момента силы относительно точки и
относительно оси. Момент вектора
относительно точки сам есть вектор,
тогда как момент вектора относительно
оси уже не является вектором.
М
Рис.5.4
оментом импульса
и моментом силы
относительно произвольной оси Z
называют проекции векторов
и
на эту ось в предположении, что точка О
(полюс) лежит на рассматриваемой оси
(рис.5.4).
Покажем на примере момента силы, что
выбор точки на оси влияет на значение
,
но не влияет на значение
.
Будем полагать, что точка О, относительно
которой определен момент силы
,
расположена в произвольной точке на
оси вращения (рис.5.5). Разложим вектор
силы на три взаимно перпендикулярные
составляющие, две из которых,
||
и
,
параллельная и перпендикулярная оси
вращения, лежат в плоскости, проходящей
через ось вращения и точку приложения
силы, а третья
— перпендикулярна к этой плоскости
(обозначена на рисунке крестиком). Момент
силы
относительно
точки О равен сумме моментов составляющих:
.
В
Рис.5.5
екторное произведение направлено
перпендикулярно плоскости, в которой
лежат образующие его векторы. Векторы
||
и
перпендикулярны оси, и следовательно,
их проекции на эту ось равны нулю. Поэтому
.
(5.13)
Здесь
,
а
.
Окончательно, для момента силы относительно
оси вращения получаем:
,
(5.14)
где
—
радиус окружности с центром на оси OZ,
а
— касательная составляющая силы к этой
окружности.
Таким образом, момент силы относительно
оси характеризует способность силы
вращать тело вокруг этой оси. В соответствии
с правилом винта величина
положительна,
когда сила приводит к вращению тела
вокруг направления оси против часовой
стрелки, и отрицательна – при вращении
в противоположном направлении.
Проектируя векторное уравнение (5.12) на
ось ОZ, получим
.
(5.15)
Это уравнение называется уравнением
моментов относительно неподвижной оси.
Когда момент внешних сил относительно
какой-либо оси равен нулю, то момент
импульса системы относительно той же
оси остается постоянным. Это закон
сохранения момента импульса относительно
неподвижной оси.
Этот закон в сочетании с законом
сохранения механической энергии
эффективно используется при решении
задач на вращательное движение твердого
тела (см.5.8).
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Содержание:
Моменты силы относительно точки и оси:
Для рассмотрения различных систем сил необходимо ввести понятия алгебраического и векторного моментов силы относительно точки и момента силы относительно оси. Введем эти характеристики действия силы на твердое тело и рассмотрим их свойства.
Алгебраический момент силы относительно точки
При рассмотрении плоской системы сил, приложенных к твердому телу, используется понятие алгебраического момента силы относительно точки.
Рис. 19
Алгебраическим моментом силы относительно точки называют произведение модуля силы на плечо силы относительно этой точки (рис. 19), взятое со знаком плюс или минус.
Плечом относительно точки называют кратчайшее расстояние между этой точкой и линией действия силы, т. е. длину отрезка перпендикуляра, опущенного из точки
на линию действия силы
.
Обозначим или
алгебраический момент силы
относительно точки
. Тогда
Если сила стремится вращать тело вокруг моментной точки (точки, относительно которой вычисляют алгебраический момент силы) против часовой стрелки, то берем знак плюс, если по часовой стрелке — знак минус.
Алгебраический момент силы представляет собой произведение силы на длину (в ).
Из определения алгебраического момента силы относительно точки следует, что он не зависит от переноса силы вдоль ее линии действия. Алгебраический момент силы относительно точки равен нулю, если линия действия силы проходит через моментную точку. Сумма алгебраических моментов относительно точки двух равных по модулю, но противоположных по направлению сил, действующих вдоль одной прямой, равна нулю. Численно алгебраический момент относительно точки равен удвоенной площади треугольника, построенного на силе и моментной точке:
Векторный момент силы относительно точки
При рассмотрении пространственной системы сил, приложенных к твердому телу, применяется понятие векторного момента силы относительно точки.
Векторным моментом силы относительно точки называют вектор, приложенный в этой точке и равный по модулю произведению силы на плечо силы относительно этой точки. Векторный момент силы направлен перпендикулярно плоскости, в которой лежат сила и моментная точка, таким образом, что с его конца можно видеть стремление силы вращать тело против движения часовой стрелки (рис. 20).
Плечом силы относительно точки
называют кратчайшее расстояние от этой точки до линии действия силы.
Рис. 20
Условимся векторный момент силы относительно точки
обозначать
, а его числовую величину —
. Тогда, согласно определению,
Как и для алгебраического момента, векторный момент силы относительно точки равен удвоенной площади треугольника, построенного на силе и моментной точке:
Справедлива формула
где —радиус-вектор, проведенный из моментной точки
в точку приложения силы или любую другую точку линии действия силы.
Чтобы убедиться в справедливости формулы (3), достаточно показать, что по величине и направлению выражает векторный момент силы относительно точки
. По определению векторного произведения двух векторов известно, что
Как показано на рис. 20, , причем это равенство справедливо для любой точки линии действия, куда проведен радиус-вектор
. Итак,
что совпадает с векторным моментом силы относительно точки . Вектор
, как известно, перпендикулярен плоскости, в которой расположены векторы
и
, т. е. плоскости треугольника
, которой перпендикулярен и векторный момент
.
Направление тоже совпадает с направлением
. Заметим, что векторный момент силы относительно точки считается вектором, приложенным к этой точке.
Векторный момент силы относительно точки не изменяется от переноса силы вдоль ее линии действия. Он станет равным
нулю, если линия действия силы пройдет через моментную точку.
Рис. 21
Если сила дана своими проекциями
на оси координат и даны координаты
точки приложения этой силы (рис. 21), то векторный момент относительно начала координат, согласно формуле (3), после разложения по осям координат вычисляем по формуле
где — единичные векторы, направленные по осям координат.
Используя формулу (4), можно выделить проекции на оси координат:
Модуль векторного момента и косинусы углов его с осями координат определяем по формулам
В формулах (6) числовую величину берем со знаком плюс.
Момент силы относительно оси
Моментом силы относительно оси называют алгебраический момент проекции этой силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с этой плоскостью (рис. 22). Момент силы относительно оси считается положительным, если проекция силы на плоскость, перпендикулярную оси (проекция силы на плоскость является вектором), стремится вращать тело вокруг положительного направления оси против часовой стрелки, и отрицательным, если она стремится вращать тело по часовой стрелке. Момент силы, например, относительно оси обозначим
.
Рис. 22
По определению,
где — вектор проекции силы
на плоскость
, перпендикулярную оси
, а точка
— точка пересечения оси
с плоскостью
.
Из определения момента силы относительно оси следует, что введенный выше алгебраический момент силы относительно точки можно считать моментом силы относительно оси, проходящей через эту точку, перпендикулярно плоскости, в которой лежат сила и моментная точка. Момент силы относительно оси можно выразить через площадь треугольника, построенного на проекции силы и точке пересечения
оси с плоскостью:
Из формулы (8) можно получить следующие важные свойства момента силы относительно оси:
- Момент силы относительно оси равен нулю, если сила параллельна оси. В этом случае равна нулю проекция силы на плоскость, перпендикулярную оси.
- Момент силы относительно оси равен нулю, если линия действия силы пересекает эту ось. В этом случае линия действия проекции силы на плоскость, перпендикулярную оси, проходит через точку пересечения оси с плоскостью и, следовательно, равно нулю плечо силы
относительно точки
.
В обоих этих случаях ось и сила лежат в одной плоскости. Объединяя их, можно сказать, что момент силы относительно оси равен нулю, если сила и ось лежат в одной плоскости.
Связь момента силы относительно оси с векторным моментом силы относительно точки на оси
Используя формулу (8), имеем (рис. 23)
Векторный момент силы относительно точки
, взятой на пересечении оси
с перпендикулярной плоскостью
, выражается в виде
Векторный момент направлен перпендикулярно плоскости треугольника
. Аналогично, для другой точки
оси
причем векторный момент направлен перпендикулярно плоскости треугольника
. Треугольник
является проекцией треугольников
и
на плоскость
. Из геометрии известно, что площадь проекции плоской фигуры равна площади проецируемой фигуры, умноженной на косинус угла между плоскостями, в которых расположены эти фигуры. Угол между плоскостями измеряется углом между перпендикулярами к этим плоскостям. Перпендикуляром к плоскости треугольника
является ось
, а перпендикулярами к плоскостям треугольников
и
—соответственно векторные моменты
и
. Таким образом,
, где
— угол между вектором
и осью
. Отсюда по формулам (8′) и (9) имеем
причем знак полностью определяется знаком
.
Аналогично,
т. е.
где — любая точка на оси
.
Формулы (11) и (12) отражают искомую связь между моментом силы относительно оси и векторными моментами силы относительно точек, лежащих на этой оси: момент силы относительно оси равен проекции на эту ось векторного момента силы относительно любой точки на оси.
Эту зависимость между моментом силы относительно оси и векторным моментом силы относительно точки на оси можно принять за определение момента силы относительно оси.
Рис. 23
Формулы для моментов силы относительно осей координат
Используя связь момента силы относительно оси с векторным моментом силы относительно точки на оси, можно получить формулы для вычисления моментов относительно осей координат, если даны проекции силы на оси координат и координаты точки приложения силы. Для оси имеем
Согласно (5),
следовательно,
Аналогично, для осей и
Окончательно
По формулам (13) можно вычислить моменты силы относительно прямоугольных осей координат.
По этим формулам получаются необходимые знаки для , если проекции силы
на оси координат и координаты
точки приложения силы подставлять в них со знаками этих величин.
При решении задач момент силы относительно какой-либо оси часто получают, используя его определение, т. е. проецируя силу на плоскость, перпендикулярную оси, и вычисляя затем алгебраический момент этой проекции относительно точки пересечения оси с этой плоскостью.
Момент пары сил. Сложение пар сил. Равновесие пар сил
При изучении теоретической механики необходимо совершенно отчетливо уяснить, что в статике рассматриваются два простейших элемента: сила и пара сил. Любые две силы, кроме сил, образующих пару, всегда можно заменить одной —сложить их (найти равнодействующую). Пара сил нс поддается дальнейшему упрощению, она не имеет равнодействующей и является простейшим элементом.
Действие пары сил на тело характеризуется ее моментом — произведением одной из сил пары на ее плечо (на кратчайшее расстояние между линиями действия сил, образующих пару).
Единицей момента пары сил в Международной системе служит 1 нм (ньютон-метр = 1 н-1ж), а в системе МКГСС (технической)— 1 кГ-м.
Несколько пар сил, действующих на тело в одной плоскости, можно заменить одной парой сил (равнодействующей парой), момент которой равен алгебраической сумме моментов данных пар:
При равновесии пар сил
Если пары сил действуют в одной плоскости, то при решении задач достаточно рассматривать моменты пар как алгебраические величины. Причем знак момента определяется в зависимости от направления вращающего действия пары сил.
Дальнейшее изложение основано на правиле, т. е. считается момент положительным, если пара сил действует против хода часовой стрелки, если же пара сил действует на тело но ходу часовой стрелки, то момент считается отрицательным.
В том случае когда пары сил действуют на тело будучи расположенными в различных плоскостях, гораздо удобнее рассматривать пару сил как вектор, направленный перпендикулярно
к плоскости действия пары сил (рис. 62). Направление вектора в зависимости от направления вращательного действия пары определяется по направлению движения винта с правой нарезкой.
Задача 1.
Определить момент пары сил (рис. 63), если н, АВ — 0,5 м и а = 30°.
Решение.
1. При определении момента пары сил нужно прежде всего правильно определить плечо пары. При этом необходимо различать следующие понятия: плечо пары сил и расстояние между точками приложения сил нары.
Так как в механике твердого тела сила—скользящий вектор, то действие силы не изменяется при переносе точки ее приложения вдоль линии ее действия. Значит расстояние между точками приложения сил, образующих пару, можно изменять неограниченно. Но плечо пары при этом переносе остается неизменным.
В частном случае расстояние между точками приложения сил, образующих пару, может быть равно плечу.
Чтобы определить плечо данной пары из точки приложения одной из сил, например из точки В, восставим перпендикуляр ВС к линии действия другой силы. Расстояние ВС и есть плечо данной пары сил. Расстояние между точками приложения сил, образующих пару, АВ=0,5 м.
Легко видеть, что
2. Найдем момент пары сил:
Задача 2.
Как изменится момент пары сил показанной на рис. 64, а (P = 50 н, AВ=0,4 м и а=135), если
повернуть силы так, чтобы они стали перпендикулярными АВ? Решение.
1. Найдем момент пары при заданном положении ее сил (рис. 64, а).
Из точки В восставим перпендикуляр ВС к линиям действия сил и найдем его длину:
Момент пары при заданном положении сил
2. Повернем силы из заданного положения на угол
=а°— 90э в направлении против хода часовой стрелки (рис. 64, б). При таком положении сил относительно АВ плечом пары сил является расстояние между точками их приложения, поэтому
3. Сравнивая полученные результаты, видим, что после поворота сил момент пары увеличивается на 20—14,5 = 5,85 н-м.
4. Легко заметить, что силы могут достичь перпендикулярного положения к АВ после их поворота на угол у в направлении по ходу часовой стрелки (рис. 64, в). В том случае плечом пары является тот же отрезок АВ, но момент пары
Момент пары сил изменяет свой знак.
Задача 3.
К точкам А, С и В, D, образующим вершины квадрата со стороной 0,5 м (рис. 65, а), приложены равные по модулю силы (Р = 12н) таким образом, что они образуют две пары сил
Определить момент равнодействующей пары сил
Решение 1.
Плечи у обеих пар сил равны стороне квадрата поэтому
Решение 2.
1. Перенесем силы из точек
в точки В и D (рис. 65, б). В точках В и D получаются системы сходящихся сил
и
одинаковыми модулями.
2. Сложим попарно эти силы у каждой из точек В и D. В обоих случаях
3. Силы R, модули которых теперь известны, направлены перпендикулярно к диагонали BD квадрата. Значит эта диагональ является плечом вновь образовавшейся пары сил заменяющей собой две данные.
4. Найдем момент пары
и, следовательно,
Эту пару в соответствии со вторым решением можно представить в виде пары с плечом BD (диагональю данного квадрата).
Но можно равнодействующую пару представить и в любом другом виде, например в виде сил Q = 24 и, приложенных к двум любым вершинам квадрата ABCD (рис. 65, в)
- Заказать решение задач по теоретической механике
Задача 4.
На прямоугольник ABCD (рис. 67) вдоль его длинных сторон действует пара сил Какую пару сил нужно приложить к прямоугольнику, направив силы вдоль его коротких сторон, чтобы уравновесить пару
Решение.
1. Момент данной пары сил
необходимо уравновесить парой, момент которой обозначим Л1м. Тогда, согласно условию равновесия,
Откуда
2. Обозначив силы, образующие искомую пару замечая, что ее плечо равно ВС, получим
Отсюда
•Значит к прямоугольнику необходимо приложить пару сил с положительным (направленным против хода часовой стрелки) моментом, равным 48 н м. Силы, образующие эту пару, равняются
20 н каждая и одна из них должна действовать вдоль стороны АВ от А к В, вторая — вдоль стороны CD от С к D.
Задача 5.
Прямолинейный стержень АВ должен находиться в равновесии в положении, показанном на рис. 68, а (угол а = При этом в точках А и В на стержень действуют вертикальные силы
образующие пару
Какие две равные силы нужно приложить к стержню в точках С и D, направив их перпендикулярно к стержню, чтобы обеспечить равновесие. АВ = 3 м, CD— 1 м,
Решение.
1. Пару сил можно уравновесить только парой сил. Поэтому в точках С и D к стержню необходимо приложить две равные силы так, чтобы они образовали пару сил с моментом, равным моменту пары но имеющим противоположный знак.
Так как пара поворачивает стержень на ходу часовой стрелки, искомые силы должны поворачивать его против хода часовой стрелки (рис. 68, б).
2. Применяем условие равновесия:
Или, подставив значения моментов,
где
Отсюда
Следовательно, в точках С и D необходимо приложить силы по 150 н каждая, как показано на рис. 68, б.
Момент силы относительно точки
Момент силы относительно точки при решении задач по статике, а затем и по динамике имеет не менее важное значение, чем проекции сил. Поэтому нужно уметь определять эту величину безошибочно. Обычно его числовое значение находят неправильно из-за ошибок, допускаемых при определении плеча.
Чтобы не допускать ошибок при определении моментов сил относительно точки, рекомендуется придерживаться следующего порядка:
- Прежде всего нужно научиться «видеть» силу, момент которой определяем, и центр моментов — точку, относительно которой определяем момент (рис. 70 — сила
и центр моментов — точка В).
- Затем из центра момента проводим прямую ВЬ перпендикулярно к линии действия силы DF. Длина перпендикуляра ВС от центра момента до линии действия силы и есть плечо.
- Потом находим знак момента. При этом если сила стремится повернуть плечо вокруг центра момента против хода часовой стрелки, то считаем момент положительным; если по ходу часовой стрелки, то отрицательным (тоже правило, что и при определении знака момента пары сил).
- Находим числовое значение момента силы относительно точки, умножив модуль силы на плечо.
По рис. 70
В частном случае момент силы может равняться нулю. Это происходит тогда, когда центр моментов лежит на линии действия силы, при этом плечо равняется нулю. По рис. 70 момент силы относительно точки А (или С) равен нулю.
Задача 6.
Определить моменты шести заданных сил (рис. 71) относительно точек А, В и С, если
Решение 1 — определение моментов гнести заданных сил относительно точки А (рис. 71, а).
1. Центр моментов в точке А. Через точку А проходят линии действия трех сил Значит для этих сил плечи равны нулю. Следовательно,
2. Находим момент силы Опустив из точки А на линию действия
силы перпендикуляр AD, получим плечо силы
Длину AD легко найти, так как это катет треугольника ABD:
3. Величина момента отрицательная (сила поворачивает плечо AD вокруг точки А но ходу часовой стрелки), следовательно,
4. Находим момент силы Плечом силы
является перпендикуляр АЕ к СЕ — линии действия силы
Из треугольника АСЕ
Величина момента положительная (плечо АЕ поворачивается около точки А силой против хода часовой стрелки). Следовательно,
5. Находим момент силы Плечом силы
относительно точки А является отрезок АС, так как сила
направлена к АС перпендикулярно. Величина момента отрицательная:
Решение 2 — определение моментов сил относительно точки В (рис. 71, б).
1. Центр моментов в точке В.
2. Через точку В проходят линии действия двух сил: Следовательно,
3. Находим момент силы Плечо силы
Величина момента отрицательная:
4. Находим момент силы Плечо силы
Момент отрицательный:
5. Находим момент силы Плечо силы
Величина момента положительная:
6. Находим момент силы Плечом силы
является отрезок ВС. Момент положительный:
Решение 3 — определение моментов сил относительно точки С (рис. 71, в) рекомендуется выполнить самостоятельно.
Ответ.
В задаче силы расположены так, что либо их плечи определяются очень просто — как катеты прямоугольных треугольников, в которых даны гипотенузы, либо плечи заданы в условии задачи (ВС и АС).
Но иногда некоторые силы заданной системы оказываются расположенными относительно выбранного центра моментов так, что определить длину плеча трудно и требуется, например, предварительно вычислить длины еще одного-двух отрезков. В таких случаях целесообразно силу разложить на две составляющие и применить для определения ее момента теорему Вариньона.
Задача 7.
Определить моменты относительно точки я, приложенных в точках А, В и С, как показано на рис. 72, а. Углы
ВС =1,5 м.
Решение.
1. Относительно точки А моменты сил определяются аналогично
2. Находим момент силы Вариант 1-й (рис. 72, а). Плечо АЕ силы
в данном случае определяем из
в котором известен только
. Значит нужно предварительно определить одну из сторон. Найдем AF:
AF = AB — FB.
Величину FB находим из в котором
следовательно,
И теперь можем определить плечо АЕ:
Раскрываем скобки и заменяем
Момент положительный, следовательно:
Вариант 2-й. Чтобы избежать определения плеча АЕ, которое в данном случае находится после предварительного вычисления двух отрезков (FB и AF), необходимо момент силы относительно точки А найти по теореме Вариньона: момент равнодействующей плоской системы сил относительно любой точки, лежащей в той же плоскости, равен алгебраической сумме моментов составляющих сил относительно той же точки.
Разложим силу на две составляющие: одну, направленную вдоль отрезка ВС, и другую — перпендикулярно к нему (рис. 72, б).
Модуль первой составляющей а ее плечо — отрезок АВ, длина которого задана. Модуль второй составляющей
а ее плечо АК = ВС =1,5 м.
Применяя теорему Вариньона, получаем
Как видно, получено точно такое же значение момента, что и в первом варианте решения:
- Теория пар сил
- Приведение системы сил к простейшей системе
- Условия равновесия системы сил
- Плоская система сил
- Аксиомы и теоремы статики
- Система сходящихся сил
- Плоское движение тела
- Принцип виртуальных перемещений
Уравнение моментов
Определение и уравнение моментов
Пусть О — какая-либо неподвижная точка в инерциальной системе отсчета. Ее называют началом или полюсом. Обозначим через радиус-вектор, проведенный из этой точки к точке приложения силы
(рис. 1) .
рис. 1.
Моментом нескольких сил относительно точки называется векторная сумма моментов этих сил относительно той же точки:
Момент импульса материальной точки
Системы n материальных точек моментом импульса относительно некоторой точки О называется векторная сумма моментов импульсов этих точек относительно того же начала:
Производная по времени от момента импульса механической системы относительно неподвижной точки (полюса О) равна сумме моментов внешних сил
, действующих на систему:
Для материальной точки уравнение моментов записывается:
Уравнение (6) называется уравнением моментов для системы материальных точек. Это основной закон динамики твердого тела, вращающегося вокруг неподвижной точки.
В проекциях на оси неподвижной декартовой системы координат с началом в полюсе О уравнение моментов системы записывается в виде:
где — проекции момента импульса на соответствующую ось;
— проекции суммарного момента сил на соответствующую ось.
Уравнение моментов позволяет получить ответ на следующие вопросы:
- найти момент силы ( суммарного момента внешних сил) относительно интересующей нас точки в любой момент времени, если известна зависимость от времени момента импульса частицы (системы частиц) относительно той же точки;
- определить приращение момента импульса частицы (системы частиц) относительно точки О за любой промежуток времени, если известна зависимость от времени момента силы (суммарного момента внешних сил), действующей на эту частицу ( систему частиц) относительно той же точки.
Примеры решения задач
Понравился сайт? Расскажи друзьям! | |
Уравнение моментов
Определение и уравнение моментов
Пусть O — любая неподвижная точка в инерциальной системе отсчета. Это называется началом или полюсом. Обозначим через
радиус-вектор, взятый от этой точки до точки приложения силы
(рис.1).
рис 1.
ОПРЕДЕЛЕНИЕ
Момент силы относительно точки O является векторным произведением радиус-вектора
и силы
:
направление выбрано так, что последовательность векторов
образует правую систему, т. е. если вы посмотрите вдоль вектора
,то поворот вдоль кратчайшего пути от первого фактора в (1) до вторая выполняется по часовой стрелке, таким образом
совпадает с направлением поступательного движения правого штыря, ручка которого вращается от
до
вдоль кратчайшего пути.
Моментом нескольких сил относительно точки является векторная сумма моментов этих сил относительно одной и той же точки:
Момент импульса материальной точки
ОПРЕДЕЛЕНИЕ
Момент импульса материальной точки относительно точки O является векторным произведением радиус-вектора и импульса
:
где J — момент инерции, — угловая скорость вращения тела.
Система из n материальных точек — это момент количества движения относительно некоторой точки O — векторная сумма моментов импульсов этих точек относительно того же начала:
Временная производная от момента импульса механической системы относительно неподвижной точки (полюса О) равна сумме внешних силовых моментов
, действующих на систему:
Для материальной точки уравнение момента написано:
Уравнение (6) называется моментом для системы материальных точек. Это основной закон динамики твердого тела, вращающегося вокруг неподвижной точки.
В проекциях на оси фиксированной декартовой системы координат с началом на полюсе O уравнение моментов системы записывается в виде:
где — проекция момента количества движения на соответствующей оси;
— проекции полного момента сил на соответствующую ось.
Уравнение моментов позволяет получить ответ на следующие вопросы:
1. найти момент силы (общий момент внешних сил) относительно интересующей нас точки в любой момент времени, если известна зависимость момента количества движения частицы (системы частиц) от одной и той же точки;
2. определить приращение углового момента частицы (системы частиц) относительно точки O для любого периода времени, если временная зависимость силового момента (полного момента внешних сил), действующего на эту частицу (система частиц) относительно одной и той же точки.
Примеры решения проблем
ПРИМЕР 1
Сравните угловые скорости, полученные материальной точкой под действием крутящих моментов, графики (a, b) которых показаны на рисунках.
рис 2.
В соответствии с уравнением моментов для материальной точки мы имеем:
где
поскольку мы имеем дело с материальной точкой, соответственно, J не зависит от времени, получаем:
откуда
Вспомните геометрический смысл интеграла.
Вычислить и сравнить площадь треугольников OAB и OCD.
Области треугольников равны соответственно
Угловые скорости, полученные материальной точкой, равны в первом и втором случаях.
ПРИМЕР 2
Горизонтальный диск с радиусом R = 0,2 м и массой m = 5 кг вращается вокруг оси, проходящей через ее центр. Зависимость угловой скорости вращения диска от времени определяется уравнением w = A + 8t. Найдите значение касательной силы, приложенной к ободу диска. Трение пренебрегалось.
Мы делаем рисунок
рис 3.
Запишем уравнение моментов:
где — искомая сила. Перепишите (2.2), найдите модуль:
— угол между вектором
и
равен
, так как силы, касательные к диску,
направлены вдоль радиуса диска в точку касания, следовательно, M = RF.
Поскольку мы имеем дело с телом, который не меняет момент инерции со временем, мы имеем:
Где — момент инерции диска относительно оси, проходящей через его центр.
, получим:
Подставим числовые значения, получим:
Величина (модуль) касательной силы, приложенной к краю диска, равна 4 N.