п.1. Уравнение касательной
Рассмотрим кривую (y=f(x)).
Выберем на ней точку A с координатами ((x_0,y_0)), проведем касательную AB в этой точке.
Как было показано в §42 данного справочника, угловой коэффициент касательной равен производной от функции f в точке (x_0): $$ k=f'(x_0) $$ Уравнение прямой AB, проведенной через две точки: ((y_B-y_A)=k(x_B-x_A)).
Для (A(x_0,y_0), B(x,y)) получаем: begin{gather*} (y-y_0)=k(x-x_0)\ y=k(x-x_0)+y_0\ y=f'(x_0)(x-x_0)+f(x_0) end{gather*}
Уравнение касательной к кривой (y=f(x)) в точке (x_0) имеет вид: $$ y=f'(x_0)(x-x_0)+f(x_0) $$ при условии, что производная (f'(x_0)=aneinfty) — существует и конечна.
Чтобы записать уравнение касательной с угловым коэффициентом в виде (y=kx+b), нужно раскрыть скобки и привести подобные: $$ y=f'(x_0)(x-x_0)+f(x_0)=underbrace{f'(x_0)}_{=k}x+underbrace{f(x_0)-f'(x_0)cdot x_0}_{=b} $$
Уравнение касательной с угловым коэффициентом: begin{gather*} y=kx+b\ k=f'(x_0), b=f(x_0)-f'(x_0)cdot x_0 end{gather*}
п.2. Алгоритм построения касательной
На входе: уравнение кривой (y=f(x)), абсцисса точки касания (x_0).
Шаг 1. Найти значение функции в точке касания (f(x_0))
Шаг 2. Найти общее уравнение производной (f’ (x))
Шаг 3. Найти значение производной в точке касания (f'(x_0 ))
Шаг 4. Записать уравнение касательной (y=f’ (x_0)(x-x_0)+f(x_0)), привести его к виду (y=kx+b)
На выходе: уравнение касательной в виде (y=kx+b)
Например:
Пусть (f(x)=x^2+3). Найдем касательную к этой параболе в точке (x_0=1). (f(x_0)=1^2+3=4 ) |
п.3. Вертикальная касательная
В случае, если производная (f'(x_0)=pminfty) — существует, но бесконечна, в точке (x_0) проходит вертикальная касательная (x=x_0).
Внимание!
Не путайте вертикальные касательные с вертикальными асимптотами.
Вертикальная асимптота проходит через точку разрыва 2-го рода (x_0notin D), в которой функция не определена и производная не существует. График функции приближается к асимптоте на бесконечности, но у них никогда не бывает общих точек.
А вертикальная касательная проходит через точку (x_0in D), входящую в область определения. График функции и касательная имеют одну общую точку ((x_0,y_0)).
Вертикальные касательные характерны для радикалов вида (y=sqrt[n]{x}).
Например:
Пусть (f(x)=sqrt[5]{x-1}+1). Найдем касательную к этой кривой в точке (x_0=1). (f(x_0)=sqrt[5]{1-1}+1=1) |
п.4. Примеры
Пример 1. Для функции (f(x)=2x^2+4x)
a) напишите уравнения касательных, проведенных к графику функции в точках его пересечения с осью OX.
Находим точки пересечения, решаем уравнение: $$ 2x^2+4x=0Rightarrow 2x(x+2)=0Rightarrow left[ begin{array}{l} x=0\ x=-2 end{array} right. $$ Две точки на оси: (0;0) и (-2;0). Касательная в точке (x_0=0): begin{gather*} f(x_0)=0, f'(x)=4x+4\ f'(x_0)=4cdot 0+4=4\ y=4(x-0)+0=4x end{gather*} Касательная в точке (x_0=-2): begin{gather*} f(x_0)=0, f'(x)=4x+4\ f'(x_0)=4cdot (-2)+4=-4\ y=-4(x+2)+0=-4x-8 end{gather*} |
б) Найдите, в какой точке касательная образует с положительным направлением оси OX угол 45°. Напишите уравнение этой касательной.
Общее уравнение касательной: (f'(x)=4x+4) По условию (f'(x_0)=tgalpha=tg45^circ=1) Решаем уравнение: $$ 4x_0+4=1Rightarrow 4x_0=-3Rightarrow x_0=-frac34 $$ Точка касания (x_0=-frac34) begin{gather*} f(x_0)=2cdotleft(-frac34right)^2+4cdotleft(-frac34right)=frac98-3=-frac{15}{8} end{gather*} Уравнение касательной: begin{gather*} y=1cdotleft(x+frac34right)-frac{15}{8}=x-frac98 end{gather*} |
в) найдите, в какой точке касательная будет параллельна прямой (2x+y-6=0). Напишите уравнение этой касательной.
Найдем угловой коэффициент заданной прямой: (y=-2x+6Rightarrow k=-2). Касательная должна быть параллельной, значит, её угловой коэффициент тоже (k=-2). Получаем уравнение: begin{gather*} f'(x_0)=-2\ 4x_0+4=-2Rightarrow 4x_0=-6Rightarrow x_0=-frac32 end{gather*} Точка касания (x_0=-frac32) begin{gather*} f(x_0)=2cdotleft(-frac32right)^2+4cdotleft(-frac32right)=\ =frac92-6=-frac32 end{gather*} Уравнение касательной: begin{gather*} y=-2cdotleft(x+frac32right)-frac32=-2x-frac92 end{gather*} Или, в каноническом виде: begin{gather*} 2x+y+frac92=0 end{gather*} |
г) в какой точке функции можно провести горизонтальную касательную? Напишите уравнение этой касательной.
У горизонтальной прямой (k=0). Получаем уравнение: (f'(x_0)=0). begin{gather*} 4x_0+4=0Rightarrow 4x_0=-4Rightarrow x_0=-1 end{gather*} Точка касания (x_0=-1) begin{gather*} f(x_0)=2cdot(-1)^2+4cdot(-1)=-2 end{gather*} Уравнение касательной: begin{gather*} y=0cdot(x+1)-2=-2 end{gather*} |
Ответ: а) (y=4x) и (y=-4x-8); б) (y=x-frac98); в) (2x+y+frac92=0); г) (y=-2)
Пример 2. Напишите уравнение касательной к графику функции в заданной точке:
a) ( f(x)=frac5x+frac x5, x_0=4 ) begin{gather*} f(x_0)=frac54+frac45=frac{25+16}{20}=frac{41}{20}\ f'(x)=left(frac5xright)’+left(frac x5right)’=-frac{5}{x^2}+frac15=frac{-25+x^2}{5x^2}=frac{x^2-25}{5x^2}\ f'(x_0)=frac{4^2-25}{5cdot 4^2}=-frac{9}{80} end{gather*} Уравнение касательной: $$ y=-frac{9}{80}(x-4)+frac{41}{20}=-frac{9}{80}x+frac{9}{20}+frac{41}{20}=-frac{9}{80}x+2,5 $$
б) ( f(x)=frac{x^2+5}{3-x}, x_0=2 ) begin{gather*} f(x_0)=frac{2^2+5}{3-2}=frac91=9\ f'(x)=frac{(x^2+5)'(3-x)-(x^2+5)(3-x)’}{(3-x)^2}=frac{2x(3-x)+(x^2+5)}{(3-x)^2}=\ =frac{6x-2x^2+x^2+5}{(3-x)^2}=frac{-x^2+6x+5}{(3-x)^2}\ f'(x_0)=frac{-2^2+6cdot 2+5}{(3-2)^2}=13 end{gather*} Уравнение касательной: $$ y=13(x-2)+9=13x-26+9=13x-17 $$
Пример 3*. Найдите точку, в которой касательная к графику функции (f(x)=frac{x^2+2}{x+3}-x) перпендикулярна прямой (y=11x+3). Напишите уравнение этой касательной.
Угловой коэффициент данной прямой (k_1=11).
Угловой коэффициент перпендикулярной прямой (k_2=-frac{1}{k_1}=-frac{1}{11}) begin{gather*} f'(x)=left(frac{x^2+2}{x+3}right)’-x’=frac{2x(x+3)-(x^2+2)cdot 1}{(x+3)^2}-1=frac{2x^2+6x-x^2-2-(x+3)^2}{(x+3)^2}=\ =frac{x^2+6x-2-x^2-6x-9}{(x+3)^2}=- frac{11}{(x+3)^2} end{gather*} В точке касания: begin{gather*} f'(x_0)=k_2Rightarrow=-frac{11}{(x+3)^2}=-frac{1}{11}Rightarrow (x+3)^2=121Rightarrow (x+3)^2-11^2=0Rightarrow\ Rightarrow (x+14)(x+8)=0Rightarrow left[ begin{array}{l} x=-14\ x=8 end{array} right. end{gather*}
Уравнение касательной при (x_0=-14) begin{gather*} f(x_0)=frac{(-14)^2+2}{-14+3}+14=frac{198}{-11}+14=-18+14=-4\ y=-frac{1}{11}(x+14)-4=-frac{x+58}{11} end{gather*} Уравнение касательной при (x_0=8) begin{gather*} f(x_0)=frac{8^2+2}{8+3}-8=frac{66}{11}-8=-2\ y=-frac{1}{11}(x-8)-2=-frac{x+14}{11} end{gather*}
Ответ: точка касания (-14;-4), уравнение (y=-frac{x+58}{11})
и точка касания (8;-2), уравнение (-frac{x+14}{11})
Пример 4*. Найдите уравнения общих касательных к параболам (y=x^2-5x+6) и (y=x^2+x+1). Укажите точки касания.
Найдем производные функций: begin{gather*} f_1′(x)=2x-5, f_2′(x)=2x+1 end{gather*} Пусть a – абсцисса точки касания для первой параболы, b — для второй.
Запишем уравнения касательных (g_1(x)) и (g_2(x)) через эти переменные. begin{gather*} g_1(x)=f_1′(a)(x-a)+f_1(a)=(2a-5)(x-a)+a^2-5a+6=\ =(2a-5)x-2a^2+5a+a^2-5a+6=(2a-5)x+(6-a^2)\ \ g_2(x)=f_2′(b)(x-b)+f_2(b)=(2b+1)(x-b)+b^2+b+1=\ =(2b+1)x-2b^2-b+b^2+b+1=(2b+1)x+(1-b^2) end{gather*} Для общей касательной должны быть равны угловые коэффициенты и свободные члены. Получаем систему уравнений: begin{gather*} begin{cases} 2a-5=2b+1\ 6-a^2=1-b^2 end{cases} Rightarrow begin{cases} 2(a-b)=6\ a^2-b^2=5 end{cases} Rightarrow begin{cases} a-b=3\ (a-b)(a+b)=5 end{cases} Rightarrow begin{cases} a-b=3\ a+b=frac53 end{cases} Rightarrow \ Rightarrow begin{cases} 2a=3+frac53\ 2b=frac53-3 end{cases} Rightarrow begin{cases} a=frac73\ b=-frac23 end{cases} end{gather*} Находим угловой коэффициент и свободный член из любого из двух уравнений касательных: $$ k=2a-5=2cdotfrac73-5=-frac13, b=6-a^2=6-frac{49}{9}=frac59 $$ Уравнение общей касательной: $$ y=-frac x3+frac59 $$
Точки касания: begin{gather*} a=frac73, f_1(a)=left(frac73right)^2-5cdotfrac73+6=frac{49}{9}-frac{35}{3}+6=frac{49-105+54}{9}=-frac29\ b=-frac23, f_2(b)=left(-frac23right)^2-frac23+1=frac49-frac23+1frac{4-6+9}{9}=frac79 end{gather*}
Ответ: касательная (y=-frac x3+frac59); точки касания (left(frac73;-frac29right)) и (left(-frac23;frac79right))
Пример 5*. Докажите, что кривая (y=x^4+3x^2+2x) не пересекается с прямой (y=2x-1), и найдите расстояние между их ближайшими точками.
Решим уравнение: (x^4+3x^2+2x=2x-1) begin{gather*} x^4+3x^2+1=0Rightarrow D=3^2-4=5Rightarrow x^2=frac{-3pmsqrt{5}}{2} end{gather*} Оба корня отрицательные, а квадрат не может быть отрицательным числом.
Значит, (xinvarnothing) — решений нет, кривая и прямая не пересекаются.
Что и требовалось доказать.
Чтобы найти расстояние, необходимо построить касательную к кривой с тем же угловым коэффициентом (k=2), то и y данной прямой. Тогда искомым расстоянием будет расстояние от точки касания до прямой (y=2x-1).
Строим уравнение касательной. По условию: (f'(x)=4x^3+6x+2=2) begin{gather*} 4x^3+6x=0Rightarrow 2x(2x^2+3)=0Rightarrow left[ begin{array}{l} x=0\ 2x^2+3=0 end{array} right. Rightarrow left[ begin{array}{l} x=0\ x^2=-frac32 end{array} right. Rightarrow left[ begin{array}{l} x=0\ xinvarnothing end{array} right. Rightarrow x=0 end{gather*} Точка касания (x_0=0, y_0=0^4+3cdot 0^2+2cdot 0=0).
Уравнение касательной: (y=2(x-0)+0=2x)
Ищем расстояние между двумя параллельными прямыми: (y=2x) и (y=2x-1). Перпендикуляр из точки (0;0) на прямую (y=2x-1) имеет угловой коэффициент (k=-frac12), его уравнение: (y=-frac12 x+b). Т.к. точка (0;0) принадлежит этому перпендикуляру, он проходит через начало координат и (b=0). |
Уравнение перпендикуляра: (y=-frac x2).
Находим точку пересечения прямой (y=2x-1) и перпендикуляра (y=-frac x2): begin{gather*} 2x-1=-frac x2Rightarrow 2,5x=1Rightarrow x=0,4; y=-frac{0,4}{2}=-0,2 end{gather*} Точка пересечения A(0,4;-0,2).
Находим расстояние (OA=sqrt{0,4^2+(-0,2)^2}=0,2sqrt{2^2+1^2}=frac{sqrt{5}}{5})
Ответ: (frac{sqrt{5}}{5})
Геометрический смысл производной
Если плохо разбираешься в производной, то вот тебе полноценный гид по ней, с текстом, примерами и вебинарами: «Производная функции – геометрический смысл и правила дифференцирования»!
Рассмотрим график какой-то функции ( y=fleft( x right)):
Выберем на линии графика некую точку ( A). Пусть ее абсцисса ( {{x}_{0}}), тогда ордината равна ( fleft( {{x}_{0}} right)).
Затем выберем близкую к точке ( A) точку ( B) с абсциссой ( {{x}_{0}}+Delta x); ее ордината – это ( fleft( {{x}_{0}}+Delta x right)):
Проведем прямую через эти точки. Она называется секущей (прямо как в геометрии).
Обозначим угол наклона прямой к оси ( Ox) как ( alpha ).
Как и в тригонометрии, этот угол отсчитывается от положительного направления оси абсцисс против часовой стрелки.
Какие значения может принимать угол ( alpha )?
Как ни наклоняй эту прямую, все равно одна половина будет торчать вверх. Поэтому максимально возможный угол – ( 180{}^circ ), а минимально возможный – ( 0{}^circ ).
Значит, ( alpha in left[ 0{}^circ ;180{}^circ right)). Угол ( 180{}^circ ) не включается, поскольку положение прямой в этом случае в точности совпадает с ( 0{}^circ ), а логичнее выбирать меньший угол.
Возьмем на рисунке такую точку ( C), чтобы прямая ( AC) была параллельна оси абсцисс, а ( BC) – ординат:
По рисунку видно, что ( AC=Delta x), а ( BC=Delta f).
Тогда отношение приращений:
( frac{Delta f}{Delta x}=frac{BC}{AC}={tg}alpha )
(так как ( angle C=90{}^circ ), то ( triangle ABC) – прямоугольный).
Давай теперь уменьшать ( Delta x).
Тогда точка ( B) будет приближаться к точке ( A). Когда ( Delta x) станет бесконечно малым ( left( Delta xto 0 right)), отношение ( frac{Delta f}{Delta x}) станет равно производной функции в точке ( {{x}_{0}}).
Что же при этом станет с секущей?
Точка ( B) будет бесконечно близка к точке ( A), так что их можно будет считать одной и той же точкой.
Но прямая, имеющая с кривой только одну общую точку – это ни что иное, как касательная (в данном случае это условие выполняется только на небольшом участке – вблизи точки ( A), но этого достаточно).
Говорят, что при этом секущая занимает предельное положение.
Угол наклона секущей к оси ( displaystyle Ox) назовем ( varphi ). Тогда получится, что производная
( {f}’left( {{x}_{0}} right)underset{Delta xto 0}{mathop{=}},frac{Delta f}{Delta x}= {tg}varphi ),
то есть
Производная равна тангенсу угла наклона касательной к графику функции в данной точке
Поскольку касательная – это прямая, давай теперь вспомним уравнение прямой:
( y=kx+b).
За что отвечает коэффициент ( displaystyle k)? За наклон прямой. Он так и называется: угловой коэффициент.
Что это значит? А то, что равен он тангенсу угла между прямой и осью ( displaystyle Ox)!
То есть вот что получается:
( {f}’left( {{x}_{0}} right)= {tg}varphi =k).
Но мы получили это правило, рассматривая возрастающую функцию. А что изменится, если функция будет убывающей?
Посмотрим: Теперь углы ( alpha ) и ( displaystyle varphi ) тупые. А приращение функции ( Delta f) – отрицательное.
Снова рассмотрим ( triangle ABC): ( angle B=180{}^circ -alpha text{ }Rightarrow text{ } {tg}angle B=- {tg}alpha ).
С другой стороны, ( {tg}angle B=frac{AC}{BC}=frac{-Delta f}{Delta x}).
Получаем: ( frac{-Delta f}{Delta x}=- {tg}alpha text{ }Rightarrow text{ }frac{Delta f}{Delta x}= {tg}alpha ), то есть все, как и в прошлый раз.
Снова устремим точку ( displaystyle B) к точке ( displaystyle A), и секущая ( displaystyle AB) примет предельное положение, то есть превратится в касательную к графику функции в точке ( displaystyle A).
Итак, сформулируем окончательно полученное правило:
Производная функции в данной точке равна тангенсу угла наклона касательной к графику функции в этой точке, или (что то же самое) угловому коэффициенту этой касательной:
( {f}’left( {{x}_{0}} right)= {tg}varphi =k)
Это и есть геометрический смысл производной.
Окей, все это интересно, но зачем оно нам? Вот пример:
На рисунке изображен график функции ( displaystyle y=mathsf{f}left( x right)) и касательная к нему в точке с абсциссой ( {{x}_{0}}).
Найдите значение производной функции ( displaystyle mathsf{f}left( x right)) в точке ( {{x}_{0}}).
Решение.
Как мы недавно выяснили, значение производной в точке касания равно угловому коэффициенту касательной, который в свою очередь равен тангенсу угла наклона данной касательной к оси абсцисс:
( displaystyle f’left( x right)=k= {tg}varphi).
Значит, для нахождения значения производной нам нужно найти тангенс угла наклона касательной.
На рисунке у нас отмечено две точки, лежащие на касательной, координаты которых нам известны. Так давай достроим прямоугольный треугольник, проходящий через эти точки, и найдем тангенс угла наклона касательной!
Угол наклона касательной к оси ( displaystyle Ox) – это ( displaystyle angle BAC). Найдем тангенс этого угла:
( displaystyle {tg}angle BAC=frac{BC}{AC}=frac{6}{5}=1,2).
Таким образом, производная функции ( displaystyle mathsf{f}left( x right)) в точке ( {{x}_{0}}) равна ( displaystyle 1,2).
Ответ: ( displaystyle 1,2).
Теперь попробуй сам.
Уравнение касательной к графику функций
А сейчас сосредоточимся на произвольных касательных.
Предположим, у нас есть какая-то функция, например, ( fleft( x right)=left( {{x}^{2}}+2 right)). Мы нарисовали ее график и хотим провести касательную к нему в какой-нибудь точке ( {{x}_{0}}). Например, в точке ( {{x}_{0}}=2).
Берем линейку, пристраиваем ее к графику и чертим:
Что мы знаем об этой прямой? Что самое важное нужно знать о прямой на координатной плоскости?
Поскольку прямая – это изображение линейной функции, очень удобно было бы знать ее уравнение. То есть коэффициенты ( k) и ( b) в уравнении
( y=kx+b).
Но ведь ( k) мы уже знаем! Это угловой коэффициент касательной, который равен производной функции в этой точке:
( k={f}’left( {{x}_{0}} right)).
В нашем примере будет так:
( {f}’left( x right)={{left( {{x}^{2}}+2 right)}^{prime }}=2x;)
( k={f}’left( {{x}_{0}} right)={f}’left( 2 right)=2cdot 2=4.)
Теперь остается найти ( b) . Это проще простого: ведь ( b) – значение ( y) при ( displaystyle x=0).
Графически ( b) – это координата пересечения прямой с осью ординат (ведь ( displaystyle x=0) во всех точках оси ( displaystyle Oy)):
Проведём ( BCparallel Ox) (так, что ( triangle ABC) – прямоугольный).
Тогда ( angle ABC=alpha )(тому самому углу между касательной и осью абсцисс). Чему равны ( displaystyle AC) и ( displaystyle BC)?
По рисунку явно видно, что ( BC={{x}_{0}}), а ( AC=fleft( {{x}_{0}} right)-b). Тогда получаем:
( {f}’left( {{x}_{0}} right)= {tg}alpha =frac{AC}{BC}=frac{fleft( {{x}_{0}} right)-b}{{{x}_{0}}}text{ }Rightarrow text{ }b=fleft( {{x}_{0}} right)-{{x}_{0}}cdot {f}’left( {{x}_{0}} right)).
Соединяем все полученные формулы в уравнение прямой:
( y=kx+b={f}’left( {{x}_{0}} right)cdot x+fleft( {{x}_{0}} right)-{{x}_{0}}cdot {f}’left( {{x}_{0}} right);)
( y={f}’left( {{x}_{0}} right)cdot left( x-{{x}_{0}} right)+fleft( {{x}_{0}} right))
Это и есть уравнение касательной к графику функции ( fleft( x right)) в точке ( {{x}_{0}}).
Пример:
Найди уравнение касательной к графику функции ( fleft( x right)={{x}^{2}}-2x+3) в точке ( {{x}_{0}}=3).
Решение:
На этом примере выработаем простой…
Бонус: Вебинар из нашего курса по подготовке к ЕГЭ по математике
ЕГЭ №7. Производная функции — геометрический смысл, дифференцирование
На этом видео мы вспомним, что такое функция и её график, научимся искать производную некоторых функций, например, такой: y = 2×3 – 3×2 + x + 5.
Мы разберём от А до Я все 7 типов задач, которые могут попасться в задаче №7 из ЕГЭ. Узнаем, на какие 3 фразы в условии задачи нужно обратить особое внимание, чтобы с лёгкостью решить задачу и не потерять баллы на ровном месте.
Разберём все возможные ошибки, которые можно допустить в этих задачах. Мы поймём, что многие из этих задач решаются обычным подсчётом клеточек на графике! Главное – не перепутать, что нужно считать.
P.S. Не забудьте потом посмотреть родственную тему: «Интегралы на ЕГЭ. Первообразные элементарных функций».
Даны функция (y=f(x)) и точка (M(a;f(a))); известно, что существует f′(a).
Уравнение касательной к графику функции (y=f(x)) в точке (M) имеет вид (y=kx+m). Найдём значения коэффициентов (k) и (m).
Известно, что k=f′(a). Для вычисления значения (m) воспользуемся тем, что искомая прямая проходит через точку (M(a;f(a))).
При подстановке координаты точки (M) в уравнение прямой, получим верное равенство (f(a)=ka+m), т. е. (m=f(a)-ka).
Подставим найденные значения коэффициентов (k) и (m) в уравнение прямой:
y=kx+m;y=kx+(f(a)−ka);y=f(a)+k(x−a);y=f(a)+f′(a)(x−a).
Нами получено уравнение касательной к графику функции (y=f(x)) в точке (x=a).
Алгоритм составления уравнения касательной к графику функции (y=f(x))
1. Обозначаем абсциссу точки касания буквой (a).
2. Вычисляем (f(a)).
3. Находим f′(x) и вычисляем f′(a).
4. Подставляем найденные числа (a), (f(a)), f′(a) в формулу y=f(a)+f′(a)(x−a).
Для функции (y=f(x)), имеющей производную в фиксированной точке (x), справедливо приближенное равенство Δy≈f′(x)⋅Δx;
или, подробнее, f(x+Δx)−f(x)≈f′(x)⋅Δx.
В этом приближённом равенстве заменим (x) на (a), вместо x+Δx будем писать (x) и тогда Δx будет равно (x-a). Получим:
f(x)−f(a)≈f′(a)(x−a) илиf(x)≈f(a)+f′(a)(x−a).
Смысл равенства заключается в том, что приближенное значение функции в точке (x) равно значению касательной в этой точке.
Уравнение касательной к графику функции
Чтобы закрепить
предыдущий параграф, рассмотрим задачу
нахождения касательной к графику функции
в данной точке. Это задание встречалось
нам в школе, и оно же встречается в курсе
высшей математики.
Рассмотрим
«демонстрационный» простейший пример.
Составить
уравнение касательной к графику
функции
в
точке с абсциссой
.
Я сразу приведу готовое графическое
решение задачи (на практике этого делать
в большинстве случаев не надо):
Строгое
определение касательной дается с помощью
определения самой производной функции,
и с этим пока повременим. Наверняка
практически всем интуитивно понятно,
что такое касательная. Если объяснять
«на пальцах», то касательная к графику
функции – этопрямая,
которая касается графика функции
в единственной точке.
При этом все близлежащие точки прямой
расположены максимально близко к графику
функции.
Применительно
к нашему случаю: при
касательная
(стандартное
обозначение) касается графика функции
в единственной точке
.
И наша
задача состоит в том, чтобы найти
уравнение прямой
.
Как
составить уравнение касательной в точке
с абсциссой
?
Общая формула
знакома нам еще со школы:
Значение
нам
уже дано в условии.
Теперь
нужно вычислить, чему равна сама
функция в
точке
:
На
следующем этапе находим производную:
Находим
производную в точке (задание, которое
мы недавно рассмотрели):
Подставляем
значения
,
и
в
формулу
:
Таким
образом, уравнение касательной:
Это
«школьный» вид уравнения прямой с
угловым коэффициентом. В высшей математике
уравнение прямой принято записывать в
так называемой общей
форме
,
поэтому перепишем найденное уравнение
касательной в соответствии с традицией:
Очевидно,
что точка
должна
удовлетворять данному уравнению:
–
верное равенство.
Следует
отметить, что такая проверка является
лишь частичной. Если мы неправильно
вычислили производную в точке
,
то выполненная подстановка нам ничем
не поможет.
Рассмотрим еще
два примера.
Пример 5
Составить
уравнение касательной к графику
функции
в
точке с абсциссой
Уравнение
касательной составим по формуле
1)
Вычислим значение функции в точке
:
2)
Найдем производную. Дважды используем
правило дифференцирования сложной
функции:
3)
Вычислим значение производной в
точке
:
4)
Подставим значения
,
и
в
формулу
:
Готово.
Выполним
частичную проверку:
Подставим
точку
в
найденное уравнение:
–
верное равенство.
Пример 6
Составить
уравнение касательной к графику
функции
в
точке с абсциссой
Полное решение и
образец оформления в конце урока.
В задаче на
нахождение уравнения касательной очень
важно ВНИМАТЕЛЬНО и аккуратно выполнить
вычисления, привести уравнение прямой
к общему виду.
Дифференциал функции одной переменной
Коль скоро я не
объяснил (на данный момент), что такое
производная функции, то не имеет смысла
объяснять, и что такое дифференциал
функции. В самой примитивной формулировке
дифференциал – это «почти то же самое,
что и производная».
Производная
функции чаще всего обозначается через
.
Дифференциал
функции стандартно обозначается
через
(так
и читается – «дэ игрек»)
Дифференциал
функции одной переменной записывается
в следующем виде:
Другой
вариант записи:
Простейшая
задача: Найти дифференциал функции
1) Первый этап.
Найдем производную:
2) Второй этап.
Запишем дифференциал:
Готово.
Дифференциал
функции одной или нескольких переменных
чаще всего используют дляприближенных
вычислений.
Помимо других
задач с дифференциалом время от времени
встречается и «чистое» задание на
нахождение дифференциала функции. Кроме
того, как и для производной, для
дифференциала существует понятие
дифференциала в точке. И такие примеры
мы тоже рассмотрим.
Пример 7
Найти
дифференциал функции
Перед
тем, как находить производную или
дифференциал, всегда целесообразно
посмотреть, а нельзя ли как-нибудь
упростить функцию (или запись функции)
ещё додифференцирования?
Смотрим на наш пример. Во-первых, можно
преобразовать корень:
(корень
пятой степени относится именно к синусу).
Во-вторых, замечаем,
что под синусом у нас дробь, которую,
очевидно, предстоит дифференцировать.
Формула дифференцирования дроби очень
громоздка. Нельзя ли избавиться от
дроби? В данном случае – можно, почленно
разделим числитель на знаменатель:
Функция
сложная. В ней два вложения: под степень
вложен синус, а под синус вложено
выражение
.
Найдем производную, используя правило
дифференцирования сложной функции
два
раза:
Запишем
дифференциал, при этом снова представим
в
первоначальном «красивом» виде:
Готово.
Когда
производная представляет собой дробь,
значок
обычно
«прилепляют» в самом конце числителя
(можно и справа на уровне дробной черты).
Пример 8
Найти
дифференциал функции
Это пример для
самостоятельного решения.
Следующие два
примера на нахождение дифференциала в
точке.
Пример 9
Вычислить
дифференциал функции
в
точке
Найдем
производную:
Опять, производная
вроде бы найдена. Но в эту бодягу еще
предстоит подставлять число, поэтому
результат максимально упрощаем:
Труды
были не напрасны, записываем дифференциал:
Теперь
вычислим дифференциал в точке
:
В
значок дифференциала
единицу
подставлять не нужно, он немного из
другой оперы.
Ну и
хорошим тоном в математике считается
устранение иррациональности в знаменателе.
Для этого домножим числитель и знаменатель
на
.
Окончательно:
Пример 10
Вычислить
дифференциал функции
в
точке
.
В ходе решения производную максимально
упростить.
Это пример для
самостоятельного решения. Примерный
образец оформления и ответ в конце
урока.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
08.02.20157.31 Mб91.rtf
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
На чтение 3 мин. Просмотров 16.7k.
Выведем уравнение касательной к графику функции y=f (x) в точке с абсциссой х0. Для наглядности используем график из предыдущего урока 10.3. («Определение производной. Геометрический смысл производной») и выведем уравнение касательной МТ.
Так как точку М мы взяли произвольно, то должны получить уравнение касательной, которое будет справедливо для любой функции y=f (x), имеющей касательную в определенной точке с абсциссой х0.
Итак, любую прямую можно записать в виде y=kx+b, где k — угловой коэффициент прямой. Мы теперь знаем, что в качестве углового коэффициента можно взять f ‘(х0) — значение производной функции y=f (x) в точке с абсциссой х0. Эта точка является общей точкой для функции и для касательной МТ.
Таким образом, касательная МТ имеет вид: y=f ‘(х0)·x+b. Осталось определить значение b. Это мы сделаем просто: подставим координаты точки М в последнее равенство, т.е. вместо х запишем х0, а вместо у подставим f (х0). Получаем равенство:
f (х0) =f ‘(х0)·х0+b.
Отсюда b=f (х0) — f ‘(х0)·х0. Подставляем это значение b в равенство: y=f ‘(х0)·x+b. Тогда:
y =f ‘(х0)·х+f (х0) — f ‘(х0)·х0. Упростим.
y=f (х0)+(f ‘(х0)·х — f ‘(х0)·х0) или
y=f (х0)+f ‘(х0)(х — х0). Это и есть искомое уравнение касательной МТ.
Смотрите видео 10.3.1. Уравнение касательной.
Выполнить следующие задания
1. Написать уравнение касательной к графику функции y=x2 в точке x0=3. Сделать чертеж.
Решение.
Запишем уравнение касательной к графику функции y=f (x) в точке с абсциссой x0 в общем виде:
y=f (x0) +f ‘(x0)(x-x0).
Находим значение данной функции в точке с данной абсциссой:
f (x0)=f (3)=32=9.
Находим производную f ‘(x)=(x2)’=2x и находим значение этой производной при х=3.
Тогда f ‘(x0)=f ‘(3)=2·3=6.
Подставим найденные значения
f (x0)=9 и f ‘(x0)=6 в уравнение касательной, получим:
y=9+6·(x-3);
y=9+6x-18;
y=6x-9 — искомое уравнение касательной.
Ответ: y=6x-9.
2. Написать уравнение касательной к графику функции
Решение.
Записываем общее уравнение касательной: y=f (x0) +f ‘(x0)(x-x0). Находим значение данной функции в точке х=1, получаем:
f (x0)=f (1) = 1. Найдем производную данной функции по формуле производной степени:
f ‘(x)=(x-2)=-2x-2-1=-2x-3.
Находим значение этой производной при х=1.
f ‘(x0)=f (1)=-2·(1)-3 =-2. Подставляем найденные значения в общее уравнение касательной:
y=1—2(x-1);
y=1-2x+2;
y=-2x+3 — искомое уравнение касательной.
Ответ: y=-2x+3.
( 4 оценки, среднее 5 из 5 )