Гибридологический метод
Грегор Мендель
Создателем современной генетики считается австрийский биолог, ботаник и монах Грегор Мендель. Свои исследования Г. Мендель проводил на горохе. Ученый использовал гибридологический метод. Вы, наверное, сталкивались с понятием «гибрид», его часто указывают на упаковках семян. Гибрид – потомство, полученное в результате скрещивания особей, отличных по одному или нескольким признакам. На рынке можно встретить инжирный персик, а в животноводстве – мула (гибрид лошади и осла). Самцы мула стерильны и потомства не приносят.
Вернемся к Грегору Менделю и гороху. Как говорилось ранее, он использовал в своих опытах горох, но не любой, а только чистые линии – группы организмов, имеющих некоторые признаки, которые полностью передаются потомству в силу генетической однородности всех особей. В качестве такого признака был выбран цвет горошин: одна линия была только зеленая во всех поколениях, а друга – желтая.
Таким образом Мендель скрещивал разные родительские особи гороха и далее подсчитывал результаты по некоторым признакам: количество гороха с желтой/зеленой кожурой, гладкие горошины и морщинистые, карликовое растение/нормальное/высокое и так далее. Ученый использовал 22 чистых линии и около 10.000 растений бобового.
Моногибридное скрещивание
Такое скрещивание было выбрано первым для опытов. Моногибридное скрещивание – скрещивание особей, отличающихся друг от друга лишь одним признаком. Ген, в котором заключена информация об этом одном из признаков называется аллельным геном или аллелью.
В зависимости от комбинации генов в паре, организм может быть гомозиготным или гетерозиготным. В первом случае оба гена несут одну разновидность признака, во втором – две разные. Гомозиготами будут являться горох, оба аллели которого несут окраску только желтого или только зеленого цвета. Гетерозиготами – те, у которых один ген несет желтый цвет, а другой – зеленый.
Скрещивание гомозигот
Есть доминантные и рецессивные гены. Первые преобладают, вторые – подавляются. Посмотрим на схему моногибридного скрещивания выше и разберемся в некоторых правилах записи.
Здесь мы видим 2 признака: цвет и текстуру кожуры. Разные типы признаков обозначаются разными буквами. Например, желтый – А, зеленый – В. Доминантные признаки записываются заглавными буквами, а рецессивные – строчными. Один ген аллели – одна буква.
Исходя из этого, монозиготы могут быть либо аа (рецессивная гомозигота), либо АА (доминантная монозигота).
Запись начинается с родителей, в задачах пишется «Р:» и перечисляются предки. Между ними ставится знак скрещивания «х».
Следующей строкой идут гаметы, обозначаются «G:» и перечисляются гаметы каждого из родителей.
Затем пишется потомство. Если это первое поколение, то «F1», если дальше, то цифра соответствует очередности. Здесь должны быть все версии потомков. Так как при скрещивании монозигот у нас были только гаметы А и а, то вариант всего один: Аа. Это гетерозигота. Так как по условию желтый цвет доминирует над зеленым, то горошины будут желтыми.
Законы Менделя
В результате такого скрещивания Мендель открыл закон единообразия гибридов первого поколения. Он гласит: при скрещивании двух гомозиготных организмов, отличающихся друг от друга только по одному признаку, все гибриды первого поколения будут иметь признак одного из родителей, и поколение по этому признаку будет единообразно.
Далее Мендель продолжил изучать потомство гороха, теперь он скрестил то самое единообразное поколение.
Скрещивание гетерозигот
Так Мендель вывел закон расщепления. Из него следует, что при скрещивании потомков первого поколения, во втором снова появляются особи с рецессивным признаком, эти особи составляют 1: 4 часть от всего числа потомков второго поколения.
Фенотип – внешнее проявление признака.
Исходя из этого же скрещивания, Мендель вывел еще один закон. Закон чистоты гамет: при образовании гамет в каждую пару попадает только один из двух «элементов наследственности», отвечающих за данный признак. На эту мысль его натолкнуло именно появление одной части зеленых горошин. Мендель сделал выводы о том, что гены из пары не пропадают бесследно, а передаются в следующее поколение.
Ранее мы говорили о том, что доминирующий признак подавляет рецессивный. Если у гороха генотип Аа, где доминирующий цвет желтый, то горошины будут этого цвета. Однако, все не всегда так однозначно.
Если скрестить пурпурные и белые цветы ночной красавицы, то гетерозиготное потомство приобретет отличный от родителей цвет: розовый. По закону неполного доминирования при скрещивании доминантной и рецессивной гомозигот, все особи в потомстве проявят либо признаки родителей, либо промежуточный признак.
Неполное доминирование
Если скрещиваются организмы, отличающиеся друг от друга не по одному признаку (моногибридное), а по двум, то скрещивание называется дигибридным.
Для своих опытов в этом направлении Мендель взял горох двух цветов и двух фактур.
Независимое наследование признаков
Родители были доминантной и рецессивной гомозиготами. В первом поколении горошины желтые и гладкие, гетерозиготы. Так как при скрещивании двух гетерозигот по обоим признакам от каждого родителя по 4 варианта гамет, то удобно воспользоваться решеткой Пеннета. Для этого гаметы одного родителя записывают по горизонтали, а второго – по вертикали. Затем на пересечениях заполняются ячейки решетки.
Если пересчитать количество потомков каждого фенотипа, то получится следующее:
9 шт. – желтый гладкий
3 шт. – желтый морщинистый
3 шт. – зеленый гладкий
1 шт. – зеленый морщинистый
Так Мендель пришел к закону независимого наследования признаков, из которого следует, что при дигибридном скрещивании гены и признаки, за которые отвечают эти гены, наследуются независимо друг от друга.
Задание ollbio09101120172018в2
У одного из представителей семейства Колокольчиковые (Campanulaceae) – платикодона
крупноцветкового (Platycodon grandiflorum) пентамерные цветки, состоящие из круга чашелистиков,
круга лепестков, круга тычинок и круга плодолистиков (см. рис.). Иногда среди платикодонов можно найти
махровые цветки, у которых на месте тычинок развиваются лепестки.
А. Нарисуйте диаграмму махрового цветка платикодона. На диаграмме обозначьте части цветка.
Предложите для него формулу.
Б. Предположим, что в природной популяции
платикодона крупноцветкового возникла форма
с махровыми цветками (по остальным признакам
форма не отличается от нормы). Образование
махровых цветков определяется одной рецессивной
мутацией. Ученые пересадили из природы на
экспериментальный участок два мутантных и одно
нормальное растение. Считая, что при опылении
пыльца всех особей смешивается, пыльца из
природных популяций не попадает на участок, и
при этом возможно самоопыление, рассчитайте,
каким может быть расщепление в потомстве первого
поколения по генотипам и фенотипам.
В. Далее среди потомков первого поколения выбрали только те растения, у которых цветки нормальные,
а остальные убрали с участка до опыления. С оставленных растений собрали семена и посеяли. Каким
может оказаться расщепление среди потомков второго поколения по генотипу и фенотипу?
А. Опираясь на рисунок, мы видим, что чашелистики изображены свободными, тогда как все лепестки
срослись. Пять тычинок свободные, а плодолистиков три, и они также срослись. (У Колокольчиковых
завязь нижняя, но это не принципиально для дальнейшего решения.) Можно предложить следующую
формулу для типичного цветка в сем. Колокольчиковые: * Ч5 Л(5) Т5 П(—3) или * Ca5 Co(5) A5 G(—3) . Поскольку у махровых форм происходит замена тычинок на лепестки, в формуле вместо тычинок нужно указать дополнительный круг лепестков: * Ч5 Л(5)+(5) П(—3) или * Ca5 Co(5)+(5) G(—3) .
При построении диаграммы должны выполняться следующие принципы:
1. Органы в круге располагаются друг относительно друга под углом 360 : 5 = 72 градуса.
2. В двух соседних кругах органы должны чередоваться, т.е. положение медианы каждого
органа должно приходиться строго на промежуток между органами предыдущего круга. Для
пентамерного цветка между органами в соседних кругах угол должен составлять 36 градусов. На
рисунке видно, что плодолистики (поскольку из три) не могут правильно чередоваться с пятью
тычинками.
3. Если рассматривать органы через круг, то их медианы должны находиться друг напротив друга
(органы противолежат).
4. Центром цветка считается центр завязи. Поэтому при проверке расположения органов в цветке все
линии будут проводиться через центр завязи и центральную (медианную) жилку органа.
5. На рисунке показан цветок с центрально-угловой плацентацией (гинецей синкарпный). Между
гнездами завязи находятся перегородки (септы). Для плодолистика медианой считается линия, делящая угол между септами ровно пополам.
Б. Обозначим ген, отвечающий за проявление махровости как А. Поскольку мы знаем, что махровость цветков определяется рецессивной мутацией по этому гену, генотип махровых растений может быть только аа. Взятое из природы нормальное растение могло оказаться как гомозиготой АА, так и носителем рецессивного аллеля Аа. Поэтому возможно два варианта расщепления среди потомков.
Из природы были взяты два махровых и одно немахровое растение, и по семенной продуктивности все три растения одинаковы, следовательно, 2/3 семян будет собрано с махровых, и 1/3 – с немахровых растений. Однако пыльцу может образовать только растение с немахровыми цветками.
Вариант 1. Немахровое растение – гомозигота АА.
Тогда среди потомков в данном скрещивании должно оказаться:
1/3 (≈33.3%) АА 2/3 (≈66.7%)
Аа или 1 АА : 2 Аа
По фенотипу все потомки окажутся немахровыми.
Вариант 2. Немахровое растение – гетерозигота Аа.
Среди женских гамет соотношение вклад каждого из растений останется прежним, т.е. 2/3 от
всех аллелей а придут от махровых растений. Среди оставшихся 1/3 женских гамет 1/6 будет нести
аллель а, и еще 1/6 – аллель А. Таким образом, соотношение среди женских гамет будет 5/6 а и 1/6 А.
Среди мужских гамет 1/2 будет нести аллель А, и еще 1/2 – аллель а.
Таким образом, среди потомков первого поколения возможно следующее расщепление по
генотипам: 1/12 АА (≈8.3%) 6/12=1/2 Аа (50.0%) 5/12 аа (≈41.7%)
1 АА : 6 Аа : 5 аа
По фенотипам: 7/12 (≈50.3%) немахровых 5/12 (≈41.7%) махровых
7 немахровых : 5 махровых
В. В первом варианте скрещивания махровых растений не окажется. Рассчитаем доли потомков
по генотипам и фенотипам во втором поколении.
1/3 (≈33.3%) АА дадут только гаметы А, тогда как 2/3 растений с генотипом Аа дадут половину
гамет А и вторую половину гамет а. Таким образом, суммарно гамет А в популяции окажется 2/3,
и 1/3 гамет, несущих аллель а.
Таким образом, среди потомков второго поколения возможно следующее расщепление по
генотипам: 4/9 АА (≈44.4%) 4/9 Аа (44.4%) 1/9 аа (≈11.1%)
4 АА : 4 Аа : 1 аа
По фенотипам: 8/9 (≈88.9%) немахровых 1/9 (≈11.1%) махровых
8 немахровых : 1 махровых.
Во втором случае (из природы было взято гетерозиготное немахровое растение) после того,
как мы удалим все махровые растения, останется 1/7 АА (≈14.3%) и 6/7 Аа (≈85.7%). Последние
дадут половину гамет А (3/7) и половину гамет а (3/7). Суммарная доля гамет А составит 4/7. Тогда:
Во втором случае расщепление среди потомков второго поколения будет:
по генотипам:
16/49 АА (≈32.6%) 24/49 Аа (≈49.0%) 9/49 аа (≈18.4%)
25 АА : 30 Аа : 9 аа
По фенотипам: 40/49 (≈81.6%) немахровых 9/49 (≈18.4%) махровых
40 немахровых : 9 махровых.
pазбирался: Надежда | обсудить разбор
Задание ollbio02101120172018в2
Грегор Мендель исследовал признаки формы семян у гороха, и выяснил, что
гладкая форма доминирует над морщинистой. В этом случае различие вызвано тем, что:
А. У морщинистых семян замедлен процесс образования крахмала, а у гладких – нет;
Б. У морщинистых семян при созревании разрушается хлорофилл, а у гладких не разрушается;
В. Семенная кожура у морщинистых семян слишком плотная, она не расправляется по мере развития зародыша;
Г. У морщинистых семян накапливается слишком много воды, и они сморщиваются при созревании;
Д. В морщинистых семенах при созревании часть белков разрушается, а в гладких – нет.
Ответ: А
pазбирался: Надежда | обсудить разбор
Задание EB2821
При скрещивании высокого растения томата с шероховатым эндоспермом и низкого растения с гладким эндоспермом всё потомство получилось высокое с гладким эндоспермом. В анализирующем скрещивании гибридного потомства получилось четыре разные фенотипические группы: 123, 124, 26, 27. Составьте схемы скрещиваний. Определите генотипы родительских особей, генотипы и фенотипы потомства каждой группы в двух скрещиваниях, численность каждой группы во втором скрещивании. Объясните формирование четырёх фенотипических групп в анализирующем скрещивании.
- Разберемся, какие признаки доминантные, какие рецессивные. Высокое скрестили с низким, все потомство получилось высоким. Значит, высокий – доминантный, низкий – рецессивный. Шероховатый скрестили с гладким, все получилось гладким. Значит, шероховатый – рецессивный, гладкий – доминантный. Можем составить табличку «ген – признак»:
Ген | Признак |
А
а |
Высокий стебель
Низкий стебель |
В
в |
Гладкий эндосперм
Шероховатый эндосперм |
- Определим генотипы родительских особей. Высокое растение может быть либо АА, либо Аа. Низкое – только аа. Так как в результате скрещивания получились потомки только высокие, значит, родительская особь с высоким стеблем была АА (иначе были бы и низкорослые растения аа). Аналогичная ситуация с гладкостью/шероховатостью. Один родитель будет рецессивная гомозигота по этому признаку, а второй – доминантная.
- P1: ♀ААвв х ♂ааВВ
G1: Ав ; аВ
F1: АаВв
- Определим фенотип потомства:
АаВв – Высокий, гладкий эндосперм.
- Теперь скрещивание №2. Анализирующее, значит, с рецессивной гомозиготой.
P2: ♀ АаВв х ♂аавв
G2: АВ, Ав, аВ, ав ; ав
F2: АаВв, Аавв, ааВв, аавв
- Определим фенотипы потомства №2:
АаВв – Высокий, гладкий эндосперм.
Аавв – Высокий, шероховатый эндосперм.
ааВв – Низкий, гладкий эндосперм.
аавв – Низкий, шероховатый эндосперм.
- Теперь нужно понять, в какой группе больше особей, а в какой меньше. Это можно сделать, зная, какие гаметы кроссоверные, а какие – нет. Для этого выпишем схемы скрещиваний в хромосомном виде (в решении можно сразу написать именно в нем, это допустимо, наглядно, а в данной задаче – необходимо).
Томас Морган установил, что при неполном сцеплении гетерозигота дает 4 типа гамет (см. схему второго скрещивания), но с разной вероятностью:
- некроссоверных гамет – 90%
- кроссоверных гамет – 10%
Некроссоверные:
Аавв – Высокий, шероховатый эндосперм.
ааВв – Низкий, гладкий эндосперм.
Кроссоверные:
аавв – Низкий, шероховатый эндосперм.
АаВв – Высокий, гладкий эндосперм.
- Делаем вывод о количестве:
Аавв – Высокий, шероховатый эндосперм – 123 или 124.
ааВв – Низкий, гладкий эндосперм – 123 или 124.
аавв – Низкий, шероховатый эндосперм – 26 или 27.
АаВв – Высокий, гладкий эндосперм – 26 или 27.
- Ответ на теоретический вопрос:
При анализирующем скрещивании образуется 4 типа генотипов и фенотипов в результате кроссинговера.
Ответ: пункты 4 и 6 (или схема из п. 8), пункты 9 и 10.
pазбирался: Ксения Алексеевна | обсудить разбор
Задание EB0621
Определите соотношение фенотипов потомков в анализирующем скрещивании дигетерозиготной самки мухи дрозофилы при независимом наследовании генов. Ответ запишите в виде последовательности цифр, показывающих соотношение получившихся фенотипов
Дигетерозиготная – значит, мы имеем дело с двумя признаками, каждый из которых имеет доминантный и рецессивный аллель.
Анализирующее скрещивание – скрещивание с особью с рецессивными аллелями генов.
Независимое наследование – значит, доминирование абсолютное, промежуточного признака нет. То есть, проявляется доминантный признак и при доминантной гомозиготе, и при гетерозиготе.
Р: АаВв х аавв
G: АВ, Ав, аВ, ав ; ав
F: АаВв, Аавв, ааВв, аавв
Выпишем фенотипы:
АаВв – проявляются оба доминантных признака.
Аавв – проявляется доминантный признак, обозначенный буквой «А» и рецессивный признак, обозначенный буквой «В».
ааВв – проявляется доминантный признак, обозначенный буквой «В» и рецессивный признак, обозначенный буквой «А».
аавв – проявляются оба рецессивных признака.
Следовательно, все 4 варианта фенотипов потомков различаются.
Ответ: 1111
pазбирался: Ксения Алексеевна | обсудить разбор
Задание EB2818D
По изображённой на рисунке родословной установите характер проявления признака (доминантный или рецессивный, сцеплен или не сцеплен с полом). Ответ обоснуйте. Определите генотипы родителей (1, 2), генотипы детей в первом (3, 4, 5) и во втором поколениях (6, 7). Какова вероятность рождения ребёнка с признаком, выделенным на рисунке чёрным цветом, у мужчины 5, если будущая жена будет иметь данный признак?
Начнем с очевидного: признак с полом не сцеплен, так как мы видим на схеме и черные квадраты, и черные круги (то есть и мужчин с проявлением этого признака, и женщин с проявлением этого признака)
Признак проявляется в каждом поколении, значит, он доминантный.
Раз признак доминантный, то генотип женщины (1) аа, ведь признак у нее не проявляется.
(1) – аа
Теперь мужчина (2): раз у детей пары (1) и (2) есть те, у кого признак не проявляется, то мужчина (2) – гетерозигота. В противном случае, так как у него признак проявляется, он должен был быть доминантной гомозиготой. Тогда все его дети были бы с этим признаком.
(2)– Аа
Женщина (3) имеет проявление признака, ее муж – не имеет, но не у всех детей признак проявляется. Значит, муж –рецессивная гомозигота, а жена – гетерозигота
(3) – Аа
Женщина (4) и мужчина (5) – рецессивные гомозиготы, так как признаки у них не проявляются.
(4) – аа
(5) – аа
Женщина (6) и ее муж –гетерозиготы, так как у обоих признак проявляется, но у их ребенка признак не проявляется.
(6) – Аа
Мужчина (7) – рецессивная гомозигота, так как признак у него не проявляется.
(7) – аа
Какова вероятность рождения ребёнка с признаком, выделенным на рисунке чёрным цветом, у мужчины 5, если будущая жена будет иметь данный признак?
Жена может иметь данный признак в двух случаях.
Первый: генотип жены Аа.
P: ♀Аа х ♂аа
G: А а ; а
F: Аа, аа
Аа – проявление признака.
Аа – нет проявления признака.
Вероятность 50%.
Второй случай: генотип жены АА.
P: ♀АА х ♂аа
G: А ; а
F: Аа
Аа – проявление признака.
Вероятность 100%.
Конечный ответ:
1) Признак доминантный (окрашенный символ), с полом не сцеплен (т.к встречается у большего числа особей, независимо от их пола)
2) генотипы: 1 – аа, 2 – Аа, 3 – Аа, 4 – аа, 5 – аа, 6 – Аа, 7 – аа
3) Если генотип жены будет АА, то вероятность рождения ребенка с этим признаком составит 100%, а если генотип будет Аа, то 50%
Ответ: см. «конечный ответ»
pазбирался: Ксения Алексеевна | обсудить разбор
Задание EB0718D
Все приведённые ниже характеристики, кроме двух, используют для описания рецессивного гена дальтонизма, сцепленного с Х-хромосомой. Определите две характеристики, «выпадающие» из общего списка, и запишите в таблицу цифры, под которыми они указаны
- находится в аутосоме
- проявляется у гетерогаметных особей
- определяет способность различать цвета
- подавляется доминантным аллелем
- передаётся от отца к сыну
Дальтонизм – разновидность нарушения восприятия цветов, обусловленная генетическим отклонением. Ген дальтонизма является рецессивным и сцепленным с полом, он находится в Х-хромосоме. Так как мужской пол имеет набор половые хромосом ХУ, то в случае, если Х-хромосома несет рецессивный аллель по признаку дальтонизма, то человек будет иметь это нарушение. Так как у женщин набор ХХ, то вероятность иметь оба рецессивных аллеля ниже, чем один у мужчин, поэтому женщины имеют дальтонизм существенно реже, чем мужчины. Однако, они могут быть носителями этого гена.
Являются «выпадающими» варианты 1 и 5.
Ген дальтонизма находится не в аутосоме, а в половой клетке.
Передаются от матери к сыну:
Допустим, мать здорова, но носитель, отец здоров
F: ♀ХHХh х ♂ХHУ
G: ХH Хh ; ХH У
Нас интересуют только сыновья: ХHУ, ХhУ. Они получат Х-хромосому от матери, а У-хромосому от отца. Ген дальтонизма находится в Х-хромосоме, поэтому 5) вариант ошибочный.
Ответ: 15
pазбирался: Ксения Алексеевна | обсудить разбор
Задание EB0618D
Определите вероятность (%) получения потомков с доминантным проявлением признака в моногибридном скрещивании гетерозиготных гибридов между собой при полном доминировании этого признака. Ответ запишите в виде числа.
Разбираемся в условии.
«Моногибридное скрещивание» – один признак. «Гетерозиготы» имеют набор Аа. «Полное доминирование» – значит, нет среднего фенотипического проявления признака.
P: Аа х Аа
G: А а ; А а
F: АА, Аа, Аа, аа
Выпишем фенотипы:
АА – проявится доминантный признак.
2 Аа – проявится доминантный признак.
аа – проявится рецессивный признак.
Значит, в 3 из 4 случаев проявится доминантный признак, это ¾ = 75%.
Ответ: 75
pазбирался: Ксения Алексеевна | обсудить разбор
Задание EB2819t
При скрещивании черного дракона с белым селекционеры получили пять серых драконов. Кода серого дракона скрестили с черным, получили шесть драконов, половина из которых была черные, а половина серых. Определите генотипы родителей и потомков. Назовите тип взаимодействия аллелей.
Раз первое поколение драконов серого цвета, а родители черный и белый драконы, то произошло неполное доминирование. Генотип серых драконов – гетерозигота Аа, которую можно получить либо при скрещивании гетерозигот (Аа х Аа), либо при скрещивании Доминантной и рецессивной гомозигот (АА х аа). Нам подходит вариант со скрещиванием гомозигот, т.к при скрещивании гетерозигот потомство не было бы единообразным (серым).
Запишем первую часть решения:
Р1: ♀АА х ♂аа
G1: А ; а
F1: Аа
Аа – серый цвет дракона.
Теперь скрещивание серого дракона с черным.
Р2: ♀Аа х ♂АА
G2: А а; А
F2: АА, Аа
АА – черный цвет дракона.
Аа – серый цвет дракона.
Ответ: см. решение
pазбирался: Ксения Алексеевна | обсудить разбор
Задание ЕВ0619D
Сколько фенотипов проявится у гибридов при скрещивании дигетерозиготного растения гороха с гомозиготным по рецессивным признакам растением, если признаки наследуются независимо друг от друга, а доминирование полное? В ответе запишите только соответствующее число
Дигетерозиготный – 2 признака, притом есть и доминантный и рецессивный аллели, то есть АаВв
Гомозиготный по рецессивным признакам – только рецессивные аллели, то есть аавв
Запишем решение в виде задачи.
Скрещиваемые особи:
Р: АаВв х аавв
Выписываем гаметы:
G: АВ Ав аВ ав; ав
Определяем генотипы потомства:
F1: АаВв; Аавв; ааВв; аавв
Определим фенотипы потомства:
АаВв – проявятся оба доминантных признака.
Аавв – проявится первый доминантный признак и второй рецессивный признак.
ааВв – проявится первый рецессивный признак и второй доминантный признак.
аавв – проявятся оба рецессивных признака.
Следовательно, 4 фенотипа
Ответ: 4
pазбирался: Ксения Алексеевна | обсудить разбор
Задание EB2819D
У дрозофилы гетерогаметным полом является мужской пол.
При скрещивании самки дрозофилы с нормальными крыльями, красными глазами и самца с растопыренными крыльями, белыми глазами всё гибридное потомство было единообразным по форме крыльев и окраске глаз.
При скрещивании самки дрозофилы с растопыренными крыльями, белыми глазами и самца с нормальными крыльями, красными глазами в потомстве получились самки с нормальными крыльями, красными глазами и самцы с нормальными крыльями, белыми глазами.
Составьте схемы скрещиваний. Определите генотипы родительских особей, генотипы и фенотипы, пол потомства в двух скрещиваниях. Объясните фенотипическое расщепление во втором скрещивании.
- Начнем с того, что разберемся какой из двух признаков (форма крыльев и цвет глаз) сцеплен с полом, а какой аутосомный. Смотрим второй абзац условия задачи: при скрещивании самца и самки с различающимися обоими признаками, потомство получилось с одинаковыми крыльями. Значит, этот признак с полом не сцеплен. Значит, он аутосомный.
Форма крыльев – аутосомный признак.
Цвет глаз – сцепленный с полом признак.
- Читаем первый абзац: потомство единообразно. Значит, скрестили доминантную и рецессивную гомозиготы.
- Возвращаемся ко второму абзацу: все потомки с нормальными крыльями (при скрещивании особей с растопыренными и нормальными крыльями), значит, нормальные крылья – доминантный признак.
- Цвет глаз сцеплен с Х-хромосомой, иначе признак бы проявлялся бы только у самцов. Теперь определимся с тем, какой цвет доминантный, а какой рецессивный.
Самец и самка, про которых идет речь в первом абзаце, имеют разный цвет глаз. Самец гетерогаметен. Исходя из пункта 2) нашего решения, мы знаем, что скрещиваются гомозиготы, доминантная и рецессивная.
Если у самки будут рецессивные признаки, а у самца доминантный:
P: ХаХа * ХАУ
G: Ха ; ХА У
F: ХА Ха ; Ха У
Потомство не единообразно по признаку цвета глаз. А это противоречит условию. Значит, самка имеет доминантный признак.
Ген | Признак |
В | Нормальные крылья |
в | Растопыренные крылья |
ХА | Красные глаза |
Ха | Белые глаза |
- Составим первого скрещивания:
«При скрещивании самки дрозофилы с нормальными крыльями, красными глазами и самца с растопыренными крыльями, белыми глазами…»
P1: ♀ ВВХАХА * ♂ bbХаУ
G1: ВХА ; bХа BУ
F1: ♀ BbХАХа ; ♂ ВВХАУ
Определим фенотипы потомства:
♀ BbХАХа – нормальные крылья, красные глаза.
♂ ВВХАУ – нормальные крылья, красные глаза.
Потомство единообразно, соответствует условию.
- Составим второго скрещивания:
«При скрещивании самки дрозофилы с растопыренными крыльями, белыми глазами и самца с нормальными крыльями, красными глазами…»
P2: ♀ bbХаХа * ♂ ВВХАУ
G2: bХа ; ВХА BУ
F2: ♀ BbХАХа ; ♂ ВbХаУ
Определим фенотипы потомства:
♀ BbХАХа – нормальные крылья, красные глаза.
♂ ВbХаУ – нормальные крылья, белые глаза.
Сравниваем с условием: «… в потомстве получились самки с нормальными крыльями, красными глазами и самцы с нормальными крыльями, белыми глазами.». Все совпало.
- Вопрос: «Объясните фенотипическое расщепление во втором скрещивании.»
Ответ: Между первым и вторым признаками независимое наследование; по признаку окраски глаз сцеплен с Х-хромосомой.
Ответ: В бланк выписываем таблицу «ген-признак», схемы скрещиваний из пунктов 5) и 6) и ответ на теоретический вопрос из пункта 7).
pазбирался: Ксения Алексеевна | обсудить разбор
Задание EB2820D
Группа крови (I) и резус-фактор (R) – аутосомные несцепленные признаки. Группа крови контролируется тремя аллелями одного гена: i0, IA, IB. В браке женщины с первой группой крови, положительным резус-фактором и мужчины с третьей группой крови, положительным резус-фактором родился ребёнок с отрицательным резус-фактором. Составьте схему решения задачи. Определите генотипы родителей, возможные генотипы и фенотипы потомства. Какова вероятность рождения в этой семье ребёнка с отрицательным резус-фактором?
А) Разберем условие задачи.
- Женщина с первой группой крови: i0i0, это однозначно. Положительный резус-фактор: либо RR, либо Rr.
- Мужчина с третьей группой крови: либо IBIB, либо IBi0. Положительный резус-фактор: либо RR, либо Rr.
- Ребенок с отрицательным резус-фактором: rr. Это значит, что родители – гетерозиготы по признаку резус-фактора (Rr).
Выходит, что по условию у нас может быть 2 варианта генотипа отца по признаку группы крови (либо IBIB, либо IBi0).
Запишем все в виде задачи, использую первый вариант генотипа отца:
Б) Р: ♀ i0i0 Rr х ♂ IBIB Rr
G: i0R i0r ; IBR IBr
F1: IBi0RR; IBi0Rr; IBi0Rr; IBi0rr
Фенотипы:
IBi0RR – третья группа крови, резус-фактор положительный.
IBi0Rr – третья группа крови, резус-фактор положительный.
IBi0Rr – третья группа крови, резус-фактор положительный.
IBi0rr – третья группа крови, резус-фактор отрицательный.
Вероятность рождения ребенка с отрицательным резус-фактором ¼, 25%.
Запишем все в виде задачи, использую второй вариант генотипа отца:
В) Р: ♀ i0i0 Rr х ♂ IB i0 Rr
G: i0R i0r ; IBR IBr i0R i0r
F1: IBi0RR; IBi0Rr; IBi0Rr; IBi0rr; i0i0RR; i0i0Rr; 0i0Rr; 0i0rr
Фенотипы:
IBi0RR – третья группа крови, резус-фактор положительный.
2 IBi0Rr – третья группа крови, резус-фактор положительный.
IBi0rr – третья группа крови, резус-фактор отрицательный.
i0i0RR – первая группа крови, резус-фактор положительный.
2 i0i0Rr – первая группа крови, резус-фактор положительный.
i0i0rr – первая группа крови, резус-фактор отрицательный.
Вероятность рождения ребенка с отрицательным резус-фактором 2/8, 25%.
Ответ: пункты Б) и В)
pазбирался: Ксения Алексеевна | обсудить разбор
Задание EB0620D
Сколько фенотипов у потомков может получиться при самоопылении растения душистого горошка, гетерозиготного по признаку окраски плодов, при полном доминировании этого признака? Ответ запишите в виде числа.
Запишем в виде задачи:
Гетерозиготен, т.е есть и доминантный и рецессивный аллель. Так как в условии сказано, что горошек самоопыляется, то оба генотипа будут одинаковыми.
Р: Аа х Аа
G: А а ; А а
F1: АА, Аа, Аа, аа
Мы получили 3 вида генотипов, рассмотрим фенотипы.
АА – проявится доминантный признак.
Аа – проявится доминантный признак.
аа – проявится рецессивный признак.
Итого: 2 фенотипа.
Ответ: 2
pазбирался: Ксения Алексеевна | обсудить разбор
Задание EB0619t
Какое число фенотипов образуется в потомстве при скрещивании Аа х Аа в случае неполного доминирования? Ответ запишите в виде числа.
Распишем это как задачу:
Выписываем особей, которые скрещиваются.
Р: ♀Аа х ♂Аа
Теперь определим гаметы обоих “родителей”, т.к они имеют одинаковый генотип, то и гаметы будут одинаковыми.
G: А а; А а
Получаем потомков первого поколения. Для этого запишем все возможные варианты пар гамет.
F1: АА, Аа, аА, аа
Мы выписали генотипы потомков, но вопрос про фенотипы. В условии сказано, что доминирование неполное. Это значит, что доминантный признак в гетерозиготе (Аа) не будет проявляться строго как доминантный, это будет среднее между доминантным (А) и рецессивным (а).
Проанализируем полученных потомков:
АА – проявляется только доминантный признак, это доминантная гомозигота.
Аа – генотип, который мы получили дважды. Это гетерозигота, проявится признак отличающийся и от доминантного, и от рецессивного.
аа – рецессивная гомозигота, проявится только рецессивный признак.
Ответ: 3
pазбирался: Ксения Алексеевна | обсудить разбор
Задание EB11317
У супругов Анны и Павла, имеющих нормальное зрение, родились два сына и две дочери. У первой дочери зрение нормальное, но она родила 3 сыновей, 2 из которых дальтоники. У второй дочери и ее пяти сыновей зрение нормальное. Первый сын Анны и Павла — дальтоник. Две его дочери и два сына видят нормально. Второй сын Анны и Павла и четверо его сыновей также имеют нормальное зрение. Каковы генотипы всех указанных родственников?
Для начала вспомним о том, что дальтониками могут быть только мужчины, однако женщины могут быть носителями гена дальтонизма. Притом он рецессивный.
Начнем с генотипа Павла. Он имеет нормальное зрение, так что его генотип – ХАY
Теперь Анна. Так у нее есть потомки-дальтоники, то она – носитель. Так как она здорова, то ее генотип – гетерозигота — ХАХа
Р1: ♀ ХАХа х ♂ ХАY
Выпишем гаметы:
G1: ХА Ха; ХА Y
F1: ♀ ХАХА, ♂ ХАY, ♀ ХАХа, ♂Ха Y
♀ ХАХА – вторая дочь Анны и Павла, так как ее пять сыновей здоровы.
Генотип ее сыновей — ХАY
♀ ХАХа — первая дочь Анны и Павла, так как у нее есть дети-дальтоники.
Генотип ее сыновей – ХаY
Генотип первого сына-дальтоника Анны и Павла — ♂Ха Y
Генотип его здоровых сыновей — ХАY
Генотип его дочерей – либо ХАХа
Генотип второго сына Анны и Павла — ХАY
Генотип его сыновей — ХАY
PS: использовать букву А или D – не принципиально.
Чистовик:
- Анна ХdXD, Павел XDY
- Первая дочь Анны и Павла ХdXD,
- Вторая дочь Анны и Павла ХDXD, т. к. пять сыновей имеют нормальное
- зрение.
- Первый сын XdY , его дочери ХdXD , а его сыновья XDY.
- Второй сын Анны и Павла и его дети имеют генотипы ХDУ.
Ответ: см. решение
pазбирался: Ксения Алексеевна | обсудить разбор
Задание EB11309
При скрещивании двух сортов томата с красными шаровидными и желтыми грушевидными плодами в первом поколении все плоды шаровидные, красные. Определите генотипы родителей, гибридов первого поколения, соотношение фенотипов второго поколения.
Составим таблицу:
Так как в первом поколении все томаты шаровидные и красные, то эти признаки являются доминантными
Ген | Признак |
А | Шаровидная форма |
а | Грушевидная форма |
В | Красные |
в | Желтые |
Определим генотипы скрещиваемых сортов:
Желтые грушевидные – аавв
Красные шаровидные – либо АаВв, либо ААВВ
Так как первое поколение – красные и шаровидные, то скрещиваемый сорт не может быть гетерозиготой, его генотип — ААВВ
Р1: ААВВ х аавв
Выпишем гаметы:
G1: АВ; ав
Найдем генотип первого поколения:
F1: АаВв
Красные шаровидные. С условием сходится.
Произведем скрещивание полученных томатов:
Р2: АаВв х АаВв
Выпишем гаметы:
G2: АВ Ав ав аВ; АВ Ав ав аВ
Найдем генотип второго поколения. Для этого составим решетку Пеннета:
Подпишем в ней фенотипы для удобства первыми буквами слова (К- красный, Ж -желтый, Ш –шаровидный, Г-грушевидный)
АВ | Ав | ав | аВ | |
АВ | ААВВ
К,Ш |
ААВв
К,Ш |
АаВв К,Ш | АаВВ К,Ш |
Ав | ААВв
К,Ш |
ААвв К,Г | Аавв К,Г | АаВв
К,Ш |
ав | АаВв
К,Ш |
Аавв К,Г | аавв Ж,Г | ааВв
Ж,Ш |
аВ | АаВВ К,Ш | АаВв
К,Ш |
ааВв Ж,Ш | ааВВ
Ж,Ш |
Посчитаем соотношение фенотипов:
Красный шаровидный – 9 шт
Красный грушевидный – 3 шт
Желтый шаровидный – 3 шт
Желтый грушевидный – 1 шт
Соотношение: 9:3:3:1
Чистовой вариант:
- Генотипы родителей: красные шаровидные плоды — ААВВ, желтые грушевидные плоды — ааbb.
- Генотипы F1: красные шаровидные АаВb.
- Соотношение фенотипов F2:
9 — красные шаровидные,
3 — красные грушевидные,
3 — желтые шаровидные,
1 — желтые грушевидные.
Ответ: см. решение
pазбирался: Ксения Алексеевна | обсудить разбор
Задание EB11306
Кареглазая правша вышла замуж за голубоглазого левшу. У них родился голубоглазый левша. Определите генотип матери (карие глаза и праворукость доминируют).
Составим таблицу:
Ген | Признак |
А | Карие глаза |
а | Голубые глаза |
В | Правша |
в | Левша |
Определим генотип мужа: аавв
Определим генотип жены: либо ААВВ, либо АаВв
Определим генотип ребенка: аавв
Так как генотип ребенка- рецессивная гомозигота, то генотип матери – АаВв
Чистовой вариант:
- Так как у их ребенка проявились рецессивные гены по обоим признакам, он получил от каждого родителя по одному из них, т. е.
- мама была гетерозиготной по двум признакам,
- ее генотип: АаВв.
Ответ: см. решение
pазбирался: Ксения Алексеевна | обсудить разбор
Задание EB11391
У человека имеются четыре фенотипа по группам крови: I(0), II(А), III(В), IV(АВ). Ген, определяющий группу крови, имеет три аллеля: IA, IB, i0, причем аллель i0 является рецессивной по отношению к аллелям IA и IB. Родители имеют II (гетерозигота) и III (гомозигота) группы крови. Определите генотипы групп крови родителей. Укажите возможные генотипы и фенотипы (номер) группы крови детей. Составьте схему решения задачи. Определите вероятность наследования у детей II группы крови.
Составим для удобства табличку:
Ген | Признак |
i0 i0 | Первая группа |
IAi0 или IAIA | Вторая группа |
IBi0 или IBIB | Третья группа |
IAIB | Четвертая группа |
Определим генотипы родителей:
Р: IAi0 х IBIB
Выпишем гаметы:
G: IA i0; IB
Теперь найдем варианты потомства:
F1: IA IB; IB i0
IA IB – IV группа
IB i0 — III группа
Детей со второй группой крови быть не может, значит, вероятность 0%
Чистовой вариант:
- родители имеют группы крови: II группа — IAi0 (гаметы IA, i0), III группа — IВIВ (гаметы IВ);
- возможные фенотипы и генотипы групп крови детей: IV группа (IAIB) и III группа (IBi0);
- вероятность наследования II группы крови — 0%.
Ответ: см. решение
pазбирался: Ксения Алексеевна | обсудить разбор
Задание EB11316
Ген окраски кошек сцеплен с Х-хромосомой.
Черная окраска определяется геном ХA, рыжая — геном ХB. Гетерозиготы имеют черепаховую окраску. От черепаховой кошки и рыжего кота родились пять рыжих котят. Определите генотипы родителей и потомства, характер наследования признаков.
Для начала составляем табличку ген/признак, просто для удобства:
Черепаховой окраске соответствует генотип ХА ХВ
Ген | Признак |
ХА | Черная окраска |
ХВ | Рыжая окраска |
ХА ХВ | Черепаховая окраска |
Определим генотипы родителей:
Р: ♀ ХАХВ х ♂ ХВ Y
Выпишем гаметы:
G: ХА ХВ ; ХВ Y
Теперь найдем варианты потомства:
F1: ХА ХВ; ХА Y; ХВХВ; ХВ Y
Здесь же можно под генотипами подписывать окраски, чтобы ничего не потерять.
Выберем котят с рыжей окраской: ♀ ХВХВ; ♂ ХВ Y
Наследование, сцепленное с полом, что и является кодоминированием.
Теперь чистовой вариант:
По условию: ХА — черная; ХВ — рыжая, тогда ХАХВ — черепаховая
- Генотипы родителей: кошка ХAХB. Гаметы кошки ХA и ХB. Кот ХBУ. Гаметы кота ХBи У .
- Генотипы рыжих котят — ХBУ или ХBХB.
- Наследование, сцепленное с полом (или, кодоминирование).
Ответ: см. решение
pазбирался: Ксения Алексеевна | обсудить разбор
Задание EB18712
По изображённой на рисунке родословной определите и обоснуйте генотипы родителей, потомков, обозначенных на схеме цифрами 1, 6, 7. Установите вероятность рождения ребёнка с исследуемым признаком у женщины под № 6, если в семье её супруга этот признак никогда не наблюдался.
Ответ запишите в виде числа, показывающего искомую вероятность в процентах. Знак % не используйте.
Для начала определим характер наследования признака. Так как признак проявляется через поколение, а не в каждом, то делаем вывод, что признак рецессивный.
Признак проявляется только у мужчин. Значит, признак сцеплен с полом, а именно, с Y-хромосомой. Он сцеплен с Ха— хромосомой.
Теперь разберемся с генотипом людей первого поколения. Мы уже установили, что признак рецессивный. Для проявления такого признака в следующем поколении женщин необходимо, чтобы у женщины в первом поколении была рецессивная хромосома. У нас во втором поколении нет людей, с проявляющимся признаком. Следовательно, так как генотип мужчины в первом поколении ХаY (так как у него признак проявился), то у женщины генотип –ХАХА
Определим генотип женщины №1. Ее муж не носитель данного признака, значит, его генотип ХАY, так как их сын- носитель признака, то генотип женщины ХАХа.
Найдем генотип женщины №6:
Выпишем генотипы родителей
Р: ♀ ХАХа х ♂ ХАY
Выпишем гаметы
G: ХА Ха ; ХА Y
Найдем первое поколение, выберем женщин и мужчину, который является носителем признака.
F1: ♀ХАХА; ХА Y; ♀ХА Ха; ♂Ха Y
Вывод: у женщины №6 может быть два варианта генотипа. Мы не можем однозначно сказать, какой из них принадлежит ей, так как не знаем ее потомство.
Генотип мужчины №7: Ха Y
Теперь определим возможное потомство:
Генотип отца ХА Y, так как в условии указано, что в его семье данного признака не наблюдалось
- С генотипом матери ХАХА
Р: ♀ ХАХА х ♂ ХА Y
G: ХА ; ХА Y
F1: ХАХА; ХА Y
0% потомства с данным признаком
- С генотипом матери ХА Ха
Р: ♀ ХА Ха х ♂ ХА Y
G: ХА Ха ; ХА Y
F1: ХАХА; ХА Y; ХА Ха; ♂Ха Y
25% потомства с проявлением данного признака
Что должно быть в чистовике:
- генотипы родителей: отец — ХаY, мать — ХАХА; признак рецессивный, сцеплен с полом (Х-хромосомой), так как проявляется только у мужчин, и не в каждом поколении;
- дочь (1) — ХАХа – носитель гена, так как наследует Ха-хромосому от отца; её сын (7) — ХаY, признак проявился, так как наследует Ха-хромосому от матери; дочь (6) — ХАХа или ХАХА;
- вероятность рождения ребёнка с исследуемым признаком у женщины № 6:
Её муж ХАY, т.к. по условию в семье её супруга этот признак никогда не наблюдался.
— Если её генотип ХАХа,
то вероятность рождения ребёнка с исследуемым признаком 25% ХаY мальчики
Схема решения задачи:
Р ♀ХАХа→♂ХАY
G ♀ХА♀Хa;♂ХА♂Y
F1ХАХА;ХАХa;ХАY;ХaY
— Если её генотип ХАХА, то 0%.
Схема решения задачи:
Р ♀ХАХA→♂ХАY
G ♀ХА;♂ХА♂Y
F1ХАХА;ХАY
(Допускается иная генетическая символика)
Ответ: см. решение
pазбирался: Ксения Алексеевна | обсудить разбор
Задание EB12695
По изображённой на рисунке родословной определите и объясните характер наследования признака (доминантный или рецессивный, сцеплен или нет с полом), выделенного чёрным цветом. Определите генотипы потомков, обозначенных на схеме цифрами 3, 4, 8, 11 и объясните формирование их генотипов.
Для начала определим характер наследования признака. Так как признак проявляется через поколение, а не в каждом, то делаем вывод, что признак рецессивный.
Признак проявляется только у мужчин. Значит, признак сцеплен с полом, а именно, с Y-хромосомой. Он сцеплен с Ха— хромосомой.
Теперь разберемся с генотипом людей первого поколения. Мы уже установили, что признак рецессивный. Для проявления такого признака в следующем поколении женщин необходимо, чтобы у женщины в первом поколении была рецессивная хромосома. У нас во втором поколении нет людей, с проявляющимся признаком. Следовательно, так как генотип мужчины в первом поколении ХаY (так как у него признак проявился), то у женщины генотип –ХАХА
Определим генотип людей под номерами 3, 4,8. Женщина №3 и мужчина №4 находятся в браке, мужчина не носитель данного признака. Его генотип ХАY. У их сына проявляется данный признак, его генотип ХаY. Исходя из этого, делаем вывод о том, что у женщины генотип ХАХа, так как она- носитель признака.
Определим генотип женщины №11. У ее отца генотип ХаY, у нее признак не проявляется, она может обладать либо генотипом ХАХА , либо генотипом ХАХа. Так как ее муж – не носитель данного признака, а сын(№ 12) – носитель, то мы делаем вывод о том, что генотип женщины №11 — ХАХа.
Получаем:
Что писать в чистовик:
Признак, выделенный чёрным цветом является рецессивным, сцепленным с Х-хромосомой: Ха,
т. к. наблюдается «проскок» через поколение. Мужчина с признаком (8) у него дочь без признака (11), а внуки — один с признаком (12), второй без (13), то есть от отца (10) они получают Y — хромосому, а от матери (11) один Ха, другой ХА.
Генотипы людей, обозначенных на схеме цифрами 3, 4, 8, 11:
3 — женщина-носитель — ХАХа
4 — мужчина без признака — ХАY
8 — мужчина с признаком — ХаY
11 — женщина-носитель — ХАХа
Ответ: см. решение
pазбирался: Ксения Алексеевна | обсудить разбор
Задание EB21264
Какова вероятность рождения здоровых мальчиков в семье, где мать здорова, а отец болен гипертрихозом — болезнью, обусловленной наличием гена, сцепленного с Y−хромосомой?
Если признак сцеплен с Y-хромосомой, значит, на Х-хромосоме он никак не отражается.
Женский пол гомозиготен: ХХ, а мужской гетерозиготен: ХY.
Решение задач с половыми хромосомами практически не отличается от решения задач с аутосомами.
Составим табличку ген и признак, которую также следует составлять и для задач про аутосомные хромосомы, если указаны признаки и это важно.
ген | признак |
Х | Здорова |
Ya | Болен |
Буква над Y обозначает, что с этой хромосомой сцеплен ген. Признаки бывают доминантными и рецессивными, они обозначаются заглавными и маленькими буквами, могут относиться как к Х-хромосоме, так и к Y-хромосоме, зависит от задачи.
♀ХХ х ХYa
F1: ХХ – девочка, здорова
ХYa— мальчик, болен
Мальчики, родившиеся у этой пары, будут 100% больны, значит 0% здоровы.
Ответ: 0
pазбирался: Ксения Алексеевна | обсудить разбор
Задание EB2420
Генотип одного из родителей будет АaBb, если при анализирующем дигибридном скрещивании и независимом наследовании признаков наблюдается расщепление по фенотипу в потомстве в соотношении. Ответ запишите в виде последовательности цифр, показывающих соотношение получившихся фенотипов, в порядке их убывания.
Анализирующее дигибридное скрещивание, значит, у второй особи рецессивная дигомозигота: aabb.
АaBb х aabb
Здесь можно обойтись без решетки Пеннета.
Поколения обозначаются буквой F.
F1: AaBb; Aabb; aaBb; aabb
Все четыре варианта фенотипов разные, так что относятся они друг к другу как 1:1:1:1.
Ответ: 1111
pазбирался: Ксения Алексеевна | обсудить разбор
Задание EB2406
При скрещивании особей с генотипами АаВb с АаВb (гены не сцеплены) доля (%) гетерозигот по обеим аллелям (дигетерозигот) в потомстве составит….
Составим решетку Пеннета. Для это выпишем гаметы одной особи в столбик, гаметы другой – в строку, получим таблицу:
Найдем дигетерозиготы в таблице:
Всего зигот: 16
Дигетерозигот: 4
Посчитаем процент:
Х = 25%
Ответ: 25
pазбирался: Ксения Алексеевна | обсудить разбор
Задание EB2311
Сколько видов гамет образуется у дигетерозиготных растений гороха при дигибридном скрещивании (гены не образуют группу сцепления)? В ответ запишите цифру.
Раз растения дигетерозиготны, то это значит, что по обоим признакам у них одна аллель доминантная, а вторая-рецессивная.
Получаем генотипы AaBb и AaBb.
Гаметы в задачах обозначаются буквой G, притом без запятых, в кружочках, указываются вначале гаметы одной особи, потом ставится точка с запятой (;), пишутся гаметы другой особи, тоже в кружочках.
Скрещивание обозначается значком «х».
AaBb x AaBb
Выпишем гаметы, для этого переберем все сочетания:
Гаметы у первой и второй особи получились одинаковыми, так генотип их был тоже одинаков. Значит, у нас получилось 4 разных типа гамет:
Ответ: 4
pазбирался: Ксения Алексеевна | обсудить разбор
Задание EB2308
Сколько типов гамет образуется у особи с генотипом aabb?
У нас есть две пары аллельных хромосом:
Первая пара: аа.
Вторая пара: bb.
Это все гомозиготы. Можно составить лишь одну комбинацию: ab.
Ответ: 1
pазбирался: Ксения Алексеевна | обсудить разбор
Ксения Алексеевна | Просмотров: 16.1k
Управление образования
администрации города Шахтёрска
Методический кабинет
Муниципальное
общеобразовательное учреждение
«Шахтёрская гимназия»
УЧЕБНОЕ ПОСОБИЕ
«ТЕХНОЛОГИЯ РЕШЕНИЯ
ГЕНЕТИЧЕСКИХ ЗАДАЧ»
Кобелева
Елена Владимировна,
учитель
биологии Муниципального
общеобразовательного учреждения «Шахтёрская
гимназия»
Шахтёрск — 2018
Автор-составитель Кобелева Е.В., учитель
биологии Муниципального общеобразовательного учреждения «Шахтёрская гимназия»,
специалист высшей квалификационной категории.
Рецензенты:
1.
Гагулина В.В., методист методического кабинета Управления
образования города Шахтёрска
2.
Ямковая О.Б, МОУ заместитель директора по УВР «СШ №1»,
учитель биологии специалист высшей квалификационной категории.
3.
Фуникова О.А., учитель биологии УВК№1, специалист
Методическое пособие представляет собой
сборник школьного курса биологии 11класса, тематически соответствует
программе обучения и учебнику.
В пособии представлены алгоритмы
решения задач по изучаемым темам раздела «Генетика», краткий теоретический
материал, необходимый для решения задач в виде карты-памяти, образец решения
задачи по предложенному алгоритму и задачи для самостоятельного решения.
Работа со сборником позволит
учащимся усвоить основные понятия, термины и законы генетики, разобраться в
генетической символике, применять теоретические знания на практике, объяснять
жизненные ситуации с точки зрения генетики, подготовиться к сдаче ГИА.
Содержание
Введение
Основные
термины и понятия генетики
Глава
1. Общие рекомендации по решению генетических задач
1.1.
Техника решения задач
1.2.
Оформление задач по генетике
1.3.
Законы Менделя
1.4.
Закон Моргана
1.5.
Правила при решении задач по
генетике
1.6.
Список доминантных и рецессивных
признаков человека
Глава 2. Алгоритм решения
задач
2.1. Решение прямых задач
2.2. Алгоритм решения обратных задач
2.3. Алгоритм решения задач «Моногибридное скрещивание»
2.4. Алгоритм решения задач «Дигибридное скрещивание»
2.5. Алгоритм решения задач «Анализирующее скрещивание»
2.6. Алгоритм решения задач «Сцепленное наследование»
2.7. Алгоритм решения задач «Генетика пола»
2.8. Алгоритм решения задач «Наследование признаков, сцепленных с
полом»
Глава 3. Примеры решения задач по генетике
Заключение
Литература
Введение
Разделы «Основы генетики» и
«Молекулярная биология» являются одними из самых сложных для понимания в
школьном курсе общей биологии. Облегчению усвоения этих разделов может
способствовать решение задач по генетике разных уровней сложности.
Решение задач, как
учебно-методический прием изучения генетики, имеет важное значение. Его
применение способствует качественному усвоению знаний, получаемых теоретически,
повышая их образность, развивает умение рассуждать и обосновывать выводы,
существенно расширяет кругозор изучающего генетику, т.к. задачи, как правило,
построены на основании документальных данных, привлеченных из области частной
генетики растений, животных, человека. Использование таких задач развивает у
школьников логическое мышление и позволяет им глубже понять учебный материал, а
преподаватель имеет возможность осуществлять эффективный контроль уровня
усвоенных учащимися знаний. Несмотря на это школьные учебники содержат минимум
информации о закономерностях наследования, а составлению схем скрещивания и
решению генетических задач в школьной программе по общей биологии отводится
очень мало времени. Поэтому возникла необходимость в создании данного сборника. Учебное пособие составлено согласно обновленным ГОС, программе основного
общего и среднего общего образования по биологии
Метопредметные связи, реализуемые
при составлении данного сборника:
·
Математика —
умение производить простейшие вычисления, анализировать и прогнозировать
результаты.
·
История —
знание родословных основных персон мира для составления генеалогических древ
при выполнении различных творческих работ.
·
Биология —
основы цитологии, молекулярной биологии, строения клетки.
·
Органическая
химия — строение углеводов, белков, аминокислот, нуклеиновых кислот.
Цель: развитие у учащихся умения и навыков
решения задач по основным разделам классической генетики.
Задачи:
1.
Развивать
познавательный интерес к предмету;
2.
Показать
практическую значимость общей биологии для различных отраслей производства,
селекции, медицины;
3.
Создать
условия для формирования и развития у учащихся УУД, интеллектуальных и
практических умений в области генетики.
4.
Ликвидировать
пробелы в знаниях учащихся;
Результат работы со сборником
Учащиеся знают:
·
основные
понятия, термины и законы генетики;
·
генетическую
символику.
Учащиеся умеют:
·
правильно
оформлять условия, решения и ответы генетических задач;
·
решать
типичные задачи;
·
логически
рассуждать и обосновывать выводы.
Учащиеся умеют характеризовать:
·
причины
биологической индивидуальности на разных уровнях;
·
модификационную,
мутационную и комбинативную изменчивость, ее причины;
·
норму реакции;
·
значение
генотипа и условий среды в формировании фенотипа;
·
значение
мутаций в эволюции, генетике, здравоохранении и экологической безопасности
населения.
Учащиеся умеют характеризовать
основные положения:
·
мутационной
теории;
·
закона
гомологических рядов наследственной изменчивости;
·
закономерностей
модификационной изменчивости;
·
Закона Харди —
Вайнберга;
·
Вклад Н.И.
Вавилова, И.А. Рапопорта, В.В. Сахарова, А.С. Серебровского, С.С.
Четверикова, Н.П. Дубинина в развитие науки генетики, синтетической теории
эволюции, селекции.
Основные термины и
понятия генетики.
Ген (с современных позиций) – это участок
молекулы ДНК, содержащий информацию о первичной структуре одного белка. Гены
находятся в хромосомах, где они расположены линейно, образуя «группы
сцепления».
Аллельные
гены – это пара генов, определяющих контрастные (альтернативные)
признаки организма. Каждый ген этой пары называется аллелью. Аллельные гены
расположены в одних и тех же участках локусах гомологичных (парных) хромосом.
Альтернативные
признаки – это взаимоисключающие, контрастные признаки
(например, жёлтые и зелёные семена гороха). Часто один из альтернативных
признаков является доминантным, а другой – рецессивным.
Доминантный признак – это признак, проявляющийся у гибридов первого
поколения при скрещивании представителей чистых линий. Например, у гороха
доминантными признаками являются жёлтая окраска семян, гладкая поверхность
семян, пурпурная окраска цветков
Рецессивный признак не проявляется у гибридов первого поколения при
скрещивании представителей чистых линий.
Гомозигота
– клетка или организм, содержащие одинаковые аллели одного и того же гена (АА
или аа).
Гетерозигота
– клетка или организм, содержащие разные аллели одного и того же
гена (Аа).
Генотип
– совокупность всех генов организма.
Фенотип
– совокупность признаков организма, формирующихся при взаимодействии
генотипа с окружающей средой.
Гибридологический метод – изучение признаков родительских форм, проявляющихся в
ряду поколений у потомства, полученного путём гибридизации (скрещивания).
Моногибридное скрещивание – это скрещивание форм, отличающихся друг от друга по
одной паре изучаемых контрастных (альтернативных) признаков, которые передаются
по наследству.
Дигибридное скрещивание – это скрещивание форм, отличающихся друг от друга по
двум парам изучаемых альтернативных признаков.
Полигибридное скрещивание – это сложное скрещивание, при котором родительские
организмы отличаются по трём, четырём, и более парам контрастных
(альтернативных) признаков.
Раздел 1 . Общие рекомендации по решению генетических
задач.
1.1.
Техника решения задач
Алгоритм |
Символика |
1. Краткая запись условий задачи. Введение 2. Запись фенотипов и схемы скрещивания 3.Определение фенотипов в соответствии с 4. Определение гамет. Выяснение их числа и 5. Составление решетки Пеннета. 6. Анализ решетки согласно поставленным 7. Краткая запись ответов |
1. Р – перента – родители. 2.F – филис – дети. 3. F1 –гибриды I 4. G— 5. А, В – доминантные гены, 6. а, в – рецессивные гены, 7. А, а – аллельные гены, 8. АА, ВВ – доминантные 9. Х – знак скрещивания. 10. ♀ — символ, обозначающий 11.♂ — символ, обозначающий мужской пол особи (символ Марса – |
1.2.
Оформление задач по генетике.
2.
Первым принято записывать генотип женской особи, а затем –
мужской (верная запись — ♀ААВВ х ♂аавв; неверная
запись — ♂аавв х ♀ААВВ).
3.
Гены одной аллельной пары всегда пишутся рядом (верная запись
– ♀ААВВ; неверная запись ♀АВАВ).
4.
При записи генотипа, буквы, обозначающие признаки, всегда пишутся
в алфавитном порядке, независимо, от того, какой признак – доминантный или
рецессивный – они обозначают (верная запись — ♀ааВВ; неверная запись
-♀ ВВаа).
5.
Если известен только фенотип особи, то при записи её генотипа
пишут лишь те гены, наличие которых бесспорно. Ген, который невозможно
определить по фенотипу, обозначают значком «_» (например, если жёлтая окраска
(А) и гладкая форма (В) семян гороха – доминантные признаки, а
зелёная окраска (а) и морщинистая форма (в) – рецессивные, то генотип особи с
жёлтыми морщинистыми семенами записывают А_вв).
6.
Под генотипом всегда пишут фенотип.
7.
У особей определяют и записывают типы гамет, а не их количество:
верная запись
неверная запись
♀
АА
♀ АА
А
А
А
8.
Фенотипы и типы гамет пишутся строго под соответствующим
генотипом.
9.
Записывается ход решения задачи с обоснованием каждого вывода
и полученных результатов.
10.
При решении задач на ди- и полигибридное скрещивание для
определения генотипов потомства рекомендуется пользоваться решёткой Пеннета. По
вертикали записываются типы гаметы от материнской особи, а по горизонтали –
отцовской. На пересечении записываются сочетание гамет, соответствующие
генотипу образующейся дочерней особи.
1.3.
Законы Г.
Менделя
Первый закон Менделя — закон
единообразия гибридов F1
Этот закон выведен
на основании результатов моногибридного скрещивания. Для опытов было взято
два сорта гороха, отличающихся друг от друга одной парой признаков —
цветом семян: один сорт имел желтую окраску, второй — зеленую.
Скрещивающиеся растения были гомозиготными.
Для записи результатов скрещивания
Менделем была предложена следующая схема:
А —желтая окраска семян
а — зеленая окраска семян
Р (родители) |
АА |
аа |
Г (гаметы) |
А |
а |
F1 (первое поколение) |
Аа |
Формулировка закона: при скрещивании организмов,
различающихся по одной паре альтернативных признаков, первое поколение единообразно
по фенотипу и генотипу.
Второй закон Менделя — закон
расщепления
Из семян, полученных при
скрещивании гомозиготного растения с желтой окраской семян
с растением с зеленой окраской семян, были выращены растения,
и путем самоопыления было получено F2.
Р (F1) |
Aa |
Aa |
Г |
А; a |
А; a |
F2 |
АА; Аа; Аа; аа |
Формулировка закона: у потомства, полученного
от скрещивания гибридов первого поколения, наблюдается расщепление
по фенотипу в соотношении 3:1, а по генотипу — 1:2:1.
Третий закон Менделя — закон
независимого наследования
Этот закон был выведен
на основании данных, полученных при дигибридном скрещивании. Мендель
рассматривал наследование двух пар признаков у гороха: окраски
и формы семян.
В качестве родительских форм
Мендель использовал гомозиготные по обоим парам признаков растения: один
сорт имел желтые семена с гладкой кожицей, другой — зеленые
и морщинистые.
А — желтая окраска семян, а — зеленая окраска семян,
В — гладкая форма, в — морщинистая форма.
Р |
ААВВ |
аавв |
Г |
АВ |
ав |
F1 |
АаВв |
Затем Мендель из семян F1 вырастил растения и путем
самоопыления получил гибриды второго поколения.
Р |
АаВв |
АаВв |
||||||||||||||||||||||||
Г |
АВ, Ав, аВ, ав |
АВ, Ав, аВ, ав |
||||||||||||||||||||||||
F2 |
Для записи и определения генотипов используется решетка
|
В F2 произошло расщепление на 4 фенотипических класса в соотношении 9:3:3:1. 9/16 всех семян имели оба доминантных
признака (желтые и гладкие), 3/16 — первый доминантный и второй рецессивный
(желтые и морщинистые), 3/16 — первый рецессивный и второй доминантный
(зеленые и гладкие), 1/16 — оба рецессивных признака (зеленые
и морщинистые).
При анализе наследования каждой
пары признаков получаются следующие результаты. В F2 12 частей
желтых семян и 4 части зеленых семян, т.е.
соотношение 3:1.
Точно такое же соотношение будет и по второй паре признаков
(форме семян).
Формулировка закона: при скрещивании организмов,
отличающихся друг от друга двумя и более парами альтернативных
признаков, гены и соответствующие им признаки наследуются независимо
друг от друга и комбинируются во всевозможных сочетаниях.
Третий закон Менделя выполняется
только в том случае, если гены находятся в разных парах гомологичных
хромосом.
Закон (гипотеза) «чистоты» гамет
При анализе признаков гибридов
первого и второго поколений Мендель установил, что рецессивный ген
не исчезает и не смешивается с доминантным. В F2 проявляются оба гена, что возможно
только в том случае, если гибриды F1 образуют два типа гамет: одни несут доминантный
ген, другие — рецессивный. Это явление и получило название гипотезы
чистоты гамет: каждая гамета несет только один ген из каждой аллельной
пары. Гипотеза чистоты гамет была доказана после изучения процессов,
происходящих в мейозе.
Гипотеза «чистоты» гамет — это
цитологическая основа первого и второго законов Менделя.
С ее помощью можно объяснить расщепление по фенотипу
и генотипу.
Анализирующее скрещивание
Этот метод был предложен Менделем
для выяснения генотипов организмов с доминантным признаком, имеющих
одинаковый фенотип. Для этого их скрещивали с гомозиготными
рецессивными формами.
Если в результате скрещивания
все поколение оказывалось одинаковым и похожим на анализируемый
организм, то можно было сделать вывод: исходный организм является
гомозиготным по изучаемому признаку.
Если в результате скрещивания
в поколении наблюдалось расщепление в соотношении 1:1,
то исходный организм содержит гены в гетерозиготном состоянии.
Наследование групп крови (система АВ0)
Наследование групп крови
в этой системе является примером множественного аллелизма (это
существование у вида более двух аллелей одного гена). В человеческой
популяции имеется три гена (i0, IА, IВ),
кодирующие белки-антигены эритроцитов, которые определяют группы крови людей.
В генотипе каждого человека содержится только два гена, определяющих его
группу крови: первая группа i0i0; вторая IАi0 и IАIА;
третья IВIВ и IВi0 и четвертая IАIВ.
Наследование признаков, сцепленных
с полом
У большинства организмов пол
определяется во время оплодотворения и зависит от набора
хромосом. Такой способ называют хромосомным определением пола.
У организмов с таким типом определения пола есть аутосомы
и половые хромосомы — Y и Х.
У млекопитающих (в т.ч.
у человека) женский пол обладает набором половых хромосом ХХ, мужской
пол — ХY. Женский пол называют гомогаметным (образует один тип гамет);
а мужской — гетерогаметным (образует два типа гамет). У птиц
и бабочек гомогаметным полом являются самцы (ХХ), а гетерогаметным —
самки (ХY).
В задания ГИА включены
задачи только на признаки, сцепленные с Х-хромосомой. В основном
они касаются двух признаков человека: свертываемость крови (ХН —
норма; Xh — гемофилия), цветовое зрение (ХD —
норма, Xd — дальтонизм). Гораздо реже встречаются задачи
на наследование признаков, сцепленных с полом, у птиц.
У человека женский пол может быть
гомозиготным или гетерозиготным по отношению к этим генам. Рассмотрим
возможные генетические наборы у женщины на примере гемофилии (аналогичная
картина наблюдается при дальтонизме): ХНХН —
здорова; ХНXh — здорова, но является
носительницей; ХhХh — больна. Мужской пол
по этим генам является гомозиготным, т.к. Y-хромосома не имеет
аллелей этих генов: ХНY — здоров; XhY — болен.
Поэтому чаще всего этими заболеваниями страдают мужчины, а женщины
являются их носителями.
1.4.
Закон Моргана
Число признаков организма многократно превышает число хромосом.
Следовательно, в одной хромосоме располагается множество генов. Наследование признаков,
гены которых находятся в одной паре гомологичных хромосом, называется сцепленным
наследованием (закон Моргана). Гены,
расположенные в одной хромосоме, образуют группу сцепления.
Число групп сцепления равно гаплоидному числу хромосом.
1.5.
Правила при решении задач по генетике.
Правило первое. Если при
скрещивании двух фенотипически одинаковых особей в их потомстве наблюдается
расщепление признаков, то эти особи гетерозиготны.
Правило второе.
Если в результате скрещивания особей, отличающихся фенотипически по одной паре
признаков, получается потомство, у которого наблюдается расщепление по этой же
паре признаков, то одна из родительских особей гетерозиготна, а другая –
гомозиготна по рецессивному признаку.
Правило третье. Если при скрещивании
фенотипически одинаковых особей (по одной паре признаков) в первом поколении
гибридов происходит расщепление признаков на три фенотипические группы в
отношениях 1:2:1 , то это свидетельствует о неполном доминировании и о том, что
родительские особи гетерозиготны.
Правило четвертое.
Если при скрещивании двух фенотипически одинаковых особей в потомстве
происходит расщепление признаков в соотношении 9:3:3:1, то исходные особи были
дигетерозиготны.
Правило пятое.
Если при скрещивании двух фенотипически одинаковых особей в потомстве
происходит расщепление признаков в соотношении 9:3:4 9:6:1 , 9:7 , 12:3:1, то
это свидетельствует о взаимодействии генов, а расщепление в отношениях 12:3:1,
13:3 и 15:1 – об эпистатическом взаимодействии генов.
1.6.
Список доминантных и рецессивных признаков человека
в этом списке приведены основные признаки человека и их доминантность/рецессивность.
Доминантный |
Рецессивный |
Кожа |
|
Нормальная |
Альбинизм |
Смуглая |
Светлая |
Нормальный |
Пегая |
Пигментированное пятно в области крестца |
Отсутствует |
Кожа |
Кожа |
Зрение |
|
Близорукость |
Нормальное зрение |
Дальнозоркость |
нормальное зрение |
Нормальное зрение |
Ночная слепота |
Цветовое зрение |
Дальтонизм |
Отсутствие катаракты |
Катаракта |
Отсутствие косоглазия |
Косоглазие |
Рост |
|
Низкий |
Нормальный |
Руки |
|
Нормальное |
Полидактилия |
Нормальная |
Брахидактилия (короткие пальцы) |
Праворукость |
Леворукость |
Нормальное |
Большой |
Ногти |
Нормальные |
Ногти |
Нормальные |
Узоры |
Узоры |
Ноги |
|
Норма |
Предрасположенность |
Второй |
Второй |
Повышенная |
Норма |
Слух |
|
Нормальный |
Врожденная |
Процессы в организме |
|
Нормальное |
Сахарный диабет |
Нормальная |
Гемофилия |
Черты лица |
|
Веснушки |
Отсутствие |
Круглая |
Квадратная |
Круглый |
Квадратный |
Ямочка |
Отсутствие |
Ямочки на щеках (D–) |
Отсутствие |
Густые |
Тонкие |
Брови |
Брови |
Длинные |
Короткие |
Волосы |
|
Тёмные |
Светлые |
Не |
Рыжие |
Кучерявые |
Волнистые |
Волнистые |
Прямые |
Облысение |
Норма |
Норма |
Облысение |
Норма |
Белая |
Преждевременное |
Норма |
Обильная |
Мало |
Норма |
Широкие |
Нос |
|
Круглый |
Заострённый |
Круглые |
Узкие |
Высокая |
Низкая |
Нос |
Прямая |
Кончик |
Курносый |
Рот |
|
Способность |
Нет |
Способность |
Нет |
Отсутствие |
Зубы при рождении |
Выступающие |
Зубы и челюсти не выступают |
Щель |
Отсутствует |
Предрасположенность |
Норма |
Полные |
Тонкие губы |
Норма |
Габсбургская губа |
Уши |
|
Острая |
Отсутствует |
Свободная |
Сросшаяся |
Кровь |
|
Группы крови А, В и O |
Группа |
Наличие резус-фактора (Rh+) |
Отсутствие |
Раздел 2. Алгоритм решения задач.
2.1. Решение прямых задач
Под прямой задачей подразумевается такая,
в которой известны генотипы родителей, необходимо определить возможные генотипы
и фенотипы потомства в первом и втором поколениях.
Для решения задачи следует составить
схему, аналогичную той, что использовалась для записи результатов
моногибридного скрещивания.
Алгоритм действий |
Пример решения задачи. |
1. Чтение условия задачи. |
1. Задача. При скрещивании двух сортов томатов с гладкой и |
2. Введение буквенного обозначения доминантного и рецессивного |
2. Решение. Если в результате скрещивания все потомство имело |
3. Составление схемы 1-го скрещивания, запись фенотипов, а затем |
3. Так как скрещивались чистые линии томатов, родительские особи Р фенотип ♀ гладкая х Р генотип ♂ АА х ♀ |
4. Запись типов гамет, которые могут образовываться во время |
4. G (Гомозиготные особи дают только один тип гамет.) |
5. Определение генотипов и фенотипов потомков, образующихся в |
5. F1 генотип фенотип гладкая кожица |
6. Составляем схему второго скрещивания. |
6. Р фенотип ♀гладкая х Р генотип ♂Аа |
7. Определяем гаметы, которые дает каждая особь. |
7. ↓ G А (Гетерозиготные особи дают два типа гамет). |
8. Составляем решетку Пеннета и определяем генотипы и фенотипы |
8. F2 Генотип Аа гл. гл. гл. опуш. |
9. Отвечаем на вопросы задачи полными предложениями, записывая |
Вероятность появления в F2 плодов с гладкой кожицей: 4 — 100% 3 — х х = (3х100):4 =75% Вероятность появления в F2 плодов с опушенной кожицей: 100%-75% =25%. |
10. Записываем ответ по образцу: |
Ответ: АА, аа, Аа / |
2.2. Алгоритм решения обратных задач.
Под обратной задачей имеется в виду такая задача, в которой даны
результаты скрещивания, фенотипы родителей и полученного потомства; необходимо определить
генотипы родителей и потомства.
1. Читаем условие задачи. |
1. Задача. При скрещивании двух дрозофил с нормальными крыльями |
2. По результатам скрещивания F1 или F2 определяем доминантный и рецессивный признаки и вводим |
2. Решение. Скрещивались мухи с нормальными крыльями, а в |
3. Составляем схему скрещивания и записываем генотип особи с |
3. Р фенотип ♀норм. х ♂норм. Р генотип ♂А_ х ♀ А_ F1 фенотип 88 норм. генотип |
4. Определяем типы гамет, которые может образовать каждая |
4. Родительские особи обязательно образуют гаметы с доминантным Р фенотип норм. крылья х норм. крылья Р генотип Аа ↓ G А |
5. Определяем генотип и фенотип потомства, полученного в |
5. F1 генотип фенотип 88 (норм. норм. норм. |
6.Записываем ответ задачи. |
Ответ: доминантный признак – нормальные крылья/ Аа и Аа/ АА, |
2.3.
Алгоритм решения задач «Моногибридное
скрещивание».
·
Определите доминантный и рецессивный признак по результатам
скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите
буквенные обозначения: А — доминантный а — рецессивный.
·
Запишите генотип особи с рецессивным признаком или особи с
известным по условию задачи генотипом и гаметы.
·
Запишите генотип гибридов F1.
·
Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в
решетку Пеннета по горизонтали и по вертикали.
·
Запишите генотипы потомства в клетках пересечения гамет.
Определите соотношения фенотипов в F1
ТИП |
СХЕМА СКРЕЩИВАНИЯ |
ЗАКОН. АВТОР |
|
||
Моногибридное скрещивание по одной паре 1. При полном доминировании проявляется только доминантный признак. 2. При неполном доминировании признак имеет среднее (промежуточное) значение |
Скрещивание гибридов при полном доминировании.
при неполном доминировании. |
I. При скрещивании двух особей с противоположными |
2.4.
Алгоритм решения задач «Дигибридное
скрещивание».
·
Определите доминантный и рецессивный признак по результатам
скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите буквенные
обозначения: А — доминантный а — рецессивный.
·
Запишите генотип особи с рецессивным признаком или особи с
известным по условию задачи генотипом и гаметы.
·
Запишите генотип гибридов F1.
·
Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в
решетку Пеннета по горизонтали и по вертикали.
·
Запишите генотипы потомства в клетках пересечения гамет.
Определите соотношения фенотипов в F1
Тип скрещивания |
Схема скрещивания |
Закон. автор |
|
Закон единообразия I поколения соблюдается. |
|
Дигибридное — это скрещивание по двум парам признаков |
|
II. Закон независимого наследования признаков (Г. Мендель). При скрещивании гибридов I поколения по двум парам признаков |
2.5.
Алгоритм решения задач «Анализирующее
скрещивание».
·
Определите доминантный и рецессивный признак по результатам
скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите
буквенные обозначения: А — доминантный а — рецессивный.
·
Запишите генотип особи с рецессивным признаком или особи с
известным по условию задачи генотипом и гаметы.
·
Запишите генотип гибридов F1.
·
Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в
решетку Пеннета по горизонтали и по вертикали.
·
Запишите генотипы потомства в клетках пересечения гамет.
Определите соотношения фенотипов в F1.
Тип скрещивания |
Схема скрещивания |
Закон. автор |
Анализирующее — это скрещивание особи с доминантным фенотипом |
I |
Если при скрещивании |
II |
Если при скрещивании |
2.6. Алгоритм решения задач «Сцепленное наследование».
·
Определите доминантный и рецессивный признак по результатам
скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите
буквенные обозначения: А — доминантный а — рецессивный.
·
Запишите генотип особи с рецессивным признаком или особи с
известным по условию задачи генотипом и гаметы.
·
Запишите генотип гибридов F1.
·
Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в
решетку Пеннета по горизонтали и по вертикали.
·
Запишите генотипы потомства в клетках пересечения гамет.
Определите соотношения фенотипов в F1.
Тип скрещивания |
Схема скрещивания |
Закон. автор |
Сцепленное наследование — это наследование признаков, расположенных в одной |
Без |
|
При кроссинговере |
Закон сцепленного наследования генов, находящихся в одной хромосоме (Т. Морган). Гены, Сцепление |
1. Полное сцепление
Перед решением задач на сцепленное
наследование целесообразно сравнить результаты анализирующего
скрещивания при независимом и сцепленном
наследовании:
Независимое
наследование
А – желтая окраска, а – зеленая окраска,
В – гладкие семена, b – морщинистые семена.
Сцепленное
наследование (кроссинговер отсутствует)
А – серое тело, а – черное тело,
В – нормальные крылья, b – короткие крылья.
2. Определение типов гамет
Количество
гамет равно 2n, где n – не число гетерозиготных пар генов, а
количество пар разнородных хромосом, содержащих гетерозиготные гены. Например,
тригетерозигота АаВbСс будет давать
8 типов гамет, если гены расположены в разных парах хромосом (n = 3) и только 2
типа, если гены находятся в одной паре (n = 1).
3. Неполное сцепление
При неполном
сцеплении гомологичные хромосомы могут обмениваться аллельными генами. Причиной
этого является кроссинговер, который, в свою очередь, является результатом
того, что при мейозе гомологичные хромосомы конъюгируют и могут обмениваться
участками.
В результате этого
при скрещивании дигетерозигот с генотипом
с гомозиготами по рецессиву, имеющими генотип , в
потомстве, наряду с обычными, появляется некоторое количество особей,
образовавшихся в результате слияния кроссоверных гамет (рекомбинантов), имеющих
генотип
или .
4.Составление схем кроссинговера
При
составлении схем кроссинговера следует помнить, что основное количество гамет
будут составлять некроссоверные, а кроссоверные гаметы будут встречаться в
небольших количествах. Образование кроссоверных гамет можно легко определить,
воспользовавшись схемой:
Напишите возможные варианты
кроссинговера между генами в группе сцепления .
Решение
1) Одиночный кроссинговер между
генами А и В:
2) Одиночный кроссинговер между
генами В и С:
3) Двойной кроссинговер между генами А и С:
5.Определение типа наследования (сцепленное или независимое) и
расстояния между генами
Для
определения типа наследования необходимо выяснить
количество особей, получающихся при анализирующем скрещивании.
Соотношение
фенотипических классов в F1, близкое к 1:1:1:1, позволяет с большой
вероятностью предположить наличие независимого наследования,
а присутствие в потомстве двух фенотипов в пропорции, близкой к 1:1, указывает
на сцепленное наследование. Наличие небольшого количества
рекомбинантов является результатом кроссинговера.
Количество таких организмов
пропорционально вероятности кроссинговера между сцепленными генами и,
следовательно, расстоянию между ними в хромосоме. Это расстояние измеряется
в морганидах (М) и может быть определено по формуле:
где x –расстояние
между генами (в морганидах),
а и с –количество кроссоверных особей,
n – общее число особей.
Таким образом,
одна морганида равна 1% кроссинговера.
Если
число кроссоверных особей дано в процентах, то расстояние между
генами равно сумме процентного состава.
Определение числа кроссоверных гамет или
полученного соотношения особей в потомстве в зависимости от расстояния между
генами в хромосомах
Число кроссоверных гамет определяется
по формуле (3), выведенной из формулы (2) для определения расстояния между
генами в хромосоме:
где а и с –
количество рекомбинантов каждого вида,
n – общее количество потомства,
x – расстояние между генами в морганидах.
Картирование хромосом
Для
составления карт хромосом рассчитывают
взаимное расстояние между отдельными парами генов и
затем определяют расположение этих генов относительно друг друга.
Так, например,
если три гена расположены в следующем порядке: А
В С, то расстояние между генами А и С (процент рекомбинаций) будет равно сумме
расстояний (процентов рекомбинаций) между парами генов АВ и ВС.
Если
гены расположены в порядке: А С В,
то расстояние между генами А и С будет равно разности расстояний между парами
генов АВ и СВ.
ABC – 47,5% |
Построить |
Решение
1.
Расщепление при анализирующем скрещивании, близкое к 1:1,
указывает на то, что все три пары генов находятся в одной хромосоме.
2.
Расстояние между генами А и В равно:
1,7 + 1,7 = 3,4 М.
3.
Расстояние между генами В и С равно:
0,8 + 0,8 = 1,6 М.
Ген В находится между
генами А и С. Расстояние между генами А и С равно:
1,7 + 1,7 + 0,8 + 0,8 = 5,0 М.
Задача 1
Гены А, В и С находятся
в одной группе сцепления. Между генами А и В кроссинговер
происходит с частотой 7,4%, а между генами В и С –
с частотой 2,9%. Определить взаиморасположение генов А, В и С,
если расстояние между генами А и С равняется
10,3% единиц кроссинговера. Как изменится взаиморасположение этих генов, если
частота кроссинговера между генами А и С будет
составлять 4,5%?
Решение
1.
По условию задачи расстояние от гена А до
гена С (10,3 М) равно сумме расстояний между генами А и В (2,9
М) и генами В и С(7,4 М), следовательно, ген В располагается
между генами А и С и расположение генов
следующее: А В С.
2.
Если бы расстояние от гена А до гена С равнялось
разности расстояний между парами генов АВ и ВС (4,5 = 7,4 – 2,9),
то гены располагались бы в следующей последовательности: А С В.
И в этом случае расстояние между крайними генами было бы равно сумме расстояний
между промежуточными: АВ = АС + СВ.
Задача 2
При анализирующем скрещивании
тригетерозиготы АаВbСс были получены организмы,
соответствующие следующим типам гамет:
ABC – 47,5% |
Построить карту этого участка хромосомы. |
Решение
1.
Расщепление при анализирующем скрещивании, близкое к 1:1,
указывает на то, что все три пары генов находятся в одной хромосоме.
2.
Расстояние между генами А и В равно:
1,7 + 1,7 = 3,4 М.
3.
Расстояние между генами В и С равно:
0,8 + 0,8 = 1,6 М.
4.
Ген В находится между генами А и С.
Расстояние между генами А и С равно:
1,7 + 1,7 + 0,8 + 0,8 = 5,0 М.
5.
Карта участка хромосомы:
2.7.
Алгоритм решения задач «Генетика пола».
·
Определите доминантный и рецессивный признак по результатам
скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите
буквенные обозначения: А — доминантный а — рецессивный.
·
Запишите генотип особи с рецессивным признаком или особи с
известным по условию задачи генотипом и гаметы.
·
Запишите генотип гибридов F1.
·
Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в
решетку Пеннета по горизонтали и по вертикали.
·
Запишите генотипы потомства в клетках пересечения гамет.
Определите соотношения фенотипов в F1.
Тип скрещивания |
Схема скрещивания |
Закон. автор |
Генетика пола Пол определяется наличием пары половых |
I Соотношение полов 1:1 |
Пол организма Пол, содержащий одинаковые половые хромосомы Гетерогаметные особи образуют два типа гамет. |
II |
У птиц, некоторых рыб, бабочек гетерогаметны |
|
III |
У прямокрылых, пауков, |
2.8. Алгоритм решения задач «Наследование
признаков, сцепленных с полом».
·
Определите доминантный и рецессивный признак по результатам
скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите
буквенные обозначения: А — доминантный а — рецессивный.
·
Запишите генотип особи с рецессивным признаком или особи с
известным по условию задачи генотипом и гаметы.
·
Запишите генотип гибридов F1.
·
Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в
решетку Пеннета по горизонтали и по вертикали.
·
Запишите генотипы потомства в клетках пересечения гамет.
Определите соотношения фенотипов в F1.
Тип скрещивания |
Схема скрещивания |
Закон. автор |
Наследование признаков, сцепленных с полом. Признаки, гены которых локализованы в половых |
|
Если одна из X хромосом Рецессивный признак от матерей передается Примером наследования признаков, сцепленных с |
Раздел 3. Примеры решения задач по генетике
1.
У дрозофилы доминантный ген
красной окраски глаз (W) и рецессивный ген белой окраски (w) находятся в Х –
хромосамах. Белоглазая самка скрещивалась с красноглазым самцом. Какой цвет
глаз будет у самцов и самок в первом и втором поколении?
Р ♀ Хw Xw × ♂ XWY
гаметы Xw XW, Y
F1
XW Xw
– красноглазая самка- 50%
XwY—
белоглазый самец – 50%
Р ♀ ХW Xw × ♂ XwY
гаметы Xw, XW XW, Y
F2
XW Xw
– красноглазая самка — 25%
XwXw
– белоглазая самка – 25%
XWY
– красноглазый самец – 25%
XwY
– белоглазый самец – 25%
Дано:
W – красный окрас глаз
w – белый окрас глаз
Х W Х W – самки красной
Х W Х w – самка крас.
Х w Х w – самки белые глаза
Ответ: Среди потомства F1 50% будет красноглазых самок и 50% белоглазых самцов. Во втором
поколении 25% — красноглазая самка, 25% — белоглазая самка, 25% — красноглазый
самец, 25% — белоглазый самец.
2.
У домашних кур сцепленный с
Х-хромосомой ген d имеет летальное действие. Какая часть потомства погибнет,
если скрестить курицу с гетерозиготным петухом?
Дано: А
F1 гибель-? |
1) Р ♀ XAY G XA Y F1 XAXA YXA XAXA — норм.петух YXA норм.курица XAXa норм. петух YXa гибель |
Ответ: 25% погибнет потомства
3.
У человека рецессивный ген гемофилии (h) и рецессивный ген
дальтонизма (d) локализованы в X-хромосоме на расстоянии 9,8 морганид.
Известно, что женщина гетерозиготна по обоим признакам, аномальные гены
локализованы в разных X-хромосомах. Определите, какие дети у нее могут быть от
брака со здоровым мужчиной, и какова вероятность их рождения.
Дано: Xh – XH – Xd – XD – L(hd) = 9,8 мн = 9,8% кроссинговера |
Решение 1) Проанализировав условие задачи, определим P: 2) В результате кроссинговера с общей G:
3) Определим вероятность появления детей F1: |
||||||||||
F1 – ? |
Ответ:
вероятность рождения здоровой девочки в данном браке – 50%; вероятность
рождения здорового мальчика – 2,45%; вероятность рождения мальчика с гемофилией
– 22,55%; вероятность рождения мальчика-дальтоника – 22,55%; вероятность
рождения мальчика-дальтоника с гемофилией – 2,45%.
4.
У коров гены A и B расположены в одной хромосоме на расстоянии 24
морганиды. Определите генотипические группы потомков и вероятности их появления
при скрещивании двух дигетерозигот с генотипом .
Дано: L(AB) = 24 мн = 24% кроссинговера |
Решение 1) P: ♀ 2) В результате кроссинговера с общей
3) Определим вероятность появления детей F1:
|
||||||||||||||||||||||||||||||||
F1 – ? |
Ответ: в потомстве наблюдается 16 групп генотипов; вероятность проявления
генотипа = 14,44%,
= 14,44%,
= 4,56%,
= 4,56%,
= 14,44%,
= 4,44%,
= 4,56%,
= 4,56%,
= 4,56%,
= 4,56%,
= 1,44%,
= 1,44%,
= 4,56%,
= 4,56%,
= 1,44%,
= 1,44%.
Заключение.
Дорогие ребята!
Это пособие
создавалось в первую очередь для вас.
Практика показывает, что именно умение решать задачи вызывает у
вас наибольшие затруднения.
Если вы хотите научиться решать задачи по
генетике, следуйте советам:
1.
Каждая гамета получает гаплоидный набор хромосом (генов). Все
хромосомы (гены) имеются в гаметах.
2.
В каждую гамету попадает только одна гомологичная хромосома из
каждой пары (только один ген из каждой аллели).
3.
Число возможных вариантов гамет равно 2n,
где n – число хромосом, содержащих гены в гетерозиготном
состоянии.
4.
Одну гомологичную хромосому (один аллельный ген) из каждой пары
ребенок получает от отца, а другую (другой аллельный ген) – от матери.
5.
Гетерозиготные организмы при полном доминировании всегда проявляют
доминантный признак. Организмы с рецессивным признаком всегда гомозиготны.
6.
Решение задачи на дигибридное скрещивание при независимом
наследовании обычно сводится к последовательному решению двух задач на
моногибридное (это следует из закона независимого наследования).
Кроме того, для успешного решения
задач по генетике следует уметь выполнять некоторые несложные операции
и использовать методические приемы, которые приводятся ниже.
Прежде всего необходимо внимательно
изучить условие задачи. Даже те учащиеся, которые хорошо знают
закономерности наследования и успешно решают генетические задачи, часто
допускают грубые ошибки, причинами которых является невнимательное или
неправильное прочтение условия.
Следующим этапом является
определение типа задачи. Для этого необходимо выяснить, сколько пар
признаков рассматривается в задаче, сколько пар генов кодирует эти признаки, а
также число классов фенотипов, присутствующих в потомстве от скрещивания
гетерозигот или при анализирующем скрещивании, и количественное соотношение
этих классов. Кроме того, необходимо учитывать, связано ли наследование
признака с половыми хромосомами, а также сцепленно или независимо наследуется
пара признаков. Относительно последнего могут быть прямые указания в условии.
Также, свидетельством о сцепленном наследовании может являться соотношение
классов с разными фенотипами в потомстве.
Для облегчения решения можно
записать схему брака (скрещивания) на черновике, отмечая
фенотипы и генотипы особей, известных по условию задачи, а затем начать
выполнение операций по выяснению неизвестных генотипов. Для удобства
неизвестные гены на черновике можно обозначать значками *, _ или ?.
Выяснение генотипов особей,
неизвестных по условию, является основной методической операцией,
необходимой для решения генетических задач. При этом решение всегда надо
начинать с особей, несущих рецессивный признак, поскольку они гомозиготны и их
генотип по этому признаку однозначен – аа.
Выяснение генотипа организма, несущего
доминантный признак, является более сложной проблемой, потому что он может быть
гомозиготным (АА) или гетерозиготным (Аа).
Гомозиготными (АА) являются
представители «чистых линий», то есть такие организмы, все предки которых несли
тот же признак. Гомозиготными являются также особи, оба родителя которых были
гомозиготными по этому признаку, а также особи, в потомстве которых (F1)
не наблюдается расщепление.
Организм гетерозиготен (Аа), если
один из его родителей или потомков несет рецессивный признак, или если в его
потомстве наблюдается расщепление.
В некоторых задачах предлагается
выяснить, доминантным или рецессивным является
рассматриваемый признак. Следует учитывать, что доминантный признак во всех
случаях, кроме неполного доминирования, проявляется у гетерозиготных особей.
Его несут также фенотипически одинаковые родители, в потомстве которых
встречаются особи, отличные от них по фенотипу. При моногенном наследовании
доминантный признак всегда проявляется у потомства F1 при
скрещивании гомозиготных родителей (чистых линий) с разным фенотипом
(исключение – неполное доминирование).
При определении возможных вариантов
распределения генов в гаметах следует помнить, что каждая гамета содержит
гаплоидный набор генов и что в нее попадает только один ген из каждой пары,
определяющей развитие признака. Число возможных вариантов гамет равно 2n,
где n – число рассматриваемых пар хромосом, содержащих
гены в гетерозиготном состоянии.
Распространенной ошибкой при определении
вариантов гамет является написание одинаковых типов гамет, то есть содержащих
одни и те же сочетания генов. Для определения возможных типов гамет более
целесообразным представляется запись генотипов в хромосомной форме.
Это упрощает определение всех возможных вариантов сочетания генов в гаметах
(особенно при полигибридном скрещивании). Кроме того, некоторые задачи
невозможно решить без использования такой формы записи.
Сочетания гамет, а также соответствующие
этим сочетаниям фенотипы потомства при дигибридном или полигибридном
скрещивании равновероятны, и поэтому их удобно определять с помощью решетки
Пеннета. По вертикали откладываются типы гамет, продуцируемых матерью, а по
горизонтали – отцом. В точках пересечения вертикальных и горизонтальных линий
записываются соответствующие сочетания генов. Обычно выполнение операций,
связанных с использованием решетки Пеннета, не вызывает затруднений у учащихся.
Следует учитывать только то, что гены одной аллельной пары надо писать рядом
(например, ААВВ, а не АВАВ).
Конечным этапом решения является запись
схемы скрещивания (брака) в соответствии с требованиями по оформлению,
описанными ниже, а также максимально подробное изложение всего хода рассуждений
по решению задачи с обязательным логическим обоснованием каждого вывода.
Отсутствие объяснения даже очевидных, на первый взгляд, моментов может быть
основанием для снижения оценки на экзамене.
Список литературы
1.
Биология. 11 класс: учеб. Для общеобразоват. организаций: базовый
уровень/ Д.К. Беляев, Г.М. Дымшиц, Л.Н. Кузнецова – М.: Просвещение, 2016. –
223с.
2.
Капранова Г.В. Сборник задач по генетике. – Луганск: Янтарь, 2003.
– 68с.
3.
Пепеляева О.А., Сунцова И.В. Поурочные разработки по общей
биологии: 11 класс.- М.: ВАКО, 2006. -464с.
Дополнительная литература
1.
Анастасова Л.П. Самостоятельные работы учащихся по общей биологии:
Пособие для учителя. М.: Просвещение, 1989. — 175 с.
2.
Борисова, Л.В. Тематическое и поурочное планирование по биологии:
11 кл.: к учебнику Мамонтова С.Г., Захарова В.Б, Сонина Н.И. «Биология. Общие
закономерности. 11 класс»: Методическое пособие/Борисова Л.В. – М.:
Издательство «Экзамен», 2006. – 159 с.
3.
Донецкая Э.Г. Общая биология. Тетрадь с печатной основой для
учащихся 11кл. – Саратов, «Лицей», 1997.,80с.
4.
Ловкова Т.А. Биология. Общие закономерности. 11 класс:
Методическое пособие к учебнику Мамонтова С.Г., Захарова В.Б, Сонина Н.И.
«Биология. Общие закономерности. 9 класс»/ Ловкова Т.А., Сонин Н.И. – М.;
Дрофа, 2003. – 128 с.
5.
Сухова Т.С. Общая биология. 10-11 кл.: рабочая тетрадь к учебникам
«Общая биология. 10 класс» и «Общая биология. 11 класс»/Сухова Т.С, Козлова
Т.А, Сонин Н.И; под редакцией Захарова В.Б. – М.: Дрофа, 2006. -171 с.
Генетика, ее задачи. Наследственность и изменчивость — свойства организмов.
Методы генетики. Основные генетические понятия и символика. Хромосомная теория
наследственности. Современные представления о гене и геноме
Генетика, ее задачи
Успехи естествознания и клеточной биологии в XVIII–XIX веках позволили ряду ученых высказать предположения о существовании неких наследственных факторов, определяющих, например, развитие наследственных болезней, однако эти предположения не были подкреплены соответствующими доказательствами. Даже сформулированная Х. де Фризом в 1889 году теория внутриклеточного пангенеза, которая предполагала существование в ядре клетки неких «пангенов », определяющих наследственные задатки организма, и выход в протоплазму только тех из них, которые определяют тип клетки, не смогла изменить ситуацию, как и теория «зародышевой плазмы» А. Вейсмана, согласно которой приобретенные в процессе онтогенеза признаки не наследуются.
Лишь труды чешского исследователя Г. Менделя (1822–1884) стали основополагающим камнем современной генетики. Однако, несмотря на то, что его труды цитировались в научных изданиях, современники не обратили на них внимания. И лишь повторное открытие закономерностей независимого наследования сразу тремя учеными — Э. Чермаком, К. Корренсом и Х. де Фризом — вынудило научную общественность обратиться к истокам генетики.
Генетика — это наука, изучающая закономерности наследственности и изменчивости и методы управления ими.
Задачами генетики на современном этапе являются исследование качественных и количественных характеристик наследственного материала, анализ структуры и функционирования генотипа, расшифровка тонкой структуры гена и методов регуляции генной активности, поиск генов, вызывающих развитие наследственных болезней человека и методов их «исправления», создание нового поколения лекарственных препаратов по типу ДНК-вакцин, конструирование с помощью средств генной и клеточной инженерии организмов с новыми свойствами, которые могли бы производить необходимые человеку лекарственные препараты и продукты питания, а также полная расшифровка генома человека.
Наследственность и изменчивость — свойства организмов
Наследственность — это способность организмов передавать свои признаки и свойства в ряду поколений.
Изменчивость — свойство организмов приобретать новые признаки в течение жизни.
Признаки — это любые морфологические, физиологические, биохимические и иные особенности организмов, по которым одни из них отличаются от других, например цвет глаз. Свойствами же называют любые функциональные особенности организмов, в основе которых лежит определенный структурный признак или группа элементарных признаков.
Признаки организмов можно разделить на качественные и количественные. Качественные признаки имеют два-три контрастных проявления, которые называют альтернативными признаками, например голубой и карий цвет глаз, тогда как количественные (удойность коров, урожайность пшеницы) не имеют четко выраженных различий.
Материальным носителем наследственности является ДНК. У эукариот различают два типа наследственности: генотипическую и цитоплазматическую. Носители генотипической наследственности локализованы в ядре и далее речь пойдет именно о ней, а носителями цитоплазматической наследственности являются находящиеся в митохондриях и пластидах кольцевые молекулы ДНК. Цитоплазматическая наследственность передается в основном с яйцеклеткой, поэтому называется также материнской.
В митохондриях клеток человека локализовано небольшое количество генов, однако их изменение может оказывать существенное влияние на развитие организма, например приводить к развитию слепоты или постепенному снижению подвижности. Пластиды играют не менее важную роль в жизни растений. Так, в некоторых участках листа могут присутствовать бесхлорофильные клетки, что приводит, с одной стороны, к снижению продуктивности растения, а с другой — такие пестролистные организмы ценятся в декоративном озеленении. Воспроизводятся такие экземпляры в основном бесполым способом, так как при половом размножении чаще получаются обычные зеленые растения.
Методы генетики
1. Гибридологический метод, или метод скрещиваний, заключается в подборе родительских особей и анализе потомства. При этом о генотипе организма судят по фенотипическим проявлениям генов у потомков, полученных при определенной схеме скрещивания. Это старейший информативный метод генетики, который наиболее полно впервые применил Г. Мендель в сочетании со статистическим методом. Данный метод неприменим в генетике человека по этическим соображениям.
2. Цитогенетический метод основан на исследовании кариотипа: числа, формы и величины хромосом организма. Изучение этих особенностей позволяет выявить различные патологии развития.
3. Биохимический метод позволяет определять содержание различных веществ в организме, в особенности их избыток или недостаток, а также активность целого ряда ферментов.
4. Молекулярно-генетические методы направлены на выявление вариаций в структуре и расшифровку первичной последовательности нуклеотидов исследуемых участков ДНК. Они позволяют выявить гены наследственных болезней даже у эмбрионов, установить отцовство и т. д.
5. Популяционно-статистический метод позволяет определить генетический состав популяции, частоту определенных генов и генотипов, генетический груз, а также наметить перспективы развития популяции.
6. Метод гибридизации соматических клеток в культуре позволяет определить локализацию определенных генов в хромосомах при слиянии клеток различных организмов, например, мыши и хомяка, мыши и человека и т. д.
Основные генетические понятия и символика
Ген — это участок молекулы ДНК, или хромосомы, несущий информацию об определенном признаке или свойстве организма.
Некоторые гены могут оказывать влияние на проявление сразу нескольких признаков. Такое явление называется плейотропией. Например, ген, обусловливающий развитие наследственного заболевания арахнодактилии (паучьи пальцы), вызывает также искривление хрусталика, патологии многих внутренних органов.
Каждый ген занимает в хромосоме строго определенное место — локус. Так как в соматических клетках большинства эукариотических организмов хромосомы парные (гомологичные), то в каждой из парных хромосом находится по одной копии гена, отвечающего за определенный признак. Такие гены называются аллельными.
Аллельные гены чаще всего существуют в двух вариантах — доминантном и рецессивном. Доминантной называют аллель, которая проявляется вне зависимости от того, какой ген находится в другой хромосоме, и подавляет развитие признака, кодируемого рецессивным геном. Доминантные аллели обозначаются обычно прописными буквами латинского алфавита (A, B, C и др.), а рецессивные — строчными (a, b, c и др.). Рецессивные аллели могут проявляться только в том случае, если они занимают локусы в обеих парных хромосомах.
Организм, у которого в обеих гомологичных хромосомах находятся одинаковые аллели, называется гомозиготным по данному гену, или гомозиготой (AA, aa, ААBB, ааbb и т. д.), а организм, у которого в обеих гомологичных хромосомах находятся разные варианты гена — доминантный и рецессивный — называется гетерозиготным по данному гену, или гетерозиготой (Aa, АаBb и т. д.).
Ряд генов может иметь три и более структурных варианта, например группы крови по системе AB0 кодируются тремя аллелями — IA, IB, i. Такое явление называется множественным аллелизмом. Однако даже в этом случае каждая хромосома из пары несет только одну аллель, то есть все три варианта гена у одного организма не могут быть представлены.
Геном — совокупность генов, характерная для гаплоидного набора хромосом.
Генотип — совокупность генов, характерная для диплоидного набора хромосом.
Фенотип — совокупность признаков и свойств организма, которая является результатом взаимодействия генотипа и окружающей среды.
Поскольку организмы отличаются между собой многими признаками, установить закономерности их наследования можно только при анализе двух и более признаков в потомстве. Скрещивание, при котором рассматривается наследование и проводится точный количественный учет потомства по одной паре альтернативных признаков, называется моногибридным, по двум парам — дигибридным, по большему количеству признаков — полигибридным.
По фенотипу особи далеко не всегда можно установить ее генотип, поскольку как гомозиготный по доминантному гену организм (АА), так и гетерозиготный (Аа) будет иметь в фенотипе проявление доминантной аллели. Поэтому для проверки генотипа организма с перекрестным оплодотворением применяют анализирующее скрещивание — скрещивание, при котором организм с доминантным признаком скрещивается с гомозиготным по рецессивному гену. При этом гомозиготный по доминантному гену организм не будет давать расщепления в потомстве, тогда как в потомстве гетерозиготных особей наблюдается равное количество особей с доминантным и рецессивным признаками.
Для записи схем скрещиваний чаще всего применяются следующие условные обозначения:
Р (от лат. парента — родители) — родительские организмы;
$♀$ (алхимический знак Венеры — зеркало с ручкой) — материнская особь;
$♂$ (алхимический знак Марса — щит и копье) — отцовская особь;
$×$ — знак скрещивания;
F1, F2, F3 и т. д. — гибриды первого, второго, третьего и последующих поколений;
Fа — потомство от анализирующего скрещивания.
Хромосомная теория наследственности
Основоположник генетики Г. Мендель, равно как и его ближайшие последователи, не имели ни малейшего представления о материальной основе наследственных задатков, или генов. Однако уже в 1902–1903 годах немецкий биолог Т. Бовери и американский студент У. Сэттон независимо друг от друга предположили, что поведение хромосом при созревании клеток и оплодотворении позволяет объяснить расщепление наследственных факторов по Менделю, т. е., по их мнению, гены должны быть расположены в хромосомах. Данные предположения стали краеугольным камнем хромосомной теории наследственности.
В 1906 году английские генетики У. Бэтсон и Р. Пеннет обнаружили нарушение менделевского расщепления при скрещивании душистого горошка, а их соотечественник Л. Донкастер в экспериментах с бабочкой крыжовенной пяденицей открыл сцепленное с полом наследование. Результаты этих экспериментов явно противоречили менделевским, но если учесть, что к тому времени уже было известно о том, что количество известных признаков для экспериментальных объектов намного превышало количество хромосом, а это наводило на мысль, что каждая хромосома несет более одного гена, а гены одной хромосомы наследуются совместно.
В 1910 году начинаются эксперименты группы Т. Моргана на новом экспериментальном объекте — плодовой мушке дрозофиле. Результаты этих экспериментов позволили к середине 20-х годов XX века сформулировать основные положения хромосомной теории наследственности, определить порядок расположения генов в хромосомах и расстояния между ними, т. е. составить первые карты хромосом.
Основные положения хромосомной теории наследственности:
- Гены расположены в хромосомах. Гены одной хромосомы наследуются совместно, или сцепленно, и называются группой сцепления. Число групп сцепления численно равно гаплоидному набору хромосом.
- Каждый ген занимает в хромосоме строго определенное место — локус.
- Гены в хромосомах расположены линейно.
- Нарушение сцепления генов происходит только в результате кроссинговера.
- Расстояние между генами в хромосоме пропорционально проценту кроссинговера между ними.
- Независимое наследование характерно только для генов негомологичных хромосом.
Современные представления о гене и геноме
В начале 40-х годов ХХ века Дж. Бидл и Э. Тейтум, анализируя результаты генетических исследований, проведенных на грибе нейроспоре, пришли к выводу, что каждый ген контролирует синтез какого-либо фермента, и сформулировали принцип «один ген — один фермент».
Однако уже в 1961 году Ф. Жакобу, Ж. Л. Моно и А. Львову удалось расшифровать структуру гена кишечной палочки и исследовать регуляцию его активности. За это открытие им в 1965 году была присуждена Нобелевская премия по физиологии и медицине.
В процессе исследования, кроме структурных генов, контролирующих развитие определенных признаков, им удалось выявить и регуляторные, основной функцией которых является проявление признаков, кодируемых другими генами.
Структура прокариотического гена. Структурный ген прокариот имеет сложное строение, поскольку в его состав входят регуляторные участки и кодирующие последовательности. К регуляторным участкам относятся промотор, оператор и терминатор. Промотором называют участок гена, к которому прикрепляется фермент РНК-полимераза, обеспечивающий синтез иРНК в процессе транскрипции. С оператором, располагающимся между промотором и структурной последовательностью, может связываться белок-репрессор, не позволяющий РНК-полимеразе начать считывание наследственной информации с кодирующей последовательности, и только его удаление позволяет начать транскрипцию. Структура репрессора закодирована обычно в регуляторном гене, находящемся в другом участке хромосомы. Считывание информации заканчивается на участке гена, который называется терминатором.
Кодирующая последовательность структурного гена содержит информацию о последовательности аминокислот в соответствующем белке. Кодирующую последовательность у прокариот называют цистроном, а совокупность кодирующих и регуляторных участков гена прокариот — опероном. В целом прокариоты, к которым относится и кишечная палочка, имеют сравнительно небольшое количество генов, расположенных в единственной кольцевой хромосоме.
Цитоплазма прокариот может содержать также дополнительные небольшие кольцевые или незамкнутые молекулы ДНК, которые называются плазмидами. Плазмиды способны встраиваться в хромосомы и передаваться от одной клетки к другой. Они могут нести информацию о половых признаках, патогенности и устойчивости к антибиотикам.
Структура эукариотического гена. В отличие от прокариот, гены эукариот не имеют оперонной структуры, поскольку не содержат оператора, и каждый структурный ген сопровождается только промотором и терминатором. Кроме того, в генах эукариот значащие участки (экзоны) чередуются с незначащими (интронами), которые полностью переписываются на иРНК, а затем вырезаются в процессе их созревания. Биологическая роль интронов состоит в снижении вероятности мутаций в значащих участках. Регуляция генов эукариот намного сложнее, нежели описанная для прокариот.
Геном человека. В каждой клетке человека в 46 хромосомах находится около 2 м ДНК, плотно упакованной в двойную спираль, которая состоит примерно из 3,2 $×$ 109 нуклеотидных пар, что обеспечивает около 101900000000 возможных уникальных комбинаций. К концу 80-х годов ХХ века было известно расположение примерно 1500 генов человека, однако их общее количество оценивали примерно в 100 тыс., поскольку только наследственных болезней у человека имеется примерно 10 тыс., не говоря уже о количестве разнообразных белков, содержащихся в клетках.
В 1988 году стартовал международный проект «Геном человека», который к началу XXI века закончился полной расшифровкой последовательности нуклеотидов. Он дал возможность понять, что два разных человека на 99,9 % имеют сходные последовательности нуклеотидов, и лишь остающиеся 0,1 % определяют нашу индивидуальность. Всего было обнаружено примерно 30–40 тыс. структурных генов, однако затем их количество было снижено до 25–30 тыс. Среди этих генов имеются не только уникальные, но и повторяющиеся сотни и тысячи раз. Тем не менее данные гены кодируют гораздо большее количество белков, например десятки тысяч защитных белков — иммуноглобулинов.
97 % нашего генома является генетическим «мусором», который существует только потому, что умеет хорошо воспроизводиться (РНК, которые транскрибируются на этих участках, никогда не покидают ядро). Например, среди наших генов есть не только «человеческие» гены, но и 60 % генов, похожих на гены мушки дрозофилы, а с шимпанзе нас роднит до 99 % генов.
Параллельно с расшифровкой генома происходило и картирование хромосом, вследствие этого удалось не только обнаружить, но и определить расположение некоторых генов, отвечающих за развитие наследственных заболеваний, а также генов-мишеней лекарственных препаратов.
Расшифровка генома человека пока не дает прямого эффекта, поскольку мы получили своеобразную инструкцию по сборке такого сложного организма, как человек, но не научились изготавливать его или хотя бы исправлять погрешности в нем. Тем не менее эра молекулярной медицины уже на пороге, во всем мире идет разработка так называемых генопрепаратов, которые смогут блокировать, удалять или даже замещать патологические гены у живых людей, а не только в оплодотворенной яйцеклетке.
Не следует забывать и о том, что в эукариотических клетках ДНК содержится не только в ядре, но также в митохондриях и пластидах. В отличие от ядерного генома, организация генов митохондрий и пластид имеет много общего с организацией генома прокариот. Несмотря на то что эти органеллы несут менее 1 % наследственной информации клетки и не кодируют даже полного набора белков, необходимых для их собственного функционирования, они способны существенно влиять на некоторые признаки организма. Так, пестролистность у растений хлорофитума, плюща и других наследует незначительное число потомков даже при скрещивании двух пестролистных растений. Это обусловлено тем, что пластиды и митохондрии передаются большей частью с цитоплазмой яйцеклетки, поэтому такая наследственность называется материнской, или цитоплазматической, в отличие от генотипической, которая локализуется в ядре.
Закономерности наследственности, их цитологические основы. Закономерности
наследования, установленные Г. Менделем, их цитологические основы (моно- и дигибридное
скрещивание). Законы Т. Моргана: сцепленное наследование признаков, нарушение
сцепления генов. Генетика пола. Наследование признаков, сцепленных с полом.
Взаимодействие генов. Генотип как целостная система. Генетика человека. Методы изучения
генетики человека. Решение генетических задач. Составление схем скрещивания
Закономерности наследственности, их цитологические основы
Согласно хромосомной теории наследственности каждая пара генов локализована в паре гомологичных хромосом, причем каждая из хромосом несет только по одному из этих факторов. Если представить, что гены являются точечными объектами на прямых — хромосомах, то схематически гомозиготные особи могут быть записаны как A||A или a||a, тогда как гетерозиготная — A||a. При образовании гамет в процессе мейоза каждый из генов пары гетерозиготы окажется в одной из половых клеток.
Например, если скрестить двух гетерозиготных особей, то при условии образования у каждой из них только пары гамет возможно получение всего лишь четырех дочерних организмов, три из которых будут нести хотя бы один доминантный ген А, и только один будет гомозиготен по рецессивному гену а, т. е. закономерности наследственности носят статистический характер.
В тех случаях, если гены располагаются в разных хромосомах, то при образовании гамет распределение между ними аллелей из данной пары гомологичных хромосом происходит совершенно независимо от распределения аллелей из других пар. Именно случайное расположение гомологичных хромосом на экваторе веретена в метафазе I мейоза и их последующее расхождение в анафазе I ведет к разнообразию рекомбинаций аллелей в гаметах.
Число возможных сочетаний аллелей в мужских или женских гаметах можно определить по общей формуле 2n, где n — число хромосом, характерное для гаплоидного набора. У человека n = 23, а возможное число сочетаний составляет 223 = 8388608. Последующее объединение гамет при оплодотворении является также случайным, и поэтому в потомстве можно зафиксировать независимое расщепление по каждой паре признаков.
Однако число признаков у каждого организма во много раз больше числа его хромосом, которые можно различить под микроскопом, следовательно, каждая хромосома должна содержать множество факторов. Если представить себе, что у некоторой особи, гетерозиготной по двум парам генов, расположенных в гомологичных хромосомах, образуются гаметы, то следует учитывать не только вероятность образования гамет с исходными хромосомами, но и гамет, получивших измененные в результате кроссинговера в профазе I мейоза хромосомы. Следовательно, в потомстве возникнут новые сочетания признаков. Данные, полученные в экспериментах на дрозофиле, легли в основу хромосомной теории наследственности.
Другое фундаментальное подтверждение цитологической основы наследственности было получено при исследовании различных заболеваний. Так, у человека одна из форм рака обусловлена утратой маленького участка одной из хромосом.
Закономерности наследования, установленные Г. Менделем, их цитологические основы
(моно- и дигибридное скрещивание)
Основные закономерности независимого наследования признаков были открыты Г. Менделем, который достиг успеха, применив в своих исследованиях новый на тот момент гибридологический метод.
Успех Г. Менделя был обеспечен следующими факторами:
- удачным выбором объекта исследования (гороха посевного), который имеет короткий срок вегетации, является самоопыляемым растением, дает значительное количество семян и представлен большим количеством сортов с хорошо различимыми признаками;
- использованием только чистых линий гороха, которые на протяжении нескольких поколений не давали расщепления признаков в потомстве;
- концентрацией только на одном-двух признаках;
- планированием эксперимента и составлением четких схем скрещивания;
- точным количественным подсчетом полученного потомства.
Для исследования Г. Мендель отобрал только семь признаков, имеющих альтернативные (контрастные) проявления. Уже в первых скрещиваниях он обратил внимание, что в потомстве первого поколения при скрещивании растений с желтыми и зелеными семенами все потомство имело желтые семена. Аналогичные результаты были получены и при исследовании других признаков. Признаки, которые преобладали в первом поколении, Г. Мендель назвал доминантными. Те же из них, которые не проявлялись в первом поколении, получили название рецессивных.
Особи, которые давали расщепление в потомстве, получили название гетерозиготных, а особи, не дававшие расщепления, — гомозиготных.
Признаки гороха, наследование которых изучено Г. Менделем
Признак | Вариант проявления | |
Доминантный | Рецессивный | |
Окраска семян | Желтая | Зеленая |
Форма семян | Гладкая | Морщинистая |
Форма плода (боба) | Простой | Членистый |
Окраска плода | Зеленая | Желтая |
Окраска венчика цветка | Красная | Белая |
Положение цветков | Пазушные | Верхушечные |
Длина стебля | Длинный | Короткий |
Скрещивание, при котором исследуется проявление только одного признака, называется моногибридным. В таком случае прослеживаются закономерности наследования только двух вариантов одного признака, развитие которых обусловлено парой аллельных генов. Например, признак «окраска венчика цветка» у гороха имеет только два проявления — красная и белая. Все остальные признаки, свойственные данным организмам, во внимание не принимаются и не учитываются в расчетах.
Схема моногибридного скрещивания такова:
Скрестив два растения гороха, одно из которых имело желтые семена, а другое — зеленые, в первом поколении Г. Мендель получал растения исключительно с желтыми семенами, независимо от того, какое растение было выбрано в качестве материнского, а какое — отцовского. Такие же результаты были получены и в скрещиваниях по другим признакам, что дало Г. Менделю основания сформулировать закон единообразия гибридов первого поколения, который также называют первым законом Менделя и законом доминирования.
Первый закон Менделя:
При скрещивании гомозиготных родительских форм, отличающихся по одной паре альтернативных признаков, все гибриды первого поколения будут единообразны как по генотипу, так и по фенотипу.
А — желтые семена; а — зеленые семена.
При самоопылении (скрещивании) гибридов первого поколения оказалось, что 6022 семени имеют желтую окраску, а 2001 — зеленую, что примерно соответствует соотношению 3:1. Обнаруженная закономерность получила название закона расщепления, или второго закона Менделя.
Второй закон Менделя:
При скрещивании гетерозиготных гибридов первого поколения в потомстве будет наблюдаться преобладание одного из признаков в соотношении 3:1 по фенотипу (1:2:1 по генотипу).
Однако по фенотипу особи далеко не всегда удается установить ее генотип, поскольку как гомозиготы по доминантному гену (АА), так и гетерозиготы (Аа) будут иметь в фенотипе проявление доминантного гена. Поэтому для организмов с перекрестным оплодотворением применяют анализирующее скрещивание — скрещивание, при котором организм с неизвестным генотипом скрещивается с гомозиготой по рецессивному гену для проверки генотипа. При этом гомозиготные особи по доминантному гену расщепления в потомстве не дают, тогда как в потомстве гетерозиготных наблюдается равное количество особей как с доминантным, так и с рецессивным признаками:
Основываясь на результатах собственных экспериментов, Г. Мендель предположил, что наследственные факторы при образовании гибридов не смешиваются, а сохраняются в неизменном виде. Поскольку связь между поколениями осуществляется через гаметы, то он допустил, что в процессе их образования в каждую из гамет попадает только один фактор из пары (т. е. гаметы генетически чисты), а при оплодотворении пара восстанавливается. Эти предположения получили название правила чистоты гамет.
Правило чистоты гамет:
При гаметогенезе гены одной пары разделяются, т. е. каждая гамета несет только один вариант гена.
Однако организмы отличаются друг от друга по многим признакам, поэтому установить закономерности их наследования возможно только при анализе двух и более признаков в потомстве.
Скрещивание, при котором рассматривается наследование и производится точный количественный учет потомства по двум парам признаков, называется дигибридным. Если же анализируется проявление большего числа наследственных признаков, то это уже полигибридное скрещивание.
Схема дигибридного скрещивания:
При большем разнообразии гамет определение генотипов потомков становится затруднительным, поэтому для анализа широко используется решетка Пеннета, в которую по горизонтали заносятся мужские гаметы, а по вертикали — женские. Генотипы потомков определяются сочетанием генов в столбцах и строках.
$♀$/$♂$ | aB | ab |
AB | AaBB | AaBb |
Ab | AaBb | Aabb |
Для дигибридного скрещивания Г. Мендель выбрал два признака: окраску семян (желтую и зеленую) и их форму (гладкую и морщинистую). В первом поколении соблюдался закон единообразия гибридов первого поколения, а во втором поколении было 315 желтых гладких семян, 108 — зеленых гладких, 101 — желтое морщинистое и 32 зеленых морщинистых. Подсчет показал, что расщепление приближалось к 9:3:3:1, но по каждому из признаков сохранялось соотношение 3:1 (желтые — зеленые, гладкие — морщинистые). Эта закономерность получила название закона независимого расщепления признаков, или третьего закона Менделя.
Третий закон Менделя:
При скрещивании гомозиготных родительских форм, отличающихся по двум и более парам признаков, во втором поколении будет происходить независимое расщепление данных признаков в соотношении 3:1 (9:3:3:1 при дигибридном скрещивании).
$♀$/$♂$ | AB | Ab | aB | ab |
AB | AABB | AABb | AaBB | AaBb |
Ab | AABb | AAbb | AaBb | Aabb |
aB | AaBB | AaBb | aaBB | aaBb |
ab | AaBb | Aabb | aaBb | aabb |
$F_2 {9A_B_}↙{text»желтые гладкие»} : {3A_bb}↙{text»желтые морщинистые»} : {3aaB_}↙{text»зеленые гладкие»} : {1aabb}↙{text»зеленые морщинистые»}$
Третий закон Менделя применим только к случаям независимого наследования, когда гены расположены в разных парах гомологичных хромосом. В тех случаях, когда гены расположены в одной паре гомологичных хромосом, действительны закономерности сцепленного наследования. Закономерности независимого наследования признаков, установленные Г. Менделем, также часто нарушаются и при взаимодействии генов.
Решение генетических задач. Составление схем скрещивания
Все разнообразие генетических задач можно свести к трем типам:
- Расчетные задачи.
- Задачи на определение генотипа.
- Задачи на установление типа наследования признака.
Особенностью расчетных задач является наличие информации о наследовании признака и фенотипах родителей, по которым легко установить и генотипы родителей. В них требуется установить генотипы и фенотипы потомства.
Задача 1. Какую окраску будут иметь семена сорго, полученного в результате скрещивания чистых линий этого растения с темной и светлой окраской семян, если известно, что темная окраска доминирует над светлой? Какую окраску будут иметь семена растений, полученных от самоопыления этих гибридов?
Решение.
1. Обозначаем гены:
А — темная окраска семян, а — светлая окраска семян.
2. Составляем схему скрещивания:
а) сначала записываем генотипы родителей, которые по условию задачи являются гомозиготными:
$Р {♀АА}↙{text»темные семена»}×{♂аа}↙{text»светлые семена»}$
б) затем записываем гаметы в соответствии с правилом чистоты гамет:
Гаметы А a
в) попарно сливаем гаметы и записываем генотипы потомков:
F1 Аа
г) согласно закону доминирования все гибриды первого поколения будут иметь темную окраску, поэтому подписываем под генотипом фенотип.
Фенотип темные семена
3. Записываем схему следующего скрещивания:
Ответ: в первом поколении все растения будут иметь темную окраску семян, а во втором 3/4 растений будут иметь темные семена, а 1/4 — светлые.
Задача 2. У крыс черная окраска шерсти доминирует над бурой, а нормальная длина хвоста — над укороченным хвостом. Сколько потомков во втором поколении от скрещивания гомозиготных крыс с черной шерстью и нормальным хвостом с гомозиготными крысами с бурой шерстью и укороченным хвостом имели черную шерсть и укороченный хвост, если всего родилось 80 крысят?
Решение.
1. Записываем условие задачи:
А — черная шерсть, а — бурая шерсть;
В — нормальная длина хвоста, b — укороченный хвост.
F2 А_bb ?
2. Записываем схему скрещивания:
Примечание. Следует помнить, что буквенные обозначения генов записываются в алфавитном порядке, при этом в генотипах прописная буква всегда будет идти перед строчной: А — перед а, В — перед b и т. д.
Из решетки Пеннета следует, что доля крысят с черной шерстью и укороченным хвостом составляла 3/16.
3. Рассчитываем количество крысят с указанным фенотипом в потомстве второго поколения:
80 × 3/16 × 15.
Ответ: 15 крысят имели черную шерсть и укороченный хвост.
В задачах на определение генотипа также приводится характер наследования признака и ставится задание определить генотипы потомства по генотипам родителей или наоборот.
Задача 3. В семье, где отец имел ІІІ (В) группу крови по системе AB0, а мать — ІІ (А) группу, родился ребенок с І (0) группой крови. Определите генотипы родителей.
Решение.
1. Вспоминаем характер наследования групп крови:
Наследование групп крови по системе AB0
Фенотип | Генотип |
I (0) | ii |
II (A) | IAIA или IAi |
III (B) | IBIB или IBi |
IV (AB) | IAIB |
2. Так как возможно по два варианта генотипов со II и III группами крови, схему скрещивания записываем следующим образом:
3. Из приведенной схемы скрещивания видим, что ребенок получил от каждого из родителей рецессивные аллели i, следовательно, родители были гетерозиготными по генам группы крови.
4. Дополняем схему скрещивания и проводим проверку наших предположений:
Таким образом, наши предположения подтвердились.
Ответ: родители гетерозиготны по генам групп крови: генотип матери — IAi, генотип отца — IВi.
Задача 4. Дальтонизм (цветовая слепота) наследуется как сцепленный с полом рецессивный признак. Какие дети могут родиться у мужчины и женщины, которые нормально различают цвета, хотя их родители были дальтониками, а матери и их родственники здоровы?
Решение.
1. Обозначаем гены:
ХD — нормальное цветовое зрение;
Хd — дальтонизм.
2. Устанавливаем генотипы мужчины и женщины, отцы которых были дальтониками.
3. Записываем схему скрещивания для определения возможных генотипов детей:
Ответ: у всех девочек будет нормальное цветовое зрение (однако 1/2 девочек будет носителями гена дальтонизма), 1/2 мальчиков будет здорова, а 1/2 будет больна дальтонизмом.
В задачах на определение характера наследования признака приводятся только фенотипы родителей и потомства. Вопросами таких задач является именно выяснение характера наследования признака.
Задача 5. От скрещивания кур с короткими ногами было получено 240 цыплят, 161 из которых были коротконогими, а остальные — длинноногими. Как наследуется этот признак?
Решение.
1. Определяем расщепление в потомстве:
161 : 79 $≈$ 2 : 1.
Такое расщепление характерно для скрещиваний в случае летальных генов.
2. Так как кур с короткими ногами было вдвое больше, чем с длинными, допустим, что это доминантный признак, и именно этой аллели свойственен летальный эффект. Тогда исходные куры были гетерозиготными. Обозначаем гены:
С — короткие ноги, с — длинные ноги.
3. Записываем схему скрещивания:
Наши предположения подтвердились.
Ответ: коротконогость доминирует над длинноногостью, этой аллели свойствен летальный эффект.
Попытки скрещивать растения и изучать полученное потомство предпринимались исследователями и раньше. Но определенные выводы ученые сделать не смогли из-за большого разнообразия признаков среди потомков. И, поскольку, основы гибридологического анализа отсутствовали, а статистику для исследования наследственности никто не применял, ни один из исследователей не смог определить точные формулы наследования.
Для своих опытов Мендель выбрал горох не случайно:
- Это неприхотливое растение легко выращивать, и в условиях теплой погоды в Чехии за один год можно получить несколько поколений.
- Потомство одного семени довольно многочисленно: вспомните, сколько стручков на растении, выросшем из одной горошины.
- Сорта гороха разнообразны в своих фенотипических проявлениях, а отличительные признаки наследуются.
- Горох — самоопыляющееся растение. Это значит, что опыление происходит внутри одного цветка. Пыльца с другого растения в дикой природе попасть в другой цветок не может, поскольку органы размножения гороха защищены от проникновения пыльцы с других растений.
- И вместе с тем, у исследователя есть возможность после удаления тычинок материнского растения искусственно перенести пыльцу с другого растения с помощью инструментов для получения растений-гибридов.
- Гибриды, полученные в результате искусственного оплодотворения, способны давать свое потомство, что важно для прослеживания наследования признаков в поколениях.
Для того, чтобы оценить масштабы проделанной ученым работы, представьте, что на всех семеноводческих хозяйствах Чехии ученый заказал сорта выращиваемого там гороха. В результате ему прислали 34 образца, из которых для исследований он отобрал 22 варианта.
Условием отбора было то, что все растения, выращенные из семян одного сорта, при самоопылении походили на родительские растения как две капли воды, т.е. не давали расщепления по исследуемым качествам или принадлежали к «чистым линиям».
Исследуемый Менделем горох отличался по следующим признакам:
- цвет семян (желтый или зеленый);
- вид кожуры семян (гладкая или сморщенная);
- высота стебля (высокое растение или низкое);
- оттенок цветков (белые или розовые);
- форма бобов (простые или членистые);
- расположение цветов (верхушечные или пазушные).
В своих опытах Мендель учел ошибки предшественников, которые пытались сравнивать растения одновременно по разным признакам и потерпели фиаско.
Исследователь решил начать с изучения наследования лишь одного признака — цвета горошин. Именно благодаря тому, что ученый сознательно сузил задачу, его ждал успех и он смог четко установить определенные закономерности наследования.
Грегори Мендель начал анализ со скрещивания родителей, у которых отличались лишь одна пара признаков, такой тип скрещивания естествоиспытатель назвал моногибридным.
Мендель вручную оплодотворил растения, семена которых имели желтый цвет кожуры, пыльцой с растений с зеленой кожурой. Когда ученый собрал урожай высаженных растений, то обнаружил, что кожура у всех потомков желтая.
Повторив эксперименты с морщинистыми и гладкими горошинами, с кустами гороха разной высоты, растениями с разной окраской цветков и стручков и т.д., Мендель отметил, что все потомки в первом поколении унаследовали признак одного из родительских организмов, т.е. по фенотипу не отличаются друг от друга.
Ведущее свойство, характерное для всех семян, полученных в первом поколении, Мендель обозначил как доминантное. Свойство другого родителя, которое не проявилось у гибридов первого поколения, ученый определил как рецессивное. Закономерность получила название первого закона Менделя, или закона единообразия гибридов I-го поколения, или закона доминирования.
Все выращенные образцы нужно было собрать, сосчитать и выделить определенные закономерности. Одним из первых Мендель использовал и применил конкретные количественные методы для обработки данных. Зная о теории вероятности, он понимал необходимость исследования большого числа семян гороха, полученных в результате скрещиваний, чтобы избежать статистической ошибки из-за случайных отклонений.
Для выведения законов наследования Мендель изучил более двадцати тысяч семян — гибридов второго поколения. Согласитесь, для обычного монаха, который жил в конце XIX века, без доступа к современным исследовательским инструментам, с лупой и микроскопом, в перерывах между молитвами и проповедями — это ли не подвиг!
Горох – самоопыляющееся растение, поэтому в следующем поколении ученый предоставил работу по опылению матушке-природе, чем облегчил себе задачу исследовательскую, но не статистическую. Учитывая, что способ размножения гороха – половой, неопыленные цветки просто-напросто не дадут потомство, и случайные отклонения не искажали итоги экспериментов с растениями.
Мендель продолжил опыты с одинаково желтыми гибридами первого поколения. И для исследователя было большим сюрпризом увидеть примерно треть зеленых горошин в корзинке семян с новым урожаем.
Когда ученый проанализировал результаты экспериментов с гибридами второго поколения, он увидел следующую закономерность: гибриды разделились на два различных по внешнему виду, т.е. фенотипу, класса. Бо´льшая часть унаследовала доминантные признаки, меньшая — рецессивные.
При точном подсчете соотношение между семенами гороха с доминантными и рецессивными признаками составило 3 к 1 соответственно. Что позволило Менделю вывести второй закон Менделя, или закон расщепления, который звучит так: «При скрещивании двух гетерозиготных гибридов первого поколения во втором поколении отмечается расщепление в соотношении 3:1 по фенотипу, и 1:2:1 по генотипу».
Чтобы ответить на вопрос, почему происходит расщепление признака именно в таком соотношении, Мендель выдвинул гипотезу о «чистоте гамет», согласно которой аллельные гены не смешиваются у потомка, а остаются в неизмененном виде. А в размножении следующего поколения в фазе мейоза в гамету попадает только одна хромосома из пары гомологичных. Т.е. гаметы условно чисты относительно другого гена из аллельной пары.
Далее ученый начал проводить опыты с растениями, у которых отличались две пары признаков, и использовал гомозиготные семена гороха, отличающиеся цветом и формой семян. Такой тип скрещивания ученый назвал дигибридным. Для определения гомозиготности растений он использовал анализирующее скрещивание
У потомков во втором поколении треть горошин имеет проявления доминантного фенотипа, однако при этом отличается по генотипу (Аа и АА). И чтобы определить генотип, Мендель использовал семена с проявлениями рецессивного признака. Поскольку рецессивные свойства проявляются только в гомозиготном состоянии генов (аа), потомки, в зависимости от генотипа исходной особи, будут иметь единый фенотип, если родительская особь гомозиготна, согласно 1 закону Менделя, либо произойдет расщепление в соотношении 1:1.
В результате искусственного опыления гладких (B) и желтых (A) растений с морщинистыми (b) и зелеными(a), в первом поколении все растения дали потомство с желтыми гладкими горошинами, что подтвердило первый закон Менделя о единообразии гибридов первого поколения при дигибридном скрещивании.
Замеченные Менделем закономерности о наследовании генов подтвердились при анализе итогов экспериментов со всеми семью парами признаков. В ходе анализа результатов ученый пришел к выводу об универсальности закономерностей наследования и вывел Третий закон Менделя, или закон независимого распределения признаков.
Под этим подразумевается, что каждый ген одной аллельной пары может оказаться в гамете с любым другим геном из другой аллельной пары. В опытах по скрещиванию организмов с гомозиготным набором генов, при анализе по двум и более парам отличающихся качеств, у гибридов в третьем поколении (получены при скрещивании гибридов второго поколения) наблюдается независимое комбинирование свойств и кодирующих их генов разных аллельных пар.
Опыты ученого, проведенные с тысячами гороховых зерен в монастырском саду, и тщательная статистическая работа по анализу признаков, проявившихся у потомков, позволили ученому доложить на заседании Общества естествоиспытателей в г. Брно в 1865 году о своих выводах.
Мендель утверждал, что:
- при размножении семян передается не само качество, а так называемые «факторы», ответственные за эти признаки (понятие ген в биологии в то время еще не существовало);
- организм наследует по одному «фактору» от каждого родителя;
- «фактор» может быть доминантным по отношению к другому, рецессивному;
- свойство, соответствующее «фактору» не смешивается с другими свойствами, как об этом в то время думали учёные. Признак может проявляться или не проявляться, но нет промежуточной ситуации.
Хотя в последнем пункте Мендель был не прав, и последующие опыты с окраской цветков ночной красавицы показали существование неполного доминирования.
Научный труд монаха-исследователя опубликовали в «Трудах общества естествоиспытателей» под заголовком «Опыты над растительными гибридами». Но современники не оценили исследование Грегора Менделя и долгие 35 лет «Опыты» пролежали на пыльной полке библиотеки аббатства.
Из-за неудачи с другими растениями и пчелами сам Мендель разочаровался в своем открытии. А с 1868 года, после того, как получил сан аббата монастыря, биологией больше не занимался.
И только в начале XX века, благодаря пересмотру законов Менделя, генетика смогла сделать огромный шаг вперед.
Практическое занятие № 2
Тема: «Составление простейших схем моногибридного скрещивания»
Цель: Научиться составлять простейшие схемы моногибридного скрещивания на основе предложенных данных.
Оборудование: учебник, тетрадь, условия задач, ручка.
Время выполнения: 1 час.
Ход работы:
1. Вспомнить основные законы наследования признаков.
2. Коллективный разбор задач на моногибридное скрещивание.
3. Самостоятельное решение задач на моногибридное скрещивание, подробно описывая ход решения и сформулировать полный ответ.
Задачи на моногибридное скрещивание
Задача № 1. У крупного рогатого скота ген, обусловливающий черную окраску шерсти, доминирует над геном, определяющим красную окраску. Какое потомство можно ожидать от скрещивания гомозиготного черного быка и красной коровы?
Разберем решение этой задачи. Вначале введем обозначения. В генетике для генов приняты буквенные символы: доминантные гены обозначают прописными буквами, рецессивные – строчными. Ген черной окраски доминирует, поэтому его обозначим А. Ген красной окраски шерсти рецессивен – а. Следовательно, генотип черного гомозиготного быка будет АА. Каков же генотип у красной коровы? Она обладает рецессивным признаком, который может проявиться фенотипически только в гомозиготном состоянии (организме). Таким образом, ее генотип аа. Если бы в генотипе коровы был хотя бы один доминантный ген А, то окраска шерсти у нее не была бы красной. Теперь, когда генотипы родительских особей определены, необходимо составить схему теоретического скрещивания.
Черный бык образует один тип гамет по исследуемому гену – все половые клетки будут содержать только ген А. Для удобства подсчета выписываем только типы гамет, а не все половые клетки данного животного. У гомозиготной коровы также один тип гамет – а. При слиянии таких гамет между собой образуется один, единственно возможный генотип – Аа, т.е. все потомство будет единообразно и будет нести признак родителя, имеющего доминантный фенотип – черного быка.
Р АА * аа
G А а
F Аа
Таким образом, можно записать следующий ответ: при скрещивании гомозиготного черного быка и красной коровы в потомстве следует ожидать только черных гетерозиготных телят.
Следующие задачи следует решить самостоятельно, подробно описав ход решения и сформулировав полный ответ.
Задача № 2 У человека аллель длинных ресниц доминирует над аллелем коротких. Женщина с длинными ресницами, у отца которой были короткие ресницы, вышла замуж за мужчину с короткими ресницами. Какова вероятность рождения в данной семье ребенка с длинными ресницами? Какие генотипы могут быть у детей этой супружеской пары?
Задача № 3. Какое потомство можно ожидать от скрещивания коровы и быка, гетерозиготных по окраске шерсти?
Задача № 4. У морских свинок вихрастая шерсть определяется доминантным геном, а гладкая – рецессивным. Скрещивание двух вихрастых свинок между собой дало 39 особей с вихрастой шерстью и 11 гладкошерстных животных. Сколько среди особей, имеющих доминантный фенотип, должно оказаться гомозиготных по этому признаку? Морская свинка с вихрастой шерстью при скрещивании с особью, обладающей гладкой шерстью, дала в потомстве 28 вихрастых и 26 гладкошерстных потомков. Определите генотипы родителей и потомков.
Вывод:
Вопросы для контроля
1. Какое скрещивание называют моногибридным?
2. Что такое доминирование?
3. Какой признак называют доминантным, а какой – рецессивным?
4. Охарактеризуйте с генетический позиций понятия «гомозигоный» и «гетерозигоный» организм.
5. Сформулируйте закон расщепления. Почему он так называется?
6. Что такое чистота гамет? На каком явлении основан закон чистоты гамет?
Список рекомендуемой литературы и Интернет-ресурсов
-
Константинов В.М. и др. Биология для профессий и специальностей технического и естественно-научного профилей: учебник для студентов профессиональных образовательных организаций, осваивающих профессии и специальности СПО. – М., 2017
-
Сивоглазов В.И., Агафонова И.Б., Захарова Е.Т. Биология. Общая биология: базовый уровень, 10-11 класс. – М., 2014.
-
Чебышев Н.В., Гринева Г.Г. Биология: учебник для студентов профессиональных образовательных организаций, осваивающих профессии и специальности СПО. – М., 2017.
-
www.sbio.info (Вся биология. Современная биология, статьи, новости, библиотека).
3