Как составить блок схему алгоритма с условием

Блок-схемы используются для визуального представления алгоритмов.

Определение:

Алгоритм — это последовательность шагов, ведущая к решению задачи

Определение:

Блок-схема — это схематическое изображение, иллюстрирующее последовательность операторов, которые необходимо выполнить для достижения результата

Инструкции изображаются, используя специальные символы. Символы связываются между собой стрелками, для указания порядка выполнения.

Блок-схемы широко используются при написании программ, так как они:

  • Гораздо проще для понимания, чем запись в виде команд.
  • Упрощают процесс отладки.
  • Позволяют составить эффективную программную документацию.
  • Облегчают процесс демонстрации и обсуждения программы.

Блоки, из которых составляются блок-схемы, представлены на Рисунке 1.

1234567890

Рис. 1

Рассмотрим работу с блок-схемами на примере. Для этого нарисуем блок-схему программы нахождения суммы двух чисел:

Блок-схема, показанная на Рисунке 2, иллюстрирует линейную логику. Здесь нет повторений и ветвления.

1234567890

Рис. 2

ВЕТВЛЕНИЕ

Способность сравнивать значения и исполнять, в зависимости от полученного результата, различные участки программы превращает компьютер из большого калькулятора в мощное средство решения различных практических задач. Операторы выбора применяются для:

  • Сравнения данных
  • Выбора одного из альтернативных путей решения задачи.

Например, при снятии денег с банковского счета производится сравнение снимаемой суммы с суммой на счете. Если снимаемая сумма меньше, то заказ выполняется. В противном случае происходит отказ от обслуживания.

Определение:

Ветвление — это процесс выбора из двух, или более альтернативных путей вычисления. Рассмотрим ветвление на следующих примерах:

Пример 1. Посмотрим на то, как будет выглядеть блок-схема алгоритма проверки чисел на четность:

1234567890

Рис. 3

  • Ветвление используется в том случае, когда необходимо разделить поток вычислений на два и более альтернативных варианта. Основанием для выбора маршрута является результат проверки истинности условия ветвления.

Пример 2. Рассмотрим блок-схему алгоритма, определяющего максимальное из 3-х чисел (см. рис. 4):

1234567890

Рис. 4

Как мы видим, ветвление производится, когда нам необходимо выбрать дальнейший маршрут в зависимости от истинности некоего условия, называемого также условием ветвления.

Основные типы блок-схем, использующих ветвление, представлены на Рисунке 5:

1234567890

Рис. 5

На Рисунке 5(а) представлена неполная конструкция условного ветвления. Здесь, в зависимости от выбранного маршрута движения, выполняется один или несколько вычислительных шагов, или происходит дальнейшее движение без вычислений, до момента слияния маршрутов.

На Рисунке 5(b) представлен полный вариант условного ветвления. Здесь, в зависимости от выбранного маршрута движения, выполняется одна или другая последовательность вычислений, после чего маршруты вновь сливаются.

ЦИКЛЫ

Определение:

Цикл — это многократно выполняемый участок алгоритма.

Тело цикла-это последовательность выполняемых в цикле операторов.

Итерация — однократное выполнение тела цикла.

Циклы бывают двух типов:

  • С фиксированным числом итераций
  • С переменным числом итераций

Рассмотрим различия между этими двумя типами на следующих примерах:

Пример 3. Пусть есть данные о расходах за каждый месяц года. Блок-схема алгоритма подсчитывающего расходы за год будет иметь вид:

1234567890

Рис. 6

Рисунок 6 иллюстрирует цикл с фиксированным числом итераций — число месяцев в году известно и последовательность вычислений не может быть повторена более 12 раз.

Мы читаем расходы за один месяц и добавляем их к общему результату. После этого номер месяца сравнивается с 12.

Если номер месяца равен 12, то цикл завершается, и выводятся данные о расходах за год. В противном случае цикл повторяется для следующего месяца.

Пример 4. Пусть есть информация о каждом жителе города (имя, возраст, пол и т.д.). Необходимо составить список жителей старше 50 лет. Блок-схема соответствующего алгоритма будет иметь вид:

1234567890

Рис. 7

Рисунок 7 иллюстрирует цикл с переменным числом итераций — нам заранее неизвестно число жителей города старше 50 лет. Этот цикл выполняется до тех пор, пока есть еще неучтенные люди. Цикл представляется в виде следующей элементарной блок-схемы:

1234567890

Рис. 8

  • В цикле с фиксированным числом итераций количество итераций известно заранее. Вычисления, производящиеся внутри цикла, не оказывают никакого влияния на число итераций.
  • Цикл с переменным числом итераций выполняется до тех пор, пока не будет выполнено некоторое условие. Количество итераций в таком цикле может варьироваться.
  • Циклы обычно выполняются до тех пор, пока какое-либо условие не примет значение true или false.

РАЗДЕЛЕНИЕ БЛОК-СХЕМ НА ЧАСТИ

При работе с блок-схемами мы часто сталкиваемся со следующими проблемами:

  • Блок-схема может не поместиться на одной странице.
  • Может оказаться сложным связать все элементы блок-схемы друг с другом непосредственно.

Для решения этих проблем блок-схемы обычно разбивают на отдельные части, для состыковки которых используются элементы- соединители.

Соединительный элемент имеет свой собственный, уникальный номер и состоит из двух частей. Эти части изображаются в местах разрыва соединительных линий. Для определения принадлежности частей соединительному элементу, номер элемента записывается на каждой из частей.

Например, разбив на 2 части блок-схему, изображенную на Рисунке 2 мы получим:

1234567890

Рис. 9

  • Соединители вставляются в местах разрыва блок-схемы. Расположение каждого объединения указывается с помощью уникального номера.
  • В блок-схеме может быть только одна вершина Начало и только одна вершина Конец.
  • Используйте машинно-независимые элементы.
  • Не обязательно представлять в блок-схеме каждый шаг программы. Можно ограничиться наиболее важными блоками.
  • Желательно использовать наглядные названия переменных и блоков.
  • Помните, программа должна быть написана так, чтобы любой другой программист смог бы легко понять ее.

МЕТОД ПРОГОНКИ

Метод прогонки используется для проверки правильности работы программы без использования компьютера. Для этого составляется специальная таблица, в которую записываются значения переменных по шагам. Этот метод позволяет эффективно находить и устранять логические ошибки. Проиллюстрируем этот метод следующим примером:

Пример 5

Step 1. Start

Step 2. Х=10

Step 3. Y=5

Step 4. М=0

Step 5. M=X+Y+(X*Y)

Step 6. Y=Y+4

Step 7. M=M+Y

Step 8. Display X,Y,M

Step 9. End

ТАБЛИЦА ПОШАГОВОГО ПРОГОНА

X Y М
Начальные значения 10 5 0
после шага 5 10 5 65
после шага 6 10 9 65
после шага 7 10 9 74

Таким образом, на 8-м шаге на экран будет выведено: 10, 9 и 74.

Задания для самопроверки

Занятие 3. Графическая реализация разветвляющегося алгоритма

В разветвляющемся алгоритме обязательным блоком является блок условия, который представлен на рис. 2.4.

Использование блока условия в общем виде

Рис.
2.4.
Использование блока условия в общем виде

Внутри блока условия записывается условие. Если данное условие верно, то выполняются блоки, идущие по стрелке «да», т.е. «Набор действий 1». Если условие оказывается неверным, т.е. ложным, то выполняются блоки, идущие по стрелке «нет», а именно «Набор действий 2». Разветвление заканчивается, когда обе стрелки («да» и «нет») соединяются. На рис. 2.5 представлен еще один вариант использования блока условия. Бывают задачи, в которых, исходя из условия, необходимо либо выполнить действие, либо пропустить его. Если условие верно выполняется, то следуют блоки, соответствующие стрелке «да», т.е. «Набор действий 1». Если же условие оказывается ложным, то следует перейти по стрелке «нет». Т.к. стрелке «нет» не соответствует ни одного блока с действием, то ни одного действия не будет выполнено. Т.е. получается, что мы пропустили и не выполнили «Набор действий 1».

Вариант использования блока условия

Рис.
2.5.
Вариант использования блока условия

В разветвляющемся алгоритме возможна запись сразу нескольких условий, которые могут объединяться союзом «ИЛИ» или пересекаться союзом «И». Рассмотрим случай двух условий: «условие 1» и «условие 2».

Если необходимо, чтобы оба условия были верными одновременно, то следует использовать логическое пересечение «И»:

Если достаточно, чтобы только одно условие выполнялось – либо первое, либо второе, то следует использовать логическое объединение «ИЛИ»:

"условие 1 ИЛИ условие 2".

Приведем простейшие примеры, соответствующие разветвляющемуся алгоритму.

Пример 4. Джон звонит Полу по городскому телефону, но трубку может взять не только Пол. Составить блок-схему, описывающую действия Джона в этом случае.

Решение. В отличие от примера 1, здесь присутствует условие – Пол ли взял трубку телефона. На данное условие можно однозначно ответить: «да», Пол, или «нет», кто-то другой. Если трубку взял Пол, то Джону нужно с ним поговорить, и цель будет достигнута. Если трубку взял кто-то другой, то необходимо позвать Пола к телефону, поговорить с ним, и цель также будет достигнута. Третьего варианта, например, «не туда попали» или «его нет дома» мы не рассматриваем. Результат блок-схемы представлен на рис. 2.6.

Блок-схема для примера 4

Рис.
2.6.
Блок-схема для примера 4

Пример 5. Ученику требуется купить учебник. В магазине в наличие оказался нужный учебник в жесткой и мягкой обложке. Составить блок-схему, описывающую действия ученика.

Решение. В данном примере присутствует условие: «Нужна жесткая обложка».

Ученик может согласиться с этим высказыванием, тогда он выполнит действие, соответствующее стрелке «да» и купит учебник в жесткой обложке.

Если ученик не соглашается с данным условием, то будет выполняться действие, соответствующее стрелке «нет», и в этом случае ученик купит учебник в мягкой обложке.

И в том, и в другом случае, цель будет достигнута и задача будет выполнена, т.к. ученик купит учебник.

Результат блок схемы представлен на рис. 2.7.

Блок-схема для примера 5

Рис.
2.7.
Блок-схема для примера 5

Пример 6. Даны числа a=2, b=7. Вычислить сумму S и разность R чисел a и b. Сравнить полученные значения S и R и указать большее из них.

Решение. Как и в примере 3, сначала необходимо задать значения a и b. Затем рассчитать сумму и разность по формулам: S=a+b, R=a-b, и вывести полученные числа на экран (блок вывода данных). Когда значения S и R будут получены, следует сравнить их между собой. Условие запишется в виде: S>R. Если полученная сумма S будет больше разности R, то мы пойдем по стрелке «да» и выведем фразу «max S«. Если же условие окажется ложным (т.е. S<R), то пойдем по стрелке «нет» и выведем фразу «max R«. Результат блок схемы представлен на рис. 2.8.

Блок-схема для примера 6

Рис.
2.8.
Блок-схема для примера 6

if

В предыдущих уроках мы рассмотрели наиболее простой, линейный тип алгоритмов. Напомню, что всего существует три типа: линейные, разветвляющиеся и циклические (алгоритмы с повторениями). В этом уроке я расскажу вам о втором типе алгоритмов — об алгоритмах с ветвлениями.

Ветвления

Ветвление – это команда алгоритма, в которой делается выбор, выполнять или не выполнять какую-нибудь группу команд в зависимости от условий.

Ветвление используется в двух случаях:

  1. Когда требуется пропустить определенную команду или группу команд.
  2. Когда нужно записать выбор тех или иных действий в зависимости от условия.

В блок-схеме условие ветвления изображается в ромбе, из которого обязательно выходят ДВЕ стрелки – первая (стрелка «Да») указывает на команды, которые будут выполняться в случае, если условие соблюдено; вторая (стрелка «Нет») – на команды, которые будут выполнены, если условие не соблюдено. Даже если команда, на которую указывает одна из стрелок (Чаще всего «Нет») отсутствует, стрелка все равно имеет место быть.

Алгоритм ветвления

Алгоритм с ветвлением, представленный в виде блок-схемы.

В словесной формулировке запись ветвления выглядит так:

ЕСЛИ <условие выбора > ТО <команды, выполняемые при соблюдении условия> ИНАЧЕ <команды, выполняемые при несоблюдении условия>

Реализация ветвления в Паскаль.

Как же реализовать ветвление в Паскаль? Проще, чем вы думаете:
if <условие выбора > then <команды, выполняемые при соблюдении условия> else <команды, выполняемые при несоблюдении условия>

Запомните! Перед else никогда не ставят точку с запятой!

Давайте поговорим об условии выбора. Понятно, что этологическое выражение. Если оно является правдой, то выполняется главная ветвь, если ложь, то боковая ветвь.

Рассмотрим несколько задач из сборника М.Э.Абрамяна «1000 задач по программированию».

If1. Дано целое число. Если оно является положительным, то прибавить к нему 1; в противном случае не изменять его. Вывести полученное число.

В данной программе даже не надо реализовывать боковую ветвь.

sXr13UnZ7bE

program if1;

var
  a: integer;

begin
  read(a);
  if a > 0 then Inc(a);
  write(a);
end.

If2. Дано целое число. Если оно является положительным, то прибавить к нему 1; в противном случае вычесть из него 2. Вывести полученное число.

if2

program if2;

var
  a: integer;

begin
  read(a);
  if a > 0 then Inc(a) else a -= 2;
  write(a);
end.

If3. Дано целое число. Если оно является положительным, то прибавить к нему 1; если отрицательным, то вычесть из него 2; если нулевым, то заменить его на 10. Вывести полученное число.

Для того чтобы решить эту задачу мы должны использовать вложенный if.

if3 510x648

Мы работаем в PascalABC.NET. Только в этой СР есть возможность написать а -= 2.
program if3;

var
  a: integer;

begin
  read(a);
  if a >= 0 then 
    if a = 0 then a := 10 else Inc(a) {перед else нет точки с запятой.}
   else a -= 2;
  write(a);
end.

If5. Даны три целых числа. Найти количество положительных и количество отрицательных чисел в исходном наборе.

if5

Длиннющая блок-схема. 🙂
program if5;

var
  a, b, c, plus, minus: integer;

begin
  write('Введите три целых числа: ');
  read(a, b, c);
  plus := 0;
  minus := 0;
  if a > 0 then Inc(plus) else Inc(minus);
  if b > 0 then Inc(plus) else Inc(minus);
  if c > 0 then Inc(plus) else Inc(minus);
  writeln('Количество положительных чисел - ', plus);
  writeln('Количество отрицательных чисел - ', minus);
end.

If30. Дано целое число, лежащее в диапазоне 1–999. Вывести его строку-описание вида «четное двузначное число», «нечетное трехзначное число» и т. д.

if30

program if30;

var
  a: integer;

begin
  write('Введите число: ');
  read(a);
  if Odd(a) then write('Нечетное ') else write('Четное ');
  if a >= 100 then write('трехзначное число') else
    if a < 10 then write('однозначное число') else write('двухзначное число');
end.

Вот и все! Не забывайте кликать по кнопочкам и добавлять наш сайт в закладки!

Схемаэто абстракция какого-либо процесса или системы, наглядно отображающая наиболее значимые части. Схемы широко применяются с древних времен до настоящего времени — чертежи древних пирамид, карты земель, принципиальные электрические схемы. Очевидно, древние мореплаватели хотели обмениваться картами и поэтому выработали единую систему обозначений и правил их выполнения. Аналогичные соглашения выработаны для изображения схем-алгоритмов и закреплены ГОСТ и международными стандартами.

На территории Российской Федерации действует единая система программной документации (ЕСПД), частью которой является Государственный стандарт — ГОСТ 19.701-90 «Схемы алгоритмов программ, данных и систем» [1]. Не смотря на то, что описанные в стандарте обозначения могут использоваться для изображения схем ресурсов системы, схем взаимодействия программ и т.п., в настоящей статье описана лишь разработка схем алгоритмов программ.

Рассматриваемый ГОСТ практически полностью соответствует международному стандарту ISO 5807:1985.

Содержание:

  1. Элементы блок-схем алгоритмов
  2. Примеры блок-схем
  3. Нужны ли блок-схемы? Альтернативы

Элементы блок-схем алгоритмов

Блок-схема представляет собой совокупность символов, соответствующих этапам работы алгоритма и соединяющих их линий. Пунктирная линия используется для соединения символа с комментарием. Сплошная линия отражает зависимости по управлению между символами и может снабжаться стрелкой. Стрелку можно не указывать при направлении дуги слева направо и сверху вниз. Согласно п. 4.2.4, линии должны подходить к символу слева, либо сверху, а исходить снизу, либо справа.

Есть и другие типы линий, используемые, например, для изображения блок-схем параллельных алгоритмов, но в текущей статье они, как и ряд специфических символов, не рассматриваются. Рассмотрены лишь основные символы, которых всегда достаточно студентам.

flowcharts_terminator
Терминатор начала и конца работы функции
Терминатором начинается и заканчивается любая функция. Тип возвращаемого значения и аргументов функции обычно указывается в комментариях к блоку терминатора.
flowcharts_data
Операции ввода и вывода данных
В ГОСТ определено множество символов ввода/вывода, например вывод на магнитные ленты, дисплеи и т.п. Если источник данных не принципиален, обычно используется символ параллелограмма. Подробности ввода/вывода могут быть указаны в комментариях.
flowcharts_process
Выполнение операций над данными
В блоке операций обычно размещают одно или несколько (ГОСТ не запрещает) операций присваивания, не требующих вызова внешних функций.
flowcharts_solution
Блок, иллюстрирующий ветвление алгоритма
Блок в виде ромба имеет один вход и несколько подписанных выходов. В случае, если блок имеет 2 выхода (соответствует оператору ветвления), на них подписывается результат сравнения — «да/нет». Если из блока выходит большее число линий (оператор выбора), внутри него записывается имя переменной, а на выходящих дугах — значения этой переменной.
flowcharts_procedure
Вызов внешней процедуры
Вызов внешних процедур и функций помещается в прямоугольник с дополнительными вертикальными линиями.
flowcharts_loop
Начало и конец цикла
Символы начала и конца цикла содержат имя и условие. Условие может отсутствовать в одном из символов пары. Расположение условия, определяет тип оператора, соответствующего символам на языке высокого уровня — оператор с предусловием (while) или постусловием (do … while).
flowcharts_preprocess
Подготовка данных
Символ «подготовка данных» в произвольной форме (в ГОСТ нет ни пояснений, ни примеров), задает входные значения. Используется обычно для задания циклов со счетчиком.
flowcharts_connector
Соединитель
В случае, если блок-схема не умещается на лист, используется символ соединителя, отражающий переход потока управления между листами. Символ может использоваться и на одном листе, если по каким-либо причинам тянуть линию не удобно.
flowcharts_comment
Комментарий
Комментарий может быть соединен как с одним блоком, так и группой. Группа блоков выделяется на схеме пунктирной линией.

Примеры блок-схем

В качестве примеров, построены блок-схемы очень простых алгоритмов сортировки, при этом акцент сделан на различные реализации циклов, т.к. у студенты делают наибольшее число ошибок именно в этой части.

Сортировка вставками

Массив в алгоритме сортировки вставками разделяется на отсортированную и еще не обработанную части. Изначально отсортированная часть состоит из одного элемента, и постепенно увеличивается.

На каждом шаге алгоритма выбирается первый элемент необработанной части массива и вставляется в отсортированную так, чтобы в ней сохранялся требуемый порядок следования элементов. Вставка может выполняться как в конец массива, так и в середину. При вставке в середину необходимо сдвинуть все элементы, расположенные «правее» позиции вставки на один элемент вправо. В алгоритме используется два цикла — в первом выбираются элементы необработанной части, а во втором осуществляется вставка.

insertsort_flowchart

Блок-схема алгоритма сортировки вставками

В приведенной блок-схеме для организации цикла используется символ ветвления. В главном цикле (i < n) перебираются элементы необработанной части массива. Если все элементы обработаны — алгоритм завершает работу, в противном случае выполняется поиск позиции для вставки i-того элемента. Искомая позиция будет сохранена в переменной j в результате выполнения внутреннего цикла, осуществляющем сдвиг элементов до тех пор, пока не будет найден элемент, значение которого меньше i-того.

На блок-схеме показано каким образом может использоваться символ перехода — его можно использовать не только для соединения частей схем, размещенных на разных листах, но и для сокращения количества линий. В ряде случаев это позволяет избежать пересечения линий и упрощает восприятие алгоритма.

Сортировка пузырьком

Сортировка пузырьком, как и сортировка вставками, использует два цикла. Во вложенном цикле выполняется попарное сравнение элементов и, в случае нарушения порядка их следования, перестановка. В результате выполнения одной итерации внутреннего цикла, максимальный элемент гарантированно будет смещен в конец массива. Внешний цикл выполняется до тех пор, пока весь массив не будет отсортирован.

bubblesort_flowchart

Блок-схема алгоритма сортировки пузырьком

На блок-схеме показано использование символов начала и конца цикла. Условие внешнего цикла (А) проверяется в конце (с постусловием), он работает до тех пор, пока переменная hasSwapped имеет значение true. Внутренний цикл использует предусловие для перебора пар сравниваемых элементов. В случае, если элементы расположены в неправильном порядке, выполняется их перестановка посредством вызова внешней процедуры (swap). Для того, чтобы было понятно назначение внешней процедуры и порядок следования ее аргументов, необходимо писать комментарии. В случае, если функция возвращает значение, комментарий может быть написан к символу терминатору конца.

Сортировка выбором

В сортировке выбором массив разделяется на отсортированную и необработанную части. Изначально отсортированная часть пустая, но постепенно она увеличивается. Алгоритм производит поиск минимального элемента необработанной части и меняет его местами с первым элементом той же части, после чего считается, что первый элемент обработан (отсортированная часть увеличивается).

selectsort_flowchart

Блок-схема сортировки выбором

На блок-схеме приведен пример использования блока «подготовка», а также показано, что в ряде случаев можно описывать алгоритм более «укрупнённо» (не вдаваясь в детали). К сортировке выбором не имеют отношения детали реализации поиска индекса минимального элемента массива, поэтому они могут быть описаны символом вызова внешней процедуры. Если блок-схема алгоритма внешней процедуры отсутствует, не помешает написать к символу вызова комментарий, исключением могут быть функции с говорящими названиями типа swap, sort, … .

На блоге можно найти другие примеры блок-схем:

  • блок-схема проверки правильности расстановки скобок арифметического выражения [2];
  • блок-схемы алгоритмов быстрой сортировки и сортировки слиянием [3].

Часть студентов традиционно пытается рисовать блок-схемы в Microsoft Word, но это оказывается сложно и не удобно. Например, в MS Word нет стандартного блока для терминатора начала и конца алгоритма (прямоугольник со скругленными краями, а не овал). Наиболее удобными, на мой взгляд, являются утилиты MS Visio и yEd [5], обе они позволяют гораздо больше, чем строить блок-схемы (например рисовать диаграммы UML), но первая является платной и работает только под Windows, вторая бесплатная и кроссплатфомренная. Все блок-схемы в этой статье выполнены с использованием yEd.

Частные конторы никакие блок-схемы не используют, в книжках по алгоритмам [6] вместо них применяют словесное описание (псевдокод) как более краткую форму. Возможно блок-схемы применяют на государственных предприятиях, которые должны оформлять документацию согласно требованиям ЕСПД, но есть сомнения — даже для регистрации программы в Государственном реестре программ для ЭВМ никаких блок-схем не требуется.

Тем не менее, рисовать блок-схемы заставляют школьников (примеры из учебников ГОСТ не соответствуют) — выносят вопросы на государственные экзамены (ГИА и ЕГЭ), студентов — перед защитой диплом сдается на нормоконтроль, где проверяется соответствие схем стандартам.

Разработка блок-схем выполняется на этапах проектирования и документирования, согласно каскадной модели разработки ПО, которая сейчас почти не применяется, т.к. сопровождается большими рисками, связанными с ошибками на этапах проектирования.

Появляются подозрения, что система образования прогнила и отстала лет на 20, однако аналогичная проблема наблюдается и за рубежом. Международный стандарт ISO 5807:1985 мало чем отличается от ГОСТ 19.701-90, более нового стандарта за рубежом нет. Там же производится множество программ для выполнения этих самых схем — Dia, MS Visio, yEd, …, а значит списывать их не собираются. Вместо блок-схем иногда применяют диаграммы деятельности UML [6], однако удобнее они оказываются, разве что при изображении параллельных алгоритмов.

Периодически поднимается вопрос о том, что ни блок-схемы, ни UML не нужны, да и документация тоже не нужна. Об этом твердят программисты, придерживающиеся методологии экстремального программирования (XP) [7], ходя даже в их кругу нет единого мнения.

В ряде случаев, программирование невозможно без рисования блок-схем, т.к. это один процесс — существуют визуальные языки программирования, такие как ДРАКОН [8], кроме того, блок-схемы используются для верификации алгоритмов (формального доказательства их корректности) методом индуктивных утверждений Флойда [9].

В общем, единого мнения нет. Очевидно, есть области, в которых без чего-то типа блок-схем обойтись нельзя, но более гибкой альтернативы нет. Для формальной верификации необходимо рисовать подробные блок-схемы, но для проектирования и документирования такие схемы не нужны — я считаю разумным утверждение экстремальных программистов о том, что нужно рисовать лишь те схемы, которые помогают в работе и не требуют больших усилий для поддержания в актуальном состоянии [10].

Список использованных источников:

  1. ГОСТ 19.701–90 (ИСО 5807–85) «Единая система программной документа­ции».
  2. Алгоритм. Свойства алгоритма https://pro-prof.com/archives/578
  3. Алгоритмы сортировки слиянием и быстрой сортировки https://pro-prof.com/archives/813
  4. yEd Graph Editor https://www.yworks.com/products/yed
  5. Книги: алгоритмы https://pro-prof.com/books-algorithms
  6. Рамбо Дж., Якобсон А., Буч Г. UML: специальный справочник. -СПб.: Питер, 2002. -656 с.
  7. Кент Бек Экстремальное программирование: разработка через тестирование – СПб.: Питер – 2003
  8. Визуальный язык ДРАКОН https://drakon.su/
  9. Шилов Н.В. Верификация шаблонов алгоритмов для метода отката и метода ветвей и границ. Моделирование и анализ информационных систем, ISSN 1818 – 1015, т.18, №4, 2011
  10. Брукс Ф., Мифический человеко — месяц или как создаются программные системы. СПб. Символ Плюс, 1999 — 304 с. ил.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти это место калужской области
  • Как найти рейс на самолет в аэропорту
  • Как составить претензию на возврат куртки
  • Как найти архимедову силу зная вес тела
  • Как нашли семь заключенных

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии