Как правильно найти sin 2

Синус двойного угла

ОПРЕДЕЛЕНИЕ

Формула синуса двойного угла имеет вид
(
sin 2 alpha=2 sin alpha cdot cos alpha
)

Эта формула легко получается из формулы синусоиды.
(
sin (alpha+beta)=sin alpha cdot cos beta+cos alpha cdot sin beta
)
вставляя его (
beta=alpha
)

В самом деле
(
sin 2 alpha=sin (alpha+alpha)=sin alpha cdot cos alpha+cos alpha cdot sin alpha=2 sin alpha cdot cos alpha
)

Синусоидальный угол может все еще выражаться через касательную и кокасательную:
(
sin 2 alpha=frac{2 operatorname{tg} alpha}{1+operatorname{tg}^{2} alpha}
), (
sin 2 alpha=frac{2 operatorname{ctg} alpha}{1+operatorname{ctg}^{2} alpha}
), (
sin 2 alpha=frac{2}{operatorname{tg} alpha+operatorname{ctg} alpha}
)

Примеры решения проблем

ПРИМЕР 1

  • Задание

    Упростите выражение:
    (
    sin frac{alpha}{2} cdot cos frac{alpha}{2} cdot cos alpha
    )

  • Решение

    Выделите первые два фактора через синус двойного угла:
    (
    2 sin frac{alpha}{2} cdot cos frac{alpha}{2}=sin left(2 cdot frac{alpha}{2}right) sin frac{alpha}{2} cdot cos frac{alpha}{2}=frac{sin alpha}{2}
    )

    Тогда исходное выражение принимает вид
    (
    sin frac{alpha}{2} cdot cos frac{alpha}{2} cdot cos alpha=frac{sin alpha}{2} cdot cos alpha=frac{sin alpha cdot cos alpha}{2}
    )

    Умножьте числитель и знаменатель наклейки на 2:
    (
    sin frac{alpha}{2} cdot cos frac{alpha}{2} cdot cos alpha=frac{2 sin alpha cdot cos alpha}{2 cdot 2}
    )
    давайте применим к числителю формулу синуса двойного угла (
    sin 2 alpha=2 sin alpha cdot cos alpha
    ) и, наконец, получим
    (
    sin frac{alpha}{2} cdot cos frac{alpha}{2} cdot cos alpha=frac{sin 2 alpha}{4}
    )

  • Ответ

    (
    sin frac{alpha}{2} cdot cos frac{alpha}{2} cdot cos alpha=frac{sin 2 alpha}{4}
    )

    ПРИМЕР 2

  • Задание

    Найти значение выражения
    (
    frac{operatorname{tg} 22^{circ} 30^{prime}}{1+operatorname{tg}^{2} 22^{circ} 30^{prime}}
    )

  • Решение

    Мы используем формулу с двойным углом синуса (
    sin 2 alpha=frac{2 operatorname{tg} alpha}{1+operatorname{tg}^{2} alpha}
    ) , получаем
    (
    frac{operatorname{tg} 22^{circ} 30^{prime}}{1+operatorname{tg}^{2} 22^{circ} 30^{prime}}=sin left(2 cdot 22^{circ} 30^{prime}right)=sin 45^{circ}=frac{sqrt{2}}{2}
    )

  • Ответ

    (
    frac{operatorname{tg} 22^{circ} 30^{prime}}{1+operatorname{tg}^{2} 22^{circ} 30^{prime}}=frac{sqrt{2}}{2}
    )

    ПРИМЕР 3

  • Задание

    Упростить выражение
    (
    frac{sin ^{2} 2 alpha-4 sin ^{2} alpha}{sin ^{2} 2 alpha+4 sin ^{2} alpha-4}
    )

  • Решение

    Запишем в числителе и знаменателе синусов двойного угла, используя формулу (
    sin 2 alpha=2 sin alpha cdot cos alpha
    ) , получим:
    (
    frac{sin ^{2} 2 alpha-4 sin ^{2} alpha}{sin ^{2} 2 alpha+4 sin ^{2} alpha-4}=frac{(2 sin alpha cdot cos alpha)^{2}-4 sin ^{2} alpha}{(2 sin alpha cdot cos alpha)^{2}+4 sin ^{2} alpha-4}=frac{4 sin ^{2} alpha cdot cos ^{2} alpha-4 sin ^{2} alpha}{4 sin ^{2} alpha cdot cos ^{2} alpha+4 sin ^{2} alpha-4}
    )

    Мы выставляем скобки в числителе (
    4 sin ^{2} alpha
    ) , а в знаменателе — 4:
    (
    frac{sin ^{2} 2 alpha-4 sin ^{2} alpha}{sin ^{2} 2 alpha+4 sin ^{2} alpha-4}=frac{4 sin ^{2} alphaleft(cos ^{2} alpha-1right)}{4left(sin ^{2} alpha cdot cos ^{2} alpha+sin ^{2} alpha-1right)}=frac{sin ^{2} alphaleft(cos ^{2} alpha-1right)}{left(sin ^{2} alpha cdot cos ^{2} alpha+sin ^{2} alpha-1right)}
    )

    В полученном выражении мы используем основное тригонометрическое тождество и представляем единицу как (
    1=sin ^{2} alpha+cos ^{2} alpha
    ), получаем
    (
    frac{sin ^{2} 2 alpha-4 sin ^{2} alpha}{sin ^{2} 2 alpha+4 sin ^{2} alpha-4}=frac{sin ^{2} alphaleft(cos ^{2} alpha-left(sin ^{2} alpha+cos ^{2} alpharight)right)}{left(sin ^{2} alpha cdot cos ^{2} alpha+sin ^{2} alpha-left(sin ^{2} alpha+cos ^{2} alpharight)right)}==frac{sin ^{2} alphaleft(cos ^{2} alpha-sin ^{2} alpharight)}{left(sin ^{2} alpha cdot cos ^{2} alpha+sin ^{2} alpha-cos ^{2} alpharight)}=frac{sin ^{2} alphaleft(-sin ^{2} alpharight)}{left(sin ^{2} alpha cdot cos ^{2} alpha-cos ^{2} alpharight)}
    )

    Мы помещаем знаменатель(
    cos ^{2} alpha
    ) для скобок
    (
    frac{sin ^{2} 2 alpha-4 sin ^{2} alpha}{sin ^{2} 2 alpha+4 sin ^{2} alpha-4}=frac{sin ^{2} alphaleft(-sin ^{2} alpharight)}{left(sin ^{2} alpha cdot cos ^{2} alpha-cos ^{2} alpharight)}=frac{-sin ^{4} alpha}{cos ^{2} alphaleft(sin ^{2} alpha-1right)}
    )

    Снова в числителе записываем единицу, используя основное тригонометрическое тождество

    (
    frac{sin ^{2} 2 alpha-4 sin ^{2} alpha}{sin ^{2} 2 alpha+4 sin ^{2} alpha-4}=frac{-sin ^{4} alpha}{cos ^{2} alphaleft(sin ^{2} alpha-1right)}=frac{-sin ^{4} alpha}{cos ^{2} alphaleft(sin ^{2} alpha-left(sin ^{2} alpha+cos ^{2} alpharight)right)}=frac{-sin ^{4} alpha}{cos ^{2} alphaleft(sin ^{2} alpha-sin ^{2} alpha-cos ^{2} alpharight)}=frac{-sin ^{4} alpha}{cos ^{2} alphaleft(-cos ^{2} alpharight)}=frac{-sin ^{4} alpha}{-cos ^{4} alpha}=operatorname{tg}^{4} alpha
    )

  • Ответ

    (
    frac{sin ^{2} 2 alpha-4 sin ^{2} alpha}{sin ^{2} 2 alpha+4 sin ^{2} alpha-4}=operatorname{tg}^{4} alpha
    )

  • Единичная окружность помогает понять, чему равны sin 1, sin 2, sin 3, sin 4, sin 5, sin 6.

    Итак, речь идет об углах в радианах. 1 радиан — это угол, длина дуги которого равна радиусу окружности. Соответственно, определяем приблизительное местонахождение на единичной окружности углов в 2, 3, 4, 5 и 6 радиан, отмечая каждую следующую точку через дугу, длина которой равна радиусу.  Впрочем, если вспомнить, что п приближенно равно 3,14, задача существенно упростится.

    Рисунок позволяет наглядно определять приблизительные значения sin 1, sin 2, sin 3, sin 4, sin 5, sin 6, а также сравнивать их.

    Поскольку синус — это ордината соответствующей точки на единичной окружности (как это легко запомнить — здесуглы в радианах на единичной окружностиь), то для нахождения sin 1, sin 2, sin 3, sin 4, sin 5, sin 6 достаточно определить значение y в точках 1, 2, 3, 4, 5 и 6 радиан.

    синус 1, синус 2, синус 3, синус 4, синус 5, синус 6Поскольку синус — это y, то вверху, над осью x, синус принимает положительные значения. Поэтому sin 1>0, sin 2>0, sin 3>0.

    Соответственно внизу синус отрицателен: sin 4<0, sin 5<0, sin 6<o. Поэтому легко сравнить sin2 и sin4, например: sin2>sin4, ведь любое положительное число больше любого отрицательного.

    Если требуется сравнить значения синуса одного знака, например, sin2 и sin3, то исходя из геометрических соображений, sin2>sin3.

    Если нужно уточнить, чему равен 1 радиан, 2, 3, 4, 5 и 6 радиан в градусах, то приближенные значения таковы:

        [{1radian approx {{57}^0}17'}]

        [{2rad approx {{115}^0}}]

        [{3rad approx {{172}^0}}]

        [{4rad approx {{229}^0}}]

        [{5rad approx {{286}^0}}]

        [{6rad approx {{343}^0}}]

    Приближенно чему равен синус 1, синус 2 и синус 3, можно узнать по таблицам Брадиса:

        [sin 1 approx 0,8415]

        [sin 2 approx 0,9093]

        [sin 3 approx 0,1411.]

    Используя геометрические соображения, можно найти и приблизительные значения углов, больших 6 радиан.

    Синус двойного угла, формула

    Данная формула позволяет найти синус двойного угла зная синус и косинус этого угла по отдельности:

    [
    sin(2α) = 2sin(α)cos(α)
    ]

    Вычислить, найти синус двойного угла, по формуле (1)

    α° (градусов)  α´ (минут)  α˝ (секунд) 

    Вычислить

    нажмите кнопку для расчета

    Синус двойного угла

    стр. 215
    Определение синуса угла

    Синусом угла в прямоугольном треугольнике называют отношение противолежащего катета к гипотенузе.

    Катетами являются стороны, которые образуют прямой угол в треугольнике, соответственно, гипотенузой является третья (самая длинная) сторона.

    Для простоты запоминания можно дать такое определение: синус угла — это отношение дальнего от рассматриваемого угла катета к гипотенузе.

    1.png

    В случае с рисунком, описанным выше: sin⁡α=acsinalpha=frac{a}{c}

    Задача 1

    В треугольнике, один из углов которого равен 90 градусам, известен катет при угле αalpha и равен он 3 см3text{ см}. Также дано произведение длин катетов и равно 12 см212text{ см}^2. Найдите синус угла αalpha.

    Решение

    Сначала нужно найти длину неизвестного нам катета. Для этого воспользуемся данным нам произведением. Обозначим неизвестный катет за xx. Тогда, по условию задачи:

    3⋅x=123cdot x=12

    x=123=4x=frac{12}{3}=4

    a=x=4a=x=4

    По теореме Пифагора найдем гипотенузу:

    a2+b2=c2a^2+b^2=c^2

    42+32=c24^2+3^2=c^2

    25=c225=c^2

    c=5c=5

    sin⁡α=ac=45=0.8sinalpha=frac{a}{c}=frac{4}{5}=0.8

    Ответ

    0.80.8

    Задача 2

    Вычислите синус 45 градусов.

    Решение

    Для этого воспользуемся тригонометрической таблицей углов. Находим, что:

    sin⁡45∘=π4=0.785sin 45^circ=frac{pi}{4}=0.785

    Ответ

    0.7850.785

    Если в задаче известен косинус угла и нужно найти его синус, то наличие известных длин катетов и гипотенузы не обязательны. Достаточно просто воспользоваться основным тригонометрическим тождеством, которое имеет следующий вид:

    Основное тригонометрическое тождество

    sin⁡2α+cos⁡2α=1sin^2alpha+cos^2alpha=1

    αalpha — любой угол.

    Задача 3

    Квадрат косинуса угла в треугольнике равен 0.8. Найдите синус данного угла.

    Решение

    Воспользуемся основным тригонометрическим тождеством:

    sin⁡2α+cos⁡2α=1sin^2alpha+cos^2alpha=1

    sin⁡2α+0.8=1sin^2alpha+0.8=1

    sin⁡2α=0.2sin^2alpha=0.2

    sin⁡α=0.2sinalpha=sqrt{0.2}

    sin⁡α≈0.447sinalphaapprox0.447

    Ответ

    0.4470.447

    Испытываете проблемы с вычислением синуса? Оформите задачу по математике на заказ у наших экспертов!

    Тест по теме «Вычисление синуса»

    В данной таблице представлены значения синусов от 0° до 360°. Таблица синусов нужна, когда у вас под рукой нет калькулятора. Чтобы узнать, чему равен синус угла, просто найдите нужный градус в таблице. Для начала короткая версия таблицы.
    таблица синусов, косинусов, тангенсов, котангенсов

    https://uchim.org/matematika/tablica-sinusov — uchim.org

    Таблица синусов для 0°-180°

    sin(1°) 0.0175
    sin(2°) 0.0349
    sin(3°) 0.0523
    sin(4°) 0.0698
    sin(5°) 0.0872
    sin(6°) 0.1045
    sin(7°) 0.1219
    sin(8°) 0.1392
    sin(9°) 0.1564
    sin(10°) 0.1736
    sin(11°) 0.1908
    sin(12°) 0.2079
    sin(13°) 0.225
    sin(14°) 0.2419
    sin(15°) 0.2588
    sin(16°) 0.2756
    sin(17°) 0.2924
    sin(18°) 0.309
    sin(19°) 0.3256
    sin(20°) 0.342
    sin(21°) 0.3584
    sin(22°) 0.3746
    sin(23°) 0.3907
    sin(24°) 0.4067
    sin(25°) 0.4226
    sin(26°) 0.4384
    sin(27°) 0.454
    sin(28°) 0.4695
    sin(29°) 0.4848
    sin(30°) 0.5
    sin(31°) 0.515
    sin(32°) 0.5299
    sin(33°) 0.5446
    sin(34°) 0.5592
    sin(35°) 0.5736
    sin(36°) 0.5878
    sin(37°) 0.6018
    sin(38°) 0.6157
    sin(39°) 0.6293
    sin(40°) 0.6428
    sin(41°) 0.6561
    sin(42°) 0.6691
    sin(43°) 0.682
    sin(44°) 0.6947
    sin(45°) 0.7071
    sin(46°) 0.7193
    sin(47°) 0.7314
    sin(48°) 0.7431
    sin(49°) 0.7547
    sin(50°) 0.766
    sin(51°) 0.7771
    sin(52°) 0.788
    sin(53°) 0.7986
    sin(54°) 0.809
    sin(55°) 0.8192
    sin(56°) 0.829
    sin(57°) 0.8387
    sin(58°) 0.848
    sin(59°) 0.8572
    sin(60°) 0.866
    sin(61°) 0.8746
    sin(62°) 0.8829
    sin(63°) 0.891
    sin(64°) 0.8988
    sin(65°) 0.9063
    sin(66°) 0.9135
    sin(67°) 0.9205
    sin(68°) 0.9272
    sin(69°) 0.9336
    sin(70°) 0.9397
    sin(71°) 0.9455
    sin(72°) 0.9511
    sin(73°) 0.9563
    sin(74°) 0.9613
    sin(75°) 0.9659
    sin(76°) 0.9703
    sin(77°) 0.9744
    sin(78°) 0.9781
    sin(79°) 0.9816
    sin(80°) 0.9848
    sin(81°) 0.9877
    sin(82°) 0.9903
    sin(83°) 0.9925
    sin(84°) 0.9945
    sin(85°) 0.9962
    sin(86°) 0.9976
    sin(87°) 0.9986
    sin(88°) 0.9994
    sin(89°) 0.9998
    sin(90°) 1
    sin(91°) 0.9998
    sin(92°) 0.9994
    sin(93°) 0.9986
    sin(94°) 0.9976
    sin(95°) 0.9962
    sin(96°) 0.9945
    sin(97°) 0.9925
    sin(98°) 0.9903
    sin(99°) 0.9877
    sin(100°) 0.9848
    sin(101°) 0.9816
    sin(102°) 0.9781
    sin(103°) 0.9744
    sin(104°) 0.9703
    sin(105°) 0.9659
    sin(106°) 0.9613
    sin(107°) 0.9563
    sin(108°) 0.9511
    sin(109°) 0.9455
    sin(110°) 0.9397
    sin(111°) 0.9336
    sin(112°) 0.9272
    sin(113°) 0.9205
    sin(114°) 0.9135
    sin(115°) 0.9063
    sin(116°) 0.8988
    sin(117°) 0.891
    sin(118°) 0.8829
    sin(119°) 0.8746
    sin(120°) 0.866
    sin(121°) 0.8572
    sin(122°) 0.848
    sin(123°) 0.8387
    sin(124°) 0.829
    sin(125°) 0.8192
    sin(126°) 0.809
    sin(127°) 0.7986
    sin(128°) 0.788
    sin(129°) 0.7771
    sin(130°) 0.766
    sin(131°) 0.7547
    sin(132°) 0.7431
    sin(133°) 0.7314
    sin(134°) 0.7193
    sin(135°) 0.7071
    sin(136°) 0.6947
    sin(137°) 0.682
    sin(138°) 0.6691
    sin(139°) 0.6561
    sin(140°) 0.6428
    sin(141°) 0.6293
    sin(142°) 0.6157
    sin(143°) 0.6018
    sin(144°) 0.5878
    sin(145°) 0.5736
    sin(146°) 0.5592
    sin(147°) 0.5446
    sin(148°) 0.5299
    sin(149°) 0.515
    sin(150°) 0.5
    sin(151°) 0.4848
    sin(152°) 0.4695
    sin(153°) 0.454
    sin(154°) 0.4384
    sin(155°) 0.4226
    sin(156°) 0.4067
    sin(157°) 0.3907
    sin(158°) 0.3746
    sin(159°) 0.3584
    sin(160°) 0.342
    sin(161°) 0.3256
    sin(162°) 0.309
    sin(163°) 0.2924
    sin(164°) 0.2756
    sin(165°) 0.2588
    sin(166°) 0.2419
    sin(167°) 0.225
    sin(168°) 0.2079
    sin(169°) 0.1908
    sin(170°) 0.1736
    sin(171°) 0.1564
    sin(172°) 0.1392
    sin(173°) 0.1219
    sin(174°) 0.1045
    sin(175°) 0.0872
    sin(176°) 0.0698
    sin(177°) 0.0523
    sin(178°) 0.0349
    sin(179°) 0.0175
    sin(180°) 0

    Таблица синусов для 181°-360°

    sin(181°) -0.0175
    sin(182°) -0.0349
    sin(183°) -0.0523
    sin(184°) -0.0698
    sin(185°) -0.0872
    sin(186°) -0.1045
    sin(187°) -0.1219
    sin(188°) -0.1392
    sin(189°) -0.1564
    sin(190°) -0.1736
    sin(191°) -0.1908
    sin(192°) -0.2079
    sin(193°) -0.225
    sin(194°) -0.2419
    sin(195°) -0.2588
    sin(196°) -0.2756
    sin(197°) -0.2924
    sin(198°) -0.309
    sin(199°) -0.3256
    sin(200°) -0.342
    sin(201°) -0.3584
    sin(202°) -0.3746
    sin(203°) -0.3907
    sin(204°) -0.4067
    sin(205°) -0.4226
    sin(206°) -0.4384
    sin(207°) -0.454
    sin(208°) -0.4695
    sin(209°) -0.4848
    sin(210°) -0.5
    sin(211°) -0.515
    sin(212°) -0.5299
    sin(213°) -0.5446
    sin(214°) -0.5592
    sin(215°) -0.5736
    sin(216°) -0.5878
    sin(217°) -0.6018
    sin(218°) -0.6157
    sin(219°) -0.6293
    sin(220°) -0.6428
    sin(221°) -0.6561
    sin(222°) -0.6691
    sin(223°) -0.682
    sin(224°) -0.6947
    sin(225°) -0.7071
    sin(226°) -0.7193
    sin(227°) -0.7314
    sin(228°) -0.7431
    sin(229°) -0.7547
    sin(230°) -0.766
    sin(231°) -0.7771
    sin(232°) -0.788
    sin(233°) -0.7986
    sin(234°) -0.809
    sin(235°) -0.8192
    sin(236°) -0.829
    sin(237°) -0.8387
    sin(238°) -0.848
    sin(239°) -0.8572
    sin(240°) -0.866
    sin(241°) -0.8746
    sin(242°) -0.8829
    sin(243°) -0.891
    sin(244°) -0.8988
    sin(245°) -0.9063
    sin(246°) -0.9135
    sin(247°) -0.9205
    sin(248°) -0.9272
    sin(249°) -0.9336
    sin(250°) -0.9397
    sin(251°) -0.9455
    sin(252°) -0.9511
    sin(253°) -0.9563
    sin(254°) -0.9613
    sin(255°) -0.9659
    sin(256°) -0.9703
    sin(257°) -0.9744
    sin(258°) -0.9781
    sin(259°) -0.9816
    sin(260°) -0.9848
    sin(261°) -0.9877
    sin(262°) -0.9903
    sin(263°) -0.9925
    sin(264°) -0.9945
    sin(265°) -0.9962
    sin(266°) -0.9976
    sin(267°) -0.9986
    sin(268°) -0.9994
    sin(269°) -0.9998
    sin(270°) -1
    sin(271°) -0.9998
    sin(272°) -0.9994
    sin(273°) -0.9986
    sin(274°) -0.9976
    sin(275°) -0.9962
    sin(276°) -0.9945
    sin(277°) -0.9925
    sin(278°) -0.9903
    sin(279°) -0.9877
    sin(280°) -0.9848
    sin(281°) -0.9816
    sin(282°) -0.9781
    sin(283°) -0.9744
    sin(284°) -0.9703
    sin(285°) -0.9659
    sin(286°) -0.9613
    sin(287°) -0.9563
    sin(288°) -0.9511
    sin(289°) -0.9455
    sin(290°) -0.9397
    sin(291°) -0.9336
    sin(292°) -0.9272
    sin(293°) -0.9205
    sin(294°) -0.9135
    sin(295°) -0.9063
    sin(296°) -0.8988
    sin(297°) -0.891
    sin(298°) -0.8829
    sin(299°) -0.8746
    sin(300°) -0.866
    sin(301°) -0.8572
    sin(302°) -0.848
    sin(303°) -0.8387
    sin(304°) -0.829
    sin(305°) -0.8192
    sin(306°) -0.809
    sin(307°) -0.7986
    sin(308°) -0.788
    sin(309°) -0.7771
    sin(310°) -0.766
    sin(311°) -0.7547
    sin(312°) -0.7431
    sin(313°) -0.7314
    sin(314°) -0.7193
    sin(315°) -0.7071
    sin(316°) -0.6947
    sin(317°) -0.682
    sin(318°) -0.6691
    sin(319°) -0.6561
    sin(320°) -0.6428
    sin(321°) -0.6293
    sin(322°) -0.6157
    sin(323°) -0.6018
    sin(324°) -0.5878
    sin(325°) -0.5736
    sin(326°) -0.5592
    sin(327°) -0.5446
    sin(328°) -0.5299
    sin(329°) -0.515
    sin(330°) -0.5
    sin(331°) -0.4848
    sin(332°) -0.4695
    sin(333°) -0.454
    sin(334°) -0.4384
    sin(335°) -0.4226
    sin(336°) -0.4067
    sin(337°) -0.3907
    sin(338°) -0.3746
    sin(339°) -0.3584
    sin(340°) -0.342
    sin(341°) -0.3256
    sin(342°) -0.309
    sin(343°) -0.2924
    sin(344°) -0.2756
    sin(345°) -0.2588
    sin(346°) -0.2419
    sin(347°) -0.225
    sin(348°) -0.2079
    sin(349°) -0.1908
    sin(350°) -0.1736
    sin(351°) -0.1564
    sin(352°) -0.1392
    sin(353°) -0.1219
    sin(354°) -0.1045
    sin(355°) -0.0872
    sin(356°) -0.0698
    sin(357°) -0.0523
    sin(358°) -0.0349
    sin(359°) -0.0175
    sin(360°) -0

    Существуют также следующие таблицы тригонометрических функций: таблица косинусов, таблица тангенсов и таблица котангенсов.

    Как легко запомнить таблицу синусов (видео)

    Таблицу важно всегда помнить на алгебре, чтобы найти синус.

    Всё для учебы » Математика в школе » Таблица синусов углов (градусы, значения)

    Понравилась статья? Поделить с друзьями:

    Не пропустите также:

  • Составить предложения с поговорками как снег на голову
  • Ошибка 404 not found nginx как исправить
  • Как найти полуоси эллипса зная фокусы
  • Как найти медиану в статистике по таблице
  • Как найти сторону правильного восьми угольника

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии