Геометрическая прогрессия
- Понятие геометрической прогрессии
- Формула n-го члена геометрической прогрессии
- Свойства геометрической прогрессии
- Сумма первых n членов геометрической прогрессии
- Примеры
п.1. Понятие геометрической прогрессии
Геометрической прогрессией называют числовую последовательность, каждый член которой bn, начиная со второго, равен произведению предыдущего члена bn-1 и некоторого постоянного числа q: $$ mathrm{ b_n=b_{n-1}q, ninmathbb{N}, n ge 2, qne 0, qne 1, b_1ne 0 } $$ Число q называют знаменателем геометрической прогрессии.
Например:
1. Последовательность 1, 3, 9, 27, … является геометрической прогрессией с b1 = 1, q = 3.
2. Последовательность (mathrm{9, -3, 1, -frac13, frac19,…}) является геометрической прогрессией с b1 = 9, (mathrm{q=-frac13}).
п.2. Формула n-го члена геометрической прогрессии
По определению геометрической прогрессии мы получаем рекуррентную формулу для n-го члена: bn = bn-1q. Из неё можно вывести аналитическую формулу:
b2 = b1q, b3 = b2q = (b1q)q = b1q2, b4 = b3q = (b1q2)q = b1q3,…
Получаем:
bn = b1qn-1
Например:
Найдём b5, если известно, что (mathrm{b_1=frac12, q=2}).
По формуле n-го члена получаем: (mathrm{b_5=b_1q^4=frac12cdot 2^4=2^3=8})
п.3. Свойства геометрической прогрессии
Свойство 1. Экспоненциальный рост/падение
Геометрическая прогрессия с положительными первым членом и знаменателем b1 > 0, q > 0 является показательной функцией вида f(n) = kqn: $$ mathrm{ b_n=frac{b_1}{q}q^n } $$
При b1 > 0, q > 1 прогрессия экпоненциально растёт
При b1 > 0, 0 < q < 1 прогрессия экпоненциально падает
Свойство 2. Признак геометрической прогрессии
Для того чтобы числовая последовательность была геометрической прогрессией необходимо и достаточно, чтобы каждый её член, начиная со второго, был средним геометрическим предыдущего и последующего членов: $$ mathrm{ left{b_nright} — text{геометрическая прогрессия} Leftrightarrow b_n=sqrt{b_{n-1}b_{n+1}}, ninmathbb{N}, n geq 2 } $$ Следствие: аждый член прогрессии является средним геометрическим двух равноудалённых от него членов: $$ mathrm{ b_n=sqrt{b_{n-k}b_{n+k}}, ninmathbb{N}, kinmathbb{N}, n geq k+1 } $$
Например:
Найдём b9, если известно, что (mathrm{b_7=frac{1}{16}, b_{11}=4})
По следствию из признака геометрической прогрессии: (mathrm{b_9=sqrt{b_7b_{11}}=sqrt{frac{1}{16}cdot 4}=frac12})
Свойство 3. Равенство сумм индексов
Если {bn} – геометрическая прогрессия, то из равенства сумм индексов следует равенство произведений членов: $$ mathrm{ m+k=p+q Rightarrow b_mb_k=b_pb_q } $$ Следствие: произведение членов, равноудалённых от концов прогрессии, является постоянной величиной: $$ mathrm{ b_1b_n = b_2b_{n-1}=b_3b_{n-2}=… } $$
Например:
Найдём b6, если известно, что b2 = 5, b4 = 10, b8 = 40
По равенству сумм индексов b2b8 = b4b6
Откуда (mathrm{b_6=frac{b_2b_8}{b_4}=frac{5cdot 40}{10}=20})
п.4. Сумма первых n членов геометрической прогрессии
Сумма первых n членов геометрической прогрессии равна $$mathrm{ S_n=frac{b_nq-b_1}{q-1}, qne 1} $$
Если учесть, что bn = b1qn-1, получаем ещё одну формулу для суммы: $$mathrm{ S_n=b_1frac{q^n-1}{q-1}, qne 1} $$
Например:
Найдём сумму первых 10 степеней двойки: 2 + 22 + 23 + … + 210
В этом случае b1 = 2, q = 2, n = 10
Получаем: (mathrm{ S_{10}=2cdot frac{2^{10}-1}{2-1}=2cdot (1024-1)=2046})
п.5. Примеры
Пример 1. Найдите знаменатель геометрической прогрессии и сумму первых 10 членов, если:
а) b5 = 9, b8 = 243
Найдём отношение $$ mathrm{ frac{b_8}{b_5}=frac{b_1cdot q^7}{b_1cdot q^4}=q^3, frac{b_8}{b_5}=frac{243}{9}=27=3^3, q^3=3^3Rightarrow q = 3 } $$ Найдём 1-й член: $$ mathrm{ b_1=frac{b_5}{q^4}=frac{9}{3^4}=frac{3^2}{3^4}=frac{1}{3^2}=frac19 } $$ Сумма: $$ mathrm{ S_{10}=b_1frac{q^{10}-1}{q-1}=frac{3^{10}-1}{9cdot 2}=frac{29524}{9}=3280frac49 } $$ Ответ: q = 3, S10 = (mathrm{3280frac49})
б) b1 = 3, bn = 96, Sn = 189
По формуле суммы: $$ mathrm{ S_{n}=frac{b_nq-b_1}{q-1}Rightarrow 189 =frac{96q-3}{q-1}Rightarrow 189(q-1)=96q-3Rightarrow 93q=186Rightarrow q = 2 } $$ Сумма: $$ mathrm{ S_{10}=b_1frac{q^{10}-1}{q-1}=3cdot frac{2^{10}-1}{2-1}=3cdot 1023=3069 } $$ Ответ: q = 2, S10 = 3069
Пример 2. Между числами (mathrm{40frac12 text{и} 5frac13}) вставьте такие четыре числа, чтобы они вместе с данными числами образовали геометрическую прогрессию.
По условию (mathrm{b_1=40frac12, b_6=5frac13}) $$ mathrm{ frac{b_6}{b_1}=q^5, frac{b_6}{b_1}=5frac13 : 40frac12=frac{16}{3} : frac{81}{2}=frac{16}{3} cdot frac{2}{81}=frac{32}{243}=frac{2^5}{3^5}=left(frac23right)^5 } $$ Знаменатель (mathrm{q=frac23})
Находим промежуточные члены прогрессии: begin{gather*} mathrm{ b_2=b_1q=40frac12cdotfrac23=frac{81}{2}cdot frac23=27, b_3=b_2q=27cdotfrac23=18, }\ mathrm{ b_4=b_3q=18cdotfrac23=12, b_5=b_4q=12cdotfrac23=8 } end{gather*} Ответ: 27, 18, 12 и 8
Пример 3. Найдите первый и последний члены геометрической прогрессии, если: $$ left{ begin{array}{ l } mathrm{b_4-b_2=0,6} & \ mathrm{b_5-b_3=1,2} & \ mathrm{S_n=12,7} & end{array}right. $$ Заметим, что b4=b2q2, b5=b3q2. Для первых двух уравнений получаем: $$ left{ begin{array}{ l } mathrm{b_2q^2-b_2=0,6} & \ mathrm{b_3q^2-b-3=1,2} & end{array}right. Rightarrow left{ begin{array}{ l } mathrm{b_2(q^2-1)=0,6} & \ mathrm{b_3(q^2-1)=1,2} & end{array}right. $$ Делим второе уравнение на первое: $$ mathrm{ frac{b_3(q^2-1)}{b_2(q^2-1)}=frac{1,2}{0,6}Rightarrowfrac{b_3}{b_2}=q=2 } $$ Подставляем найденное значение знаменателя прогрессии в первое уравнение: $$ mathrm{ b_2(2^2-1)=0,6 Rightarrow b_2=frac{0,6}{3}=0,2 Rightarrow b_1=frac{b_2}{q}=frac{0,2}{2}=0,1 } $$ Для третьего уравнения можем записать: begin{gather*} mathrm{ S_n=b_1frac{q^n-1}{q-1}=0,1cdotfrac{2^n-1}{2-1}=frac{2^n-1}{10}=12,7 Rightarrow 2^n-1=127 Rightarrow }\ mathrm{ Rightarrow 2^n=128=2^7 Rightarrow n=7 } end{gather*} 7-й член b7 = b1q6 = 0,1 · 26 = 6,4
Ответ: b1 = 0,1; b7 = 6,4
Пример 4. В геометрической прогрессии, все члены которой положительны, сумма первого и второго членов равна 48, а сумма третьего и четвёртого членов равна 12. Найдите значение n, при котором Sn = 63. $$ text{По условию} left{ begin{array}{ l } mathrm{b_1+b_2=48} & \ mathrm{b_3+b_4=12} & \ mathrm{S_n=63} & end{array}right. $$ Заметим, что b3 = b1q2, b_4=b_2q2. Второе уравнение можно переписать в виде: $$ mathrm{ b_3+b_4=b_1q^2+b2q^2=underbrace{(b_1+b_2)}_{=48} q^2=12 Rightarrow q^2=frac{12}{48}=frac14 Rightarrow q=frac12 } $$ Берём положительное значение q, т.к. по условию все члены положительны.
Из первого уравнения $$ mathrm{ b_1+b_2=b_1(1+q)=48 Rightarrow b_1=frac{48}{1+frac12}=48cdotfrac23=32 } $$ Для третьего уравнения можем записать: begin{gather*} mathrm{ S_n=b_1frac{q^n-1}{q-1}=b_1frac{1-q^n}{1-q}=32cdotfrac{1-frac{1}{2^n}}{1-frac12}=64left(1-frac{1}{2^n}right)=63 }\ mathrm{ 64-frac{64}{2^n}=63 Rightarrow 1=frac{2^6}{2^n} Rightarrow n=6 } end{gather*} Ответ: 6
Пример 5. Бактерия, попав в организм, делится надвое каждые 20 мин. Сколько бактерий будет в организме через сутки?
Сутки – это 24 · 60 = 1440 мин, или n = 1440 : 20 = 72 цикла деления.
По условию необходимо найти
N = N0 · 2n, где N0 = 1
N = 272 = 4 722 366 482 869 645 213 696 ≈ 4,7 · 1021
Ответ: 4,7 · 1021 бактерий
16
Июл 2013
Категория: Справочные материалы
Геометрическая прогрессия
2013-07-16
2021-06-28
А вы знаете удивительную легенду о зернах на шахматной доске? + показать
Определение
Геометрическая прогрессия — последовательность чисел (членов прогрессии) , в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое число
(знаменатель прогрессии):
, где
Например, последовательность 1, 2, 4, 8, 16, … – геометрическая ()
Геометрическая прогрессия
Знаменатель геометрической прогрессии
,
Характеристическое свойство геометрической прогрессии
для
Последовательность является геометрической тогда и только тогда, когда для любого n > 1 выполняется указанное выше соотношение.
В частности, для геометрической прогрессии с положительными членами, верно:
Формула n-го члена геометрической прогрессии
Сумма n первых членов геометрической прогрессии
, где
(если же , то
)
Бесконечно убывающая геометрическая прогрессия
При , геометрическая прогрессия называется бесконечно убывающей. Суммой бесконечно убывающей геометрической прогрессии называется число
и
Посмотри это видео
Примеры
Пример 1. Последовательность {} –геометрическая прогрессия.
Найдите , если
,
Решение: + показать
Приметр 2. Найдите знаменатель геометрической прогрессии {}, в которой
Решение: + показать
Пример 3. Найдите девятый член геометрической прогрессии, если ее десятый член равен , а одиннадцатый член равен
Решение: + показать
Пример 4. Найдите сумму первых шести членов геометрической прогрессии
Решение: + показать
Пример 5. Найдите сумму первых пяти членов геометрической прогрессии {}, в которой
Решение: + показать
Пример 6. Представьте в виде обыкновенной дроби число
Решение: + показать
Пример 7. Найдите , если известно, что числа
являются последовательными членами геометрической прогрессии (в указанном порядке).
Решение: + показать
Пример 8. Найдите знаменатель геометрической прогрессии, отношение суммы первых четырех членов которой, к сумме первых двух членов равно
Решение: + показать
Пример 9. Между числами и
вставьте три числа так, чтобы получилась геометрическая прогрессия
Решение: + показать
Вы можете пройти тест по теме «Геометрическая прогрессия»
Автор: egeMax |
комментариев 5
Печать страницы
запиши периодическую дробь (0,(8)) обыкновенной дробью.
Решение.
Достаточно очевидно, что (0,(8)=0,8+0,08+0,008+…) Слагаемые в правой части равенства образуют бесконечно убывающую геометрическую прогрессию, первый член которой равен (0,8), знаменатель равен (0,1). Найдём сумму по формуле:
.
Осталось выполнить нужные действия с десятичными дробями:
.
Таким образом, бесконечная периодическая десятичная дробь (0,(8)) обращается в обыкновенную дробь (8/9).
Ответ: (0,(8)=8/9).
- Что такое геометрическая прогрессия?
- Формулы и свойства геометрической прогрессии
- Калькуляторы геометрической прогрессии
- Примеры решения заданий с геометрической прогрессией
-
Вычислим знаменатель геометрической прогрессии, если b1=5,5; b2=11.
-
Вычислим знаменатель геометрической прогрессии, если b1=0,3; b2= -30.
Ученикам может показаться, что изучение геометрической прогрессии – это нечто абстрактное и оторванное от жизни. На самом деле множество экономических процессов построены именно на основе геометрической прогрессии.
Например, если вы положите деньги на банковский депозит и захотите посчитать сколько процентов заработаете за три года, самым удобным способом провести вычисления будет именно через формулу геометрической прогрессии. Этот инструмент также применяется в проектировании, архитектуре и строительстве.
В этом тексте вы сможете узнать базовую информацию о формулах и свойства геометрической прогрессии, а также понять принцип, по которому она действует.
Что такое геометрическая прогрессия?
3, 12, 48, 192, 768, 3072 – это пример геометрической прогрессии. Все эти объединенные единым общим множителем. В теории геометрической прогрессии он называется знаменателем и обозначается как q. В этом случае q = 4. Чтобы создать геометрическую прогрессию, нам нужно сначала три умножить на четыре, затем 12 – снова на 4, потом 48 на 4 и так далее.
Читайте также: Плюсы и минусы образования за рубежом
Определение геометрической прогрессии
Геометрическая прогрессия – это прежде всего последовательность чисел. Каждый пункт этой последовательности, начиная со второго, равен предыдущему числу, умноженному на одинаковый множитель.
Устойчивое число множитель, которое собственно и образует последовательность под названием геометрическая прогрессия, называется знаменателем прогрессии и обозначается, как мы уже отметили выше, буквой q.
Члены прогрессии обозначаются как , где под индикатором n имеется в виду порядковый номер члена в прогрессии. Соответственно, первый член прогрессии (в нашем первом примере равен 3 – это b1, а второй (12) – это b2.
Предполагается, что ни первый член, ни знаменатель прогрессии не равен нулю.
Свойства геометрической прогрессии
Геометрическая прогрессия становится удобным инструментом вычислений, когда вы понимаете, что с помощью ее свойств и связанных с ней формул можно легко вычислить, чему равно
И действительно – если попробуем вручную умножать каждое число ряда на 4, в конце концов восьмым числом этой геометрической прогрессии станет 49152.
После усвоения главного принципа, лежащего в основе геометрической прогрессии, можем закрепить знания, проверив на практике первый пример с банковским депозитом.
Допустим, вы кладете на свой счет $ 100 под 6% годовых, и хотите узнать, какую сумму получите за 3 года. В таком случае вы будете использовать в своих расчетах геометрическую прогрессию, ведь ежегодно вы будете умножать все большую сумму на один и тот же множитель (в данном примере он равен 6%, то есть – 1,06)
Чтобы вычислить сумму вклада в момент завершения действия депозита, используем уже знакомую формулу для нахождения значения любого члена прогрессии:
В чем разница между геометрической и арифметической прогрессией?
В геометрической прогрессии члены прогрессии умножаются на постоянное число, тогда как арифметическая прогрессия воплощает последовательность чисел, в которой к каждому предыдущему члена добавляется одно и то же постоянное число.
Представим это на примерах.
Предположим, что знаменатель (q) в случае геометрической прогрессии составит 3 и так же в арифметической прогрессии устойчивое слагаемое будет равно 3. И стартовый член прогрессии в обоих случаях также составит одно и то же число – 4.
Арифметическая прогрессия тогда будет выглядеть как последовательность 4, 7 (= 4 + 3), 10 (= 7 + 3) .., 13 .., 16 .., 19 …
А геометрическая прогрессия – как последовательность 4, 12 (= 4 * 3), 36 (= 12 * 3), 108 .., 324 …
Читайте также: Учимся играя. Что такое геймификация
Формулы и свойства геометрической прогрессии
Свойства членов геометрической прогрессии – это формулы, упрощающие расчеты. Вот некоторые из них:
Чтобы найти знаменатель геометрической прогрессии, следует использовать следующую формулу:
Произведение членов, равноудаленных от краев геометрической прогрессии, то есть, соседних, всегда является постоянной величиной, то есть:
С формулой расчета любого члена геометрической прогрессии мы уже знакомы. Она выглядит так:
А формула нахождения суммы п первых членов геометрической прогрессии выглядит так:
Любой член геометрической прогрессии, начиная со второго, будет равняться среднему арифметическому соседних с ним членов, то есть при ,
Калькуляторы геометрической прогрессии
В сети есть множество калькуляторов как арифметической, так и геометрической прогрессии. Некоторые из них могут не только посчитать сумму прогрессии или найти знаменатель, но и отразить пошаговое решение того или иного примера. Пользуясь ими вы не только найдете ответ, но и сможете понять принцип действий и запомнить некоторые из формул.
Однако если вы переживаете сложности с пониманием геометрической прогрессии, эффективным решением может быть работа с репетитором по алгебре. На сайте БУКИ вы можете найти репетитора по любому предмету.
Что касается онлайн-калькуляторов прогрессии, то в Keisan Online Calculator вы можете вычислить или сумму геометрической прогрессии, а также значение любого ее члена с пошаговым решением вашего примера. А в Geometric Sequence Calculator вы сможете вычислить любой составляющая прогрессии: и знаменатель геометрической прогрессии (q), и сумму бесконечный прогрессии (Sn), и сумму первых членов (Sn).
Примеры решения заданий с геометрической прогрессией
Решение:
Вычислим знаменатель прогрессии, поделив друг на друга соседние члены:
q = b2/b1 = 11/5,5 = 2.
Ответ:
Знаменатель прогрессии (q) равен 2.
Решение:
Вычислим знаментель прогрессии, поделив друг на друга соседние члены:
q = b2/b1= -30/0,3= -100.
Ответ:
Знаменатель прогрессии (q) равен -100.
Читайте также: Самые популярные специальности в мире: выбор студентов 2021
План урока:
Геометрическая прогрессия
Сумма первых n членов геометрической прогрессии
Сумма бесконечно убывающей геометрической прогрессии
Геометрическая прогрессия
Изучим послед-ть
1, 2, 4, 8, 16, 32, 64, 128…
Здесь каждый следующее число больше предыдущего в 2 раза:
Подобные послед-ти именуют геометрическими прогрессиями. Они постоянно встречаются в реальной жизни в банковской сфере (при начислении процентов на вклад), при изучении демографических процессов и в ряде других дисциплин.
Из этого определения следует рекуррентная формула, которая задает геом. прог-сию:
где q – это какое-то постоянное число, которое называют знаменателем геометрической прогрессии. Так, в прог-сии
1, 2, 4, 8, 16, 32, 64, 128…
знаменатель равен 2. Чтобы найти его, достаточно поделить какой-нибудь член геометрической прогрессии на предыдущий, например:
или
Если q= 0, то и все числа послед-ти, начиная со второго, получатся равными нулю:
Такая послед-ть не представляет интерес для математиков, поэтому считается, что знаменатель q не должен равняться нулю.
Пример. Первое число геом. прог-сии z1 равно 10, а знаменатель q равен 3. Запишите первые пять чисел прог-сии.
Решение. Будем использовать рекуррентную формулу:
Итак, получаем послед-ть:
10, 30, 90, 270, 810…
Ответ: 10, 30, 90, 270, 810
Пример. Про геом. прог-сию известно, что v1 = 16, q = 0,5. Определите семь первых чисел прог-сии.
Решение: Снова используем рекуррентную формулу:
Пример. Геом. прог-сия начинается с числа 27, а знаменатель q = – 1. Запишите 4 первых числа прог-сии.
Решение. Используя рекуррентную формулу, можно записать:
Получили послед-ть:
27, -27, 27, -27
Ответ: 27, -27, 27, -27
Попытаемся вывести формулу n-ого члена геом. прог-сии. Пусть нам известны z1 и q. Тогда можно записать:
Легко заметить, что числа прог-сии вычисляются по формуле:
Докажем ее. Для этого необходимо использовать метод индукции. Очевидно, что формула справедлива для n = 1:
Здесь мы использовали тот факт, что любое число в нулевой степени равно единице, то есть q0 = 1.
Итак, мы доказали базис индукции. Теперь докажем ее шаг. Предположим, что формула работает для какого-то произвольного n = k:
Необходимо доказать, что (n + 1)-ый член вычисляется по формуле:
И действительно, используя рекуррентную формулу, можно получить:
Тем самым мы подтвердили справедливость формулы
Пример. Первое число послед-ти равно 5, а каждое следующее вдвое больше. Определите 15-тый член этой послед-ти.
Решение. Описанная послед-ть является геометрической, у которой z1 = 5, q = 2. Найдем ее 15 член:
Ответ: 81920.
Пример. Известно, что геом. прогрессия начинается с числа 6, а третий член – это число 216. Каким может быть второй этой прог-сии?
Решение. Сначала попробуем найти знаменатель прог-сии. Мы знаем, что z1 = 6, z3 = 216. Запишем формулу 2-его члена прогр-сии:
Получили квадратное уравнение. Решая его можем найти возможные значений q:
Получили два возможных значения знаменателя. Для каждого случая определим второй член прогр-сии:
при q = – 6 получаем z2 = z1•q = 6•(– 6) = – 36;
при q = 6 получаем z2 = z1•q = 6•6 = 36.
Ответ: – 6 или 6.
Пример. Вася решил положить 1 млн рублей на банковский вклад на 1 год. В банке «Золотой гном» ему предлагают доход в 25%, который выплатят в конце года. В банке «Слон» ему предлагают выплачивать каждый месяц по 2%. Какой из вариантов выгоднее для Васи?
Решение. Напомним, что получение дохода в 25% означает увеличение суммы вклада в 1 + 25/100 = 1,25 раза. Получение 2%-ого дохода означает увеличение суммы в 1 + 2/100 = 1,02 раза.
Посчитаем, сколько у Васи будет денег через год, если он выберет банк «Золотой гном»:
Во втором случае сумма будет увеличиваться в 1,02 раза каждый месяц. Если выписывать суммы, лежащие на вкладе в «Слоне», то получится геом. прог-сия, у которой знаменатель равен 1,02, а первый член – миллиону
Тогда сумма, лежащая на вкладе через 12 месяцев, составит
(Примечание.Величину 1,0212 можно посчитать на калькуляторе или компьютере.)
Получается, что второй вариант выгоднее, ведь он принесет Васе большую сумму денег.
Ответ: Лучше выбрать банк «Слон».
Пример. Дана геом. прог-сия, у которой z1 = 5, d = 3. Может ли в этой прог-сии находиться числа: 324; 405; 406?Также проверьте числа 123456789 и 5555555555.
Решение. Первый способ (простой, но требующий большого числа расчетов). Так как каждое следующее число в прог-сии больше предыдущего в 3 раза, то мы имеем дело с возрастающей последовательностью. Будем вычислять ее члены, пока не сможем получить число, большее 406:
Получили, что число 405 входит в прог-сию (z5 = 405), а числа 324 и 406 не входят в число первых 6 членов прог-сии. Однако, так как z6 = 1215 больше этих двух чисел, а каждый следующий член прог-сии ещё больше, то ясно, что 324 и 406 уже не встретятся в ней. Однако проверить таким способом длинные числа довольно тяжело.
Второй способ. Каждый член последовательности можно записать в виде
Напомним, что если один из множителей произведения делится нацело на какое-то число, то и всё произведение делится на это же число. Множитель 3n–1 делится на 3 (при n ≥2):
Число 5 делится само на себя. Следовательно, числа, входящие в эту геом. послед-ть, должны делится и на 3, и на 5.
Теперь проанализируем числа 1234546789 и 5555555555, используя признаки делимости на 3 и 5. Первое из них НЕ делится нацело на 5, так как заканчивается на 9. Число 5555555555 НЕ делится на 3, так как сумма его цифр не делится нацело на 3:
Значит, они не могут входить в геом. прог-сию.
Ответ: число 405 входит в прог-сию, а остальные – нет.
Сумма первых n членов геометрической прогрессии
Попытаемся вычислить сумму первых членов геом. прог-сии. Обозначим её как Sn:
Умножим обе части рав-ва на знаменатель прог-сии q:
Вспомним рекуррентную формулу:
Из нее следует, что
Тогда ур-ние (2) можно переписать так:
Теперь вычтем из (3) рав-во (1)
Обратите внимание – справа слагаемые z2, z3, z4… zn сначала идут со знаком «плюс», а потом – со знаком «минус». Это значит, что их можно сократить! Тогда справа останется разница zn+1– z1. Это связано с тем, что для слагаемых zn+1 и z1 не нашлось противоположного числа, чтобы сократиться. Можно записать:
Далее произведем замену zn+1 = z1•qn:
Если q– 1 ≠ 0, то можно поделить обе части рав-ва и получить окончательную формулу:
Отдельно рассмотрим случай, когда q– 1 = 0. Тогда полученная формула будет некорректной (будет получаться деление на ноль). Если q– 1 = 0, то q = 1. Это значит, что все члены прог-сии равны друг другу:
Тогда сумма n первых членов будет равна z1•n:
Пример. Найдите сумму первых шести членов геом. прог-сии, у которой z1 = 3, q = 2.
Решение. Используем формулу:
Ответ: 189.
Пример. Определите сумму первых пяти членов геом. послед-ти, у которой z1 =1 и q = 1/2.
Решение. Здесь в степень придется возводить дробь 1/2:
Ответ: 31/16
Сумма бесконечно убывающей геометрической прогрессии
Легко заметить, что если знаменателем геом. прог-сии – это положительное число, которое больше единицы, то прог-сия является убывающей послед-тью. Такие последовательности называют бесконечно убывающими геометрическими прогрессиями.
В качестве примера приведем послед-ть, у которой z1 = 1, q = 1/2:
Каждый ее член может быть рассчитан по формуле
Очевидно, что чем больше n, тем меньше zn, причем значение zn как бы стремится к нулю. Например, на компьютере можно посчитать, что
То, что величина (1/2)n–1 при больших n стремится к нулю, в математике записывается так:
Запись «lim» означает «предел», а символ «∞» означает бесконечность. Выражение читается так: «предел (1/2)n–1 при n, стремящемся к бесконечности, равен нулю». Мы не будем давать строгое определение понятия «предел», так как эта задача выходит за рамки элементарной математики и относится уже к математике высшей. Грубо говоря, предел – это то число, к которому выражение приближается как угодно близко, но не может его достигнуть. Так при – 1 <q< 1 выражение qn стремится к нулю, если n стремится к бесконечности:
Отобразим сумму первых n членов послед-ти
с помощью координатной прямой. Пусть в точке с координатой 0 находится точка B. Отложим от нее вправо точку А1 так, чтобы ВА1 =z1 = 1. Далее от точки А1 также вправо будем откладывать точку А2, но длина отрезка А1А2 будет уже вдвое меньше, то есть она составит 1/2. Будем и далее откладывать точки А3, А4… до какой то точки Аn:
С одной стороны, длина каждого следующего отрезка будет равна члену геом. прог-сии:
C другой стороны, длина отрезков BA1, BA2, BA3… будет равна сумме нескольких первых членов геом. прог-сии:
Отметим, что при таком построении с увеличением n точка Аn всё ближе приближается к числу 2, однако так и не доходит до нее. Действительно, каждая следующая точка делит оставшееся расстояние надвое, поэтому она всегда остается левее точки 2, но приближается к ней. Получается, что сумма первых n членов прог-сии c ростом n приближается к двойке. В математике говорят, что число 2 является пределом послед-ти Sn. Запишем это:
На рисунке мы рассмотрели поведение послед-ти, у которой q = 1/2. Однако оказывается, что и любая другая бесконечная убывающая геометрическая прогрессия ведет себя похожим образом. Для каждой такой послед-ти существует предел суммы ее членов. Покажем, как его найти.
Запишем формулу суммы n членов геом. прог-сии в более удобном дробном виде:
Умножим и числитель, и знаменатель одновременно на (– 1), при этом можно будет поменять местами уменьшаемое и вычитаемое:
Далее выделим целую часть:
Проанализируем полученное выражение. Уменьшаемое z1/(1 – q) не содержит переменной n, а потому не зависит от этой переменной. А вот вычитаемое содержит множитель qn. Можно доказать, что если выполняется условие–1 <q< 1, то с ростом n этот множитель стремится к нулю:
Значит, и всё вычитаемое также стремится к нулю:
Получается, что при, бесконечно большом значении n сумма S∞ может быть вычислена так:
Итак, удалось получить формулу S∞ = z1/(1 – q). Ещё раз отметим, что по-настоящему строгое доказательство требует использование понятие предела из высшей математики, а потому не рассматривается здесь.
Зачем вообще находить сумму бесконечной геометрической прогрессии? Оказывается, что такая задача встает при изучении ряда других разделов математики, а также при расчете вероятностей некоторых событий.
Пример. Найдите сумму S∞ для прог-сии, у которой z1 = 0,1, q = 0,1.
Решение. Запишем первые несколько членов прог-сии:
Теперь будем записывать суммы Sn этой прог-сии:
Очевидно, что при бесконечном n получается бесконечная периодическая дробь:
Подробнее о бесконечных периодических дробях можно узнать из этого урока.
Теперь найдем сумму S∞, используя формулу S∞ = z1/(1 – q):
Получили дробь 1/9. Получается, что обыкновенная дробь 1/9 и бесконечная периодическая дробь 0,(1) – это одно и то же число! И действительно, если на калькуляторе поделить 1 на 9, то он покажет 0,111111111…:
Пример. Какая дробь при разложении ее в бесконечную десятичную дробь дает число 0,010101010101 = 0,(01)?
Решение: По аналогии с предыдущей задачей можно записать:
0,(01) = 0,01010101… = 0,01 + 0,0001 + 0,000001 + 0,00000001…
Получили слева сумму бесконечной прог-сии
в которой z1 = 0,01, а знаменатель q = 0,01. Ее сумма может быть рассчитана по формуле:
Получили дробь 1/99. То есть
Проверим себя с помощью калькулятора:
Пример. В квадрат со стороной 1 вписали другой квадрат, причем его вершины располагаются на серединах описанного квадрата. По тому же принципу в полученный квадрат вписали следующий квадрат, в него ещё один и т. д. Чему равна общая площадь всех полученных квадратов и каков их общий периметр?
Решение. Сторона первого квадрата равна 1. Найдем сторону вписанного треугольника:
Изучим треугольник АВС. В нем АВ = ВС = 1/2 (ведь они составляют половину от сторон DB и BF, который по условию равны 1). Угол АВС – прямой, а потому можно воспользоваться теоремой Пифагора:
Получили, что сторона вписанного квадрата в √2 раз меньше, чем сторона исходного квадрата. Аналогично можно показать, что и у следующего квадрата сторона будет ещё в √2 раз меньше и т. д. Соответственно и периметры квадратов будут уменьшаться в √2 раз, при этом периметр первого квадрата равен 4•1 = 4.
Получаем, что периметры квадратов образуют убывающую геом. прог-сию, в которой
Найдем сумму S∞ для этой прог-сии:
Итак, общий периметр найден. Теперь найдем сумму площадей. Площадь исходного квадрата равна 1•1 = 1. Площадь вписанного квадрата составляет:
Получили, что площадь вписанного квадрата вдвое меньше площади исходного. Тогда площади квадратов образуют геом. прог-сию, в которой
Найдем и для этой прог-сии сумму:
Итак, суммарная площадь всех квадратов равна двум.
Наконец, рассмотрим задачу, имеющую практическое содержание.
Пример. Два спортсмена, Вася и Петя, играют в настольный теннис. Счет в их партии равен 10:10, и поэтому у них действует правило «баланса». Согласно нему, игроки при равном счете должны разыграть два очка, причем в первом розыгрыше подавать будет Вася, а во втором – Петя. Если одному игроку удастся выиграть оба очка, то он выиграет всю партию. Если каждый из игроков выиграет по одному розыгрышу, то счет в их партии становится равным, и тогда им снова надо разыгрывать ещё два очка. Проще говоря, партия не закончится, пока разница в счете не составит два очка.
Известно, что при подаче Васи вероятность его победы в розыгрыше составляет 0,7. При подаче Пети шансы подающего на выигрыш очка равны 0,6. Каковы шансы Васи и Пети на победу в партии?
Решение. По условию начальный счет равен 10:10. Будем считать, что первое число в счете – это очки Васи,а второе – очки Пети. Игра закончится победой одного из игроков, когда его преимущество в счете достигнет 2 очков. Тогда возможные варианты развития событий можно изобразить с помощью схемы:
Обратим внимание, что в игре возможно бесконечное количество вариантов развития событий. Так, окончательный счет может быть равен даже 102:100 или 100002:100000 (хотя это и крайне маловероятно). Пусть вероятность, что игра закончится, например, со счетом 15:13, будет обозначаться как Р15:13. Тогда, чтобы найти вероятность победы Васи, надо сложить бесконечное число вероятностей:
Первую подачу при счете «ровно» Вася выиграет с вероятностью 0,7, поэтому шансы Пети забрать 1-ое очко себе равны 1 – 0,7 = 0,3.
На второй подаче Петя выиграет с вероятностью 0,6, а шансы Васи составят 1 – 0,6 = 0,4.
Тогда вероятность, что Вася выиграет оба очка, составит
Для Пети вероятность забрать себе оба очка равна
Есть и третий вариант развития событий – после двух розыгрышей счет останется равным (каждый выиграет один мяч), и снова возникает «баланс». Вероятность такого исхода равна
Следовательно, можно записать:
Счета 13:11, 12:12 и 11:13 могут наступить только в том случае, если сначала был достигнут счет 11:11. «Переход» из счета 11:11 к счету 13:11 произойдет, если Вася выиграет два очка подряд, а вероятность такого исхода мы уже считали: Рв = 0,7•0,4 = 0,28. Поэтому можно записать
Аналогично для счетов 12:12 и 11:13 запишем:
Следующие три счета, 14:12, 13:13 и 12:14, возможны только после счета 12:12. Их вероятности записываются так:
По аналогии для счетов 15:13, 14:14 и 13:15 можно записать:
Такие записи можно продолжать бесконечно. Однако легко увидеть, что вероятности счетов, победных для Васи, образуют геом. прог-сию:
Её первый член равен 0,28, а знаменатель составляет 0,54. Тогда сумма всех этих вероятностей, а значит и общая вероятность победы Васи, составит
Аналогично и счета, выигрышные для Пети, образуют геом. прог-сию:
Здесь z1 = 0,18; q = 0,54. Найдем сумму геометрической прогрессии:
Проверим себя. Ясно, что партию выиграет либо Вася, либо Петя. То есть сумма вероятностей их побед должна равняться единице. И действительно:
Значит, наши расчеты верны.
Ответ: Вася выиграет с вероятностью 14/23, а шансы Пети равны 9/23.