Как найти значение одночлена калькулятор

Calculating the monomial expression is always a bit complicated task. For that, you can make use of this online powers of monomials calculator to calculate the monomial expression with ease.

Calculate Monomial Expression

Calculating the monomial expression is always a bit complicated task. For that, you can make use of this online powers of monomials calculator to calculate the monomial expression with ease.

Code to add this calci to your website Expand embed code Minimize embed code

Monomial: It is an algebraic expression with only one term and is a polynomial with only one zero term. Each term is separated with the addition or subtraction sign. The term can be numbers, whole numbers, and variables that can be multiplied together. The variables of the monomial cannot be a fractional or negative exponent.

Rules for Monomial: The product of two monomial is a monomial and the product of a monomial and a constant is also Monomial.

Feel free to use this online powers of monomials calculator to calculate the monomial expression’s simplified product. Just enter the expression and hit enter to identify the monomial.

Сложение и вычитание одночленов, формула

Формула сложения одночленов

сложение одночленов, формула
Сложение одночленов это сумма коэффициентов одночленов.

Найти сложение одночленов по формуле с калькулятором онлайн

Примеры сложения одночленов

1. 10xy2 + 5xy2 = 15xy2 ;

a = x ;

b = y2 ;

2. 7x2y3 + 18x2y3 = 25x2y3 ;

a = x2 ;

b = y3 ;

3. 1/2mk2 + 1/2mk2 = 1mk2 ;

a = m ;

b = k2 ;

4. 3 • 4 • 52 + 6 • 4 • 52 = 9 • 4 • 52 = 900 ;

a = 4 ;

b = 5 ;

Формула вычитания одночленов

вычитание одночленов, формула
Вычитание одночленов это вычитание коэффициентов одночленов.

Найти вычитание одночленов по формуле с калькулятором онлайн

Примеры вычитания одночленов

1. 9x2y2 — 7x2y2 = 2x2y2 ;

a = x2 ;

b = y2 ;

2. 4xy3 — 8xy3 = -4xy3 ;

a = x ;

b = y3 ;

3. 20nk2 — 15nk2 = 5nk2 ;

a = n ;

b = k2 ;

4. 5 • 42 • 62 — 3 • 42 • 62 = 2 • 42 • 62 = 1 152 ;

a = 42 ;

b = 62 ;

bold{mathrm{Basic}} bold{alphabetagamma} bold{mathrm{ABGamma}} bold{sincos} bold{gedivrightarrow} bold{overline{x}spacemathbb{C}forall} bold{sumspaceintspaceproduct} bold{begin{pmatrix}square&square\square&squareend{pmatrix}} bold{H_{2}O}
square^{2} x^{square} sqrt{square} nthroot[msquare]{square} frac{msquare}{msquare} log_{msquare} pi theta infty int frac{d}{dx}
ge le cdot div x^{circ} (square) |square| (f:circ:g) f(x) ln e^{square}
left(squareright)^{‘} frac{partial}{partial x} int_{msquare}^{msquare} lim sum sin cos tan cot csc sec
alpha beta gamma delta zeta eta theta iota kappa lambda mu
nu xi pi rho sigma tau upsilon phi chi psi omega
A B Gamma Delta E Z H Theta K Lambda M
N Xi Pi P Sigma T Upsilon Phi X Psi Omega
sin cos tan cot sec csc sinh cosh tanh coth sech
arcsin arccos arctan arccot arcsec arccsc arcsinh arccosh arctanh arccoth arcsech
begin{cases}square\squareend{cases} begin{cases}square\square\squareend{cases} = ne div cdot times < > le ge
(square) [square] ▭:longdivision{▭} times twostack{▭}{▭} + twostack{▭}{▭} — twostack{▭}{▭} square! x^{circ} rightarrow lfloorsquarerfloor lceilsquarerceil
overline{square} vec{square} in forall notin exist mathbb{R} mathbb{C} mathbb{N} mathbb{Z} emptyset
vee wedge neg oplus cap cup square^{c} subset subsete superset supersete
int intint intintint int_{square}^{square} int_{square}^{square}int_{square}^{square} int_{square}^{square}int_{square}^{square}int_{square}^{square} sum prod
lim lim _{xto infty } lim _{xto 0+} lim _{xto 0-} frac{d}{dx} frac{d^2}{dx^2} left(squareright)^{‘} left(squareright)^{»} frac{partial}{partial x}
(2times2) (2times3) (3times3) (3times2) (4times2) (4times3) (4times4) (3times4) (2times4) (5times5)
(1times2) (1times3) (1times4) (1times5) (1times6) (2times1) (3times1) (4times1) (5times1) (6times1) (7times1)
mathrm{Радианы} mathrm{Степени} square! ( ) % mathrm{очистить}
arcsin sin sqrt{square} 7 8 9 div
arccos cos ln 4 5 6 times
arctan tan log 1 2 3
pi e x^{square} 0 . bold{=} +

Подпишитесь, чтобы подтвердить свой ответ

Подписаться

Войдите, чтобы сохранять заметки

Войти

Показать Этапы

Номер Строки

Примеры

  • 5x-6=3x-8

  • x^2-x-6=0

  • -x+3gt 2x+1

  • (x+5)(x-5)gt 0

  • 10^{1-x}=10^4

  • sqrt{3+x}=-2

  • 6+11x+6x^2+x^3=0

  • разлагать:на:множители:x^{2}-5x+6

  • упростить:frac{2}{3}-frac{3}{2}+frac{1}{4}

  • x+2y=2x-5,:x-y=3

  • Показать больше

Описание

Расчет уравнений, неравенств, линейных уравнений и систем уравнений шаг за шагом

algebra-calculator

ru

Блог-сообщения, имеющие отношение к Symbolab

  • High School Math Solutions – Inequalities Calculator, Exponential Inequalities

    Last post, we talked about how to solve logarithmic inequalities. This post, we will learn how to solve exponential…

    Read More

  • Введите Задачу

    Сохранить в блокнот!

    Войти

    Пояснения к калькулятору

    1. Для решения математического выражения необходимо набрать его в поле ввода с помощью предложенной виртуальной клавиатуры и нажать кнопку .
    2. Управлять курсором можно кликами в нужное местоположение в поле ввода или с помощью клавиш со стрелками и .
    3. — удалить в поле ввода символ слева от курсора.
    4. C — очистить поле ввода.
    5. При использовании скобок ( ) в выражении в целях упрощения может производится автоматическое закрытие, ранее открытых скобок.
    6. Для того чтобы ввести смешанное число или дробь необходимо нажать кнопку ½, ввести сначала значение числителя, затем нажать кнопку со стрелкой вправо и внести значение знаменателя дроби. Для ввода целой части смешанного числа необходимо установить курсор перед дробью с помощью клавиши и ввести число.
    7. Ввод числа в n-ой степени и квадратного корня прозводится кнопками ab и соответственно. Завершить ввод значения в степени или в корне можно клавишей .

    Упрощение выражений, раскрытие скобок, разложение многочленов на множители

    Калькулятор позволяет произвести некоторые алгебраические преобразования с выражениями. Результат выводится в нескольких вариантах упрощения/разложения/раскрытия скобок и пр.

    $$frac{left(frac{2a}{2a+b}-frac{4a^2}{4a^2+4ab+b^2}right)}{left(frac{2a}{4a^2-b^2}+frac{1}{b-2a}right)}+frac{8a^2}{2a+b}$$ (упростить выражение)

    $$frac{1-sin ^4left(xright)-cos ^4left(xright)}{2sin ^4left(xright)}+1$$ (упростить выражение)

    $$left(sqrt{a}-frac{a}{sqrt{a}+1}right)cdot frac{a-1}{sqrt{a}}$$ (упростить выражение)

    Решение уравнений и неравенств

    Математический калькулятор может решать уравнения и неравентства относительно переменной «x». Если есть необходимость найти другую переменную, например «y», то следует просто поменять их местами в выражении. Ввод переменных «x»,»y»,»z» производится в группе xyz нажатием соответствующих кнопок x, y, z.

    Решение систем уравнений и неравенств

    Системы уравнений и неравенств также решаются с помощью онлайн калькулятора. Чтобы задать систему необходимо ввести уравнения/неравенства, разделяя их точкой с запятой с помощью кнопки ;.

    Вычисление выражений с логарифмами

    В калькуляторе кнопкой loge(x) возможно задать натуральный логарифм, т.е логарифм с основанием «e»: loge(x) — это ln(x). Для того чтобы ввести логарифм с другим основанием нужно преобразовать логарифм по следующей формуле: $$log_a left(bright) = frac{log left(bright)}{log left(aright)}$$ Например, $$log_{3} left(5x-1right) = frac{log left(5x-1right)}{log left(3right)}$$

    $$log _3left(5x-1right)=2$$ преобразуем в $$frac{log left(5x-1right)}{log left(3right)}=2$$ (решить уравнение)

    $$log _2left(xright)=2log _xleft(2right)-1$$ преобразуем в $$frac{log left(xright)}{log left(2right)}=2cdot frac{log left(2right)}{log left(xright)}-1$$ (найти x в уравнении)

    Вычисление пределов функций

    Предел функции задается последовательным нажатием групповой кнопки f(x) и функциональной кнопки lim.

    Решение интегралов

    Онлайн калькулятор предоставляет инструменты для интегрирования функций. Вычисления производятся как с неопределенными, так и с определенными интегралами. Ввод интегралов в поле калькулятора осуществляется вызовом групповой кнопки f(x) и далее:
    ∫ f(x) — для неопределенного интеграла;
    ba∫ f(x) — для определенного интеграла.

    В определенном интеграле кроме самой функции необходимо задать нижний и верхний пределы.

    $$int left(frac{x+arccos ^2left(3xright)}{sqrt{1-9x^2}}right)dx$$ (решить интеграл)

    $$int _{frac{pi }{6}}^{frac{pi }{3}}left(sin 6xsin 7xright)dx$$ (решить интеграл)

    $$int _{+infty }^{-infty }left(frac{1}{left(x^2+1right)left(x^2+4right)}right)dx$$ (решить интеграл)

    Вычисление производных

    Математический калькулятор может дифференцировать функции (нахождение производной) произвольного порядка в точке «x». Ввод производной в поле калькулятора осуществляется вызовом групповой кнопки f(x) и далее:
    f'(x) — производная первого порядка;
    f»(x) — производная второго порядка;
    f»'(x) — производная третьего порядка.
    fn(x) — производная любого n-о порядка.

    Действия над комплексными числами

    Онлайн калькулятор имеет функционал для работы с комплексными числами (операции сложения, вычитания, умножения, деления, возведения в степень и пр.). Комплексное число обзначается символом «i» и вводится с помощью групповой кнопки xyz и кнопки i

    .


    Калькулятор многочленов

    Воспользуйтесь нашим простым онлайн-калькулятором многочленов, чтобы решить полиномы с пошаговым объяснением.

    1. Главная
    2. Многочлены

    Добавьте калькулятор алгебры в закладки вашего браузера

    1. Для Windows или Linux — нажмите Ctrl + D .

    2. Для MacOS — нажмите Cmd + D .

    3. Для iPhone (Safari)нажмите и удерживайте , затем нажмите Добавить закладку

    4. Для Google Chrome : нажмите 3 точки в правом верхнем углу, затем нажмите знак звездочки

    Как пользоваться калькулятором многочленов

    Шаг 1

    Введите свою полиномиальную задачу в поле ввода.

    Шаг 2

    Нажмите Enter на клавиатуре или на стрелку справа от поля ввода.

    Шаг 3

    Во всплывающем окне выберите нужную операцию. Вы также можете воспользоваться поиском.

    Что такое полиномы

    Многочлен — это выражение, представляющее собой сумму нескольких одночленов. Моном — это произведение чисел, переменных и их естественных степеней. Многочлены можно складывать, вычитать, умножать и делить, а также вычитать общий множитель.

    Калькулятор алгебры с расширенными функциями. Удобный и простой инженерный калькулятор с богатым арсеналом возможностей для математических расчетов и при этом с приятным и интуитивно понятным интерфейсом.

    Решение задач по математике онлайн

    //mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

    Калькулятор онлайн.
    Упрощение многочлена.
    Умножение многочленов.

    С помощью данной математической программы вы можете упростить многочлен.
    В процессе работы программа:
    — умножает многочлены
    — суммирует одночлены (приводит подобные)
    — раскрывает скобки
    — возводит многочлен в степень

    Программа упрощения многочленов не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы вы могли проконтролировать свои знания по математике и/или алгебре.

    Данная программа может быть полезна учащимся общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

    Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

    Немного теории.

    Произведение одночлена и многочлена. Понятие многочлена

    Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
    ( 5a^4 — 2a^3 + 0,3a^2 — 4,6a + 8 )
    ( xy^3 — 5x^2y + 9x^3 — 7y^2 + 6x + 5y — 2 )

    Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

    Например, многочлен
    ( 8b^5 — 2b cdot 7b^4 + 3b^2 — 8b + 0,25b cdot (-12)b + 16 )
    можно упростить.

    Представим все слагаемые в виде одночленов стандартного вида:
    ( 8b^5 — 2b cdot 7b^4 + 3b^2 — 8b + 0,25b cdot (-12)b + 16 = )
    ( = 8b^5 — 14b^5 + 3b^2 -8b -3b^2 + 16 )

    Приведем в полученном многочлене подобные члены:
    ( 8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 )
    Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида.

    За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен ( 12a^2b — 7b ) имеет третью степень, а трехчлен ( 2b^2 -7b + 6 ) — вторую.

    Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
    ( 5x — 18x^3 + 1 + x^5 = x^5 — 18x^3 + 5x + 1 )

    Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

    Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки — это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

    Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

    Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

    Преобразование (упрощение) произведения одночлена и многочлена

    С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
    ( 9a^2b(7a^2 — 5ab — 4b^2) = )
    ( = 9a^2b cdot 7a^2 + 9a^2b cdot (-5ab) + 9a^2b cdot (-4b^2) = )
    ( = 63a^4b — 45a^3b^2 — 36a^2b^3 )

    Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

    Этот результат обычно формулируют в виде правила.

    Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

    Мы уже неоднократно использовали это правило для умножения на сумму.

    Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

    Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

    Обычно пользуются следующим правилом.

    Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

    Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

    С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения ( (a + b)^2, ; (a — b)^2 ) и ( a^2 — b^2 ), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, ( (a + b)^2 ) — это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

    Выражения ( (a + b)^2, ; (a — b)^2 ) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
    ( (a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = )
    ( = a^2 + 2ab + b^2 )

    Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

    ( (a + b)^2 = a^2 + b^2 + 2ab ) — квадрат суммы равен сумме квадратов и удвоенного произведения.

    ( (a — b)^2 = a^2 + b^2 — 2ab ) — квадрат разности равен сумме квадратов без удвоенного произведения.

    ( a^2 — b^2 = (a — b)(a + b) ) — разность квадратов равна произведению разности на сумму.

    Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно — правые части левыми. Самое трудное при этом — увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

    Универсальный математический калькулятор

    Онлайн-калькулятор позволяет решать математические выражения любой сложности с выводом подробного результата решения по шагам.

    Также универсальный калькулятор умеет производить действия со скобками, дробями, тригонометрическими функциями, возведение в любую степень и многое другое (смотрите примеры ниже).

    Онлайн калькулятор уравнений, интегралов, производных, пределов, дробей и пр.

    Разделитель системы уравнений

    Натуральный логарифм и предел:

    Пояснения к калькулятору

    1. Для решения математического выражения необходимо набрать его в поле ввода с помощью предложенной виртуальной клавиатуры и нажать кнопку ↵ .
    2. Управлять курсором можно кликами в нужное местоположение в поле ввода или с помощью клавиш со стрелками ← и → .
    3. ⌫ — удалить в поле ввода символ слева от курсора.
    4. C — очистить поле ввода.
    5. При использовании скобок ( ) в выражении в целях упрощения может производится автоматическое закрытие, ранее открытых скобок.
    6. Для того чтобы ввести смешанное число или дробь необходимо нажать кнопку ½ , ввести сначала значение числителя, затем нажать кнопку со стрелкой вправо → и внести значение знаменателя дроби. Для ввода целой части смешанного числа необходимо установить курсор перед дробью с помощью клавиши ← и ввести число.
    7. Ввод числа в n-ой степени и квадратного корня прозводится кнопками a b и √ соответственно. Завершить ввод значения в степени или в корне можно клавишей → .

    Упрощение выражений, раскрытие скобок, разложение многочленов на множители

    Калькулятор позволяет произвести некоторые алгебраические преобразования с выражениями. Результат выводится в нескольких вариантах упрощения/разложения/раскрытия скобок и пр.

    Решение уравнений и неравенств

    Математический калькулятор может решать уравнения и неравентства относительно переменной «x». Если есть необходимость найти другую переменную, например «y», то следует просто поменять их местами в выражении. Ввод переменных «x»,»y»,»z» производится в группе xyz нажатием соответствующих кнопок x , y , z .

    Примеры решений уравнений и неравенств:

    Решение систем уравнений и неравенств

    Системы уравнений и неравенств также решаются с помощью онлайн калькулятора. Чтобы задать систему необходимо ввести уравнения/неравенства, разделяя их точкой с запятой с помощью кнопки ; .

    Примеры вычислений систем уравнений и неравенств:

    Вычисление выражений с логарифмами

    В калькуляторе кнопкой loge(x) возможно задать натуральный логарифм, т.е логарифм с основанием «e»: loge(x) — это ln(x). Для того чтобы ввести логарифм с другим основанием нужно преобразовать логарифм по следующей формуле: $$log_a left(bright) = frac<log left(bright)><log left(aright)>$$ Например, $$log_ <3>left(5x-1right) = frac<log left(5x-1right)><log left(3right)>$$

    Примеры решений выражений с логарифмами:

    Вычисление пределов функций

    Предел функции задается последовательным нажатием групповой кнопки f(x) и функциональной кнопки lim .

    Примеры решений пределов:

    Решение интегралов

    Онлайн калькулятор предоставляет инструменты для интегрирования функций. Вычисления производятся как с неопределенными, так и с определенными интегралами. Ввод интегралов в поле калькулятора осуществляется вызовом групповой кнопки f(x) и далее:
    ∫ f(x) — для неопределенного интеграла;
    b a∫ f(x) — для определенного интеграла.

    В определенном интеграле кроме самой функции необходимо задать нижний и верхний пределы.

    Примеры вычислений интегралов:

    Вычисление производных

    Математический калькулятор может дифференцировать функции (нахождение производной) произвольного порядка в точке «x». Ввод производной в поле калькулятора осуществляется вызовом групповой кнопки f(x) и далее:
    f'(x) — производная первого порядка;
    f»(x) — производная второго порядка;
    f»'(x) — производная третьего порядка.
    f n (x) — производная любого n-о порядка.

    Действия над комплексными числами

    Онлайн калькулятор имеет функционал для работы с комплексными числами (операции сложения, вычитания, умножения, деления, возведения в степень и пр.). Комплексное число обзначается символом «i» и вводится с помощью групповой кнопки xyz и кнопки i

    источники:

    http://www.math-solution.ru/math-task/simplifi-polynom

    http://findhow.org/4388-matematicheskij-kalkulyator.html

    Понравилась статья? Поделить с друзьями:

    Не пропустите также:

  • Как найти строку состояния в xml
  • Как составить дизайн прихожей
  • Как составить бизнес план на открытие кондитерского магазина
  • Химия как найти число молей
  • Шоп как исправить

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии