Как найти высоту кубика

Height is an integral dimension in determining an object’s volume. To find the height measurement of an object, you need to know its geometric shape, such as cube, rectangle or pyramid. One of the easiest ways to think of height as it corresponds to volume is to think of the other dimensions as a base area. The height is just that many base areas stacked upon each other. Individual object volume formulas can be rearranged to calculate height. Mathematicians have long ago worked out the volume formulas for all known geometric shapes. In some cases, such as the cube, solving for height is easy; in others, it takes a little simple algebra.

Height of Rectangular Objects

The formula for the volume of a solid rectangle is width x depth x height. Divide the volume by the product of the length and width to calculate the height of a rectangular object. For this example, the rectangular object has a length of 20, a width of 10 and a volume of 6,000. The product of 20 and 10 is 200, and 6,000 divided by 200 results in 30. The height of the object is 30.

Height of Cube

A cube is a kind of rectangle where all the sides are the same. So to find volume, cube the length of any side. To find height, calculate the cube root of a cube’s volume. For this example, the cube has a volume of 27. The cube root of 27 is 3. The height of the cube is 3.

Height of Cylinder

A cylinder is a straight rod or peg shape, with a circular cross-section that has the same radius all the way from top to bottom. Its volume is the area of the circle (pi x radius^2) times the height. Divide the volume of a cylinder by the amount of the radius squared multiplied by pi, to calculate its height. For this example, the volume of the cylinder is 300 and the radius is 3. Squaring 3 results in 9, and multiplying 9 by pi results in 28.274. Dividing 300 by 28.274 results in 10.61. The height of the cylinder is 10.61.

Height of Pyramid

A square pyramid has a flat square base and four triangular sides that meet at a point on the top. The volume formula is length x width x height ÷ 3. Triple the volume of a pyramid and then divide that amount by the area of the base to calculate its height. For this example, the volume of the pyramid is 200 and the area of its base is 30. Multiplying 200 by 3 results in 600, and dividing 600 by 30 results in 20. The height of the pyramid is 20.

Height of Prism

Geometry describes a few different kinds of prisms: some have rectangular bases, some have bases that are triangular. In either case, the cross-section is the same all the way through, like the cylinder. The volume of the prism is the area of the base times the height. So to calculate height, divide the volume of a prism by its base area. For this example, the volume of the prism is 500 and its base area is 50. Dividing 500 by 50 results in 10. The height of the prism is 10.

Сомневаетесь в ответе?

Найдите правильный ответ на вопрос ✅ «Как найти высоту куба, зная только объём 27 м3 …» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.

Смотреть другие ответы

алекс2284

+10

Решено

7 лет назад

Математика

5 — 9 классы

Как узнать длину, ширину, высоту куба , если известен его объём

Смотреть ответ

1


Ответ проверен экспертом

3
(2 оценки)

1

xxxeol

xxxeol
7 лет назад

Светило науки — 20810 ответов — 124052 помощи

Используем формулу объема для вычисления стороны куба
V = a³
Отсюда
а = ∛V — сторона куба.
И далее другие стороны куба по формуле
a = b = c
И площадь грани = S = a²
Полная поверхность — Sp = 6*a²
Длина ребер  L = 12*a
Главное — извлечь кубический корень из объема.

(2 оценки)

https://vashotvet.com/task/1688740

В публикации мы рассмотрим определение и основные свойства куба, а также формулы, касающиеся данной геометрической фигуры (расчет площади поверхности, периметра ребер, объема, радиуса описанного/вписанного шара и т.д.).

  • Определение куба

  • Свойства куба

    • Свойство 1

    • Свойство 2

    • Свойство 3

  • Формулы для куба

    • Диагональ

    • Диагональ грани

    • Площадь полной поверхности

    • Периметр ребер

    • Объем

    • Радиус описанного вокруг шара

    • Радиус вписанного шара

Определение куба

Куб – это правильный многогранник, все грани которого являются квадратами.

Куб

  • Вершины куба – это точки, являющиеся вершинами его граней.
    Всего их 8: A, B, C, D, A1, B1, C1 и D1.
  • Ребра куба – это стороны его граней.
    Всего их 12: AB, BC, CD, AD, AA1, BB1, CC1, DD1, A1B1, B1C1, C1D1 и A1D1.
  • Грани куба – это квадраты, из которого состоит фигура.
    Всего их 6: ABCD, A1B1C1D1, AA1B1B, BB1C1C, CC1D1D и AA1D1D.

Примечание: куб является частным случаем параллелепипеда или призмы.

Свойства куба

Свойство 1

Как следует из определения, все ребра и грани куба равны. Также противоположные грани фигуры попарно параллельны, т.е.:

  • ABCD || A1B1C1D1
  • AA1B1B || CC1D1D
  • BB1C1C || AA1D1D

Свойство 2

Диагонали куба (их всего 4) равны и в точке пересечения делятся пополам.

Пересечение диагоналей куба

  • AC1 = BD1 = A1C = B1D (диагонали куба).
  • О – точка пересечения диагоналей:
    AO = OC1 = BO = OD1 = A1O = OC = B1O = OD.

Свойство 3

Все двугранные углы куба (углы между двумя гранями) равны 90°, т.е. являются прямыми.

Прямой двугранный угол куба

Например, на рисунке выше угол между гранями ABCD и AA1B1B является прямым.

Формулы для куба

Примем следующие обозначения, которые будут использоваться далее:

  • a – ребро куба;
  • d – диагональ куба или его грани.

Диагональ

Длина диагонали куба равняется длине его ребра, умноженной на квадратный корень из трех.

Формула для расчета диагонали куба через длину его ребра

Диагональ грани

Диагональ грани куба равна его ребру, умноженному на квадратный корень из двух.

Формула для расчета диагонали грани куба через длину его ребра

Площадь полной поверхности

Площадь полной поверхности куба равняется шести площадям его грани. В формуле может использоваться длина ребра или диагонали.

Формула расчета площади полной поверхности куба через длину его ребра/диагонали

Периметр ребер

Периметр куба равен длине его ребра, умноженной на 12. Также может рассчитываться через диагональ.

Формула расчета периметра куба через длину его ребра/диагонали

Объем

Объем куба равен длине его ребра, возведенной в куб.

Формула расчета объема куба через длину его ребра/диагонали

Радиус описанного вокруг шара

Радиус шара, описанного около куба, равняется половине его диагонали.

Формула расчета радиуса шара описанного вокруг куба через длину его ребра/диагонали

Радиус вписанного шара

Радиус вписанного в куб шара равен половине длины его ребра.

Формула расчета радиуса вписанного в куб шара через длину его ребра/диагонали

Настяха

8 сентября, 15:22

  1. Северьян

    8 сентября, 16:14


    0

    Объём куба равен сторона в кубе. (в кубе длина=ширине=высоте)

    поэтому если объём равен 27, то сторона (а значит и высота в том числе) равна 3 м

    • Комментировать
    • Жалоба
    • Ссылка

Найди верный ответ на вопрос ✅ «Как найти высоту куба, зная только объём 27 м3 …» по предмету 📙 Математика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.

Искать другие ответы

Новые вопросы по математике

Главная » Математика » Как найти высоту куба, зная только объём 27 м3

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как правильно составить сметную стоимость
  • Dark souls как найти сифа
  • Как в айфоне установить найти айфон
  • Как составить оглавление в гугл докс
  • Rank матрицы как найти

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии