Как найти вторую производную функции онлайн калькулятор

Поделитесь производным калькулятором



Добавить в закладки

Добавьте производный калькулятор в закладки вашего браузера


1. Для Windows или Linux — нажмите Ctrl + D .

2. Для MacOS — нажмите Cmd + D .

3. Для iPhone (Safari) нажмите и удерживайте , затем нажмите Добавить закладку

4. Для Google Chrome : нажмите 3 точки в правом верхнем углу, затем нажмите знак звездочки


Donate Us


Как использовать?

bold{mathrm{Basic}} bold{alphabetagamma} bold{mathrm{ABGamma}} bold{sincos} bold{gedivrightarrow} bold{overline{x}spacemathbb{C}forall} bold{sumspaceintspaceproduct} bold{begin{pmatrix}square&square\square&squareend{pmatrix}} bold{H_{2}O}
square^{2} x^{square} sqrt{square} nthroot[msquare]{square} frac{msquare}{msquare} log_{msquare} pi theta infty int frac{d}{dx}
ge le cdot div x^{circ} (square) |square| (f:circ:g) f(x) ln e^{square}
left(squareright)^{‘} frac{partial}{partial x} int_{msquare}^{msquare} lim sum sin cos tan cot csc sec
alpha beta gamma delta zeta eta theta iota kappa lambda mu
nu xi pi rho sigma tau upsilon phi chi psi omega
A B Gamma Delta E Z H Theta K Lambda M
N Xi Pi P Sigma T Upsilon Phi X Psi Omega
sin cos tan cot sec csc sinh cosh tanh coth sech
arcsin arccos arctan arccot arcsec arccsc arcsinh arccosh arctanh arccoth arcsech
begin{cases}square\squareend{cases} begin{cases}square\square\squareend{cases} = ne div cdot times < > le ge
(square) [square] ▭:longdivision{▭} times twostack{▭}{▭} + twostack{▭}{▭} — twostack{▭}{▭} square! x^{circ} rightarrow lfloorsquarerfloor lceilsquarerceil
overline{square} vec{square} in forall notin exist mathbb{R} mathbb{C} mathbb{N} mathbb{Z} emptyset
vee wedge neg oplus cap cup square^{c} subset subsete superset supersete
int intint intintint int_{square}^{square} int_{square}^{square}int_{square}^{square} int_{square}^{square}int_{square}^{square}int_{square}^{square} sum prod
lim lim _{xto infty } lim _{xto 0+} lim _{xto 0-} frac{d}{dx} frac{d^2}{dx^2} left(squareright)^{‘} left(squareright)^{»} frac{partial}{partial x}
(2times2) (2times3) (3times3) (3times2) (4times2) (4times3) (4times4) (3times4) (2times4) (5times5)
(1times2) (1times3) (1times4) (1times5) (1times6) (2times1) (3times1) (4times1) (5times1) (6times1) (7times1)
mathrm{Радианы} mathrm{Степени} square! ( ) % mathrm{очистить}
arcsin sin sqrt{square} 7 8 9 div
arccos cos ln 4 5 6 times
arctan tan log 1 2 3
pi e x^{square} 0 . bold{=} +

Подпишитесь, чтобы подтвердить свой ответ

Подписаться

Войдите, чтобы сохранять заметки

Войти

Номер Строки

Примеры

  • frac{d^2}{dx^2}(frac{3x+9}{2-x})

  • (sin^2(theta))»

  • frac{d^2}{dy^2}(a^y)

  • frac{d^2}{dx^2}(frac{sqrt{x}}{2x+3})

  • frac{d}{dx^2}(e^{x^n})

  • (xln(x))»

  • Показать больше

Описание

Дифференцируйте функции шаг за шагом

second-derivative-calculator

ru

Блог-сообщения, имеющие отношение к Symbolab

  • High School Math Solutions – Derivative Calculator, Products & Quotients

    In the previous post we covered the basic derivative rules (click here to see previous post). We are now going…

    Read More

  • Введите Задачу

    Сохранить в блокнот!

    Войти

    Данный онлайн калькулятор позволяет находить производную функции второго порядка.
    Производная служит обобщенным понятием скорости изменения функции. Производная f’(x) функции f(x) в точке x – это предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю. Нахождение производной функции называется дифференцированием функции.

    Так как производная функции также является функцией, то эту функцию можно дифференцировать еще раз. Если функция дифференцируема, то ее производную называют второй производной от f(x) и она обозначается f’’(x). Вторая производная определяет скорость изменения скорости, другими словами, ускорение. Нахождение производной второго порядка может быть использовано, например, для анализа выпуклости функций.

    Калькулятор поможет найти производную функции второго порядка онлайн.
    Для получения полного хода решения нажимаем в ответе Step-by-step.

    Основные функции

    left(a=operatorname{const} right)

    • x^{a}: x^a

    модуль x: abs(x)

    Производные

    Для того, чтобы найти производную функции f(x)
    нужно написать в строке: f[x], x. Если Вам требуется
    найти производную n-го порядка, то следует написать: f[x], {x, n}. В
    том случае, если Вам требуется найти частную производную функции f(x,y,z,...,t) напишите в окне гаджета: f[x, y, z,…,t], j, где j
    — интересующая Вас переменная. Если нужно найти частную производную по
    некоторой переменной порядка n, то следует ввести: f[x, y, z,…,t], {j,
    n}, где j означает тоже, что и Выше.

    Важно подчеркнуть, что калькулятор выдает пошаговое нахождение
    производной при нажатии на «Show Steps» в правом верхнем углу
    выдаваемого ей ответа.

    Примеры
    • x*E^x, x;
    • x^3*E^x, {x,17};
    • x^3*y^2*Sin[x+y], x;
    • x^3*y^2*Sin[x+y], y,
    • x/(x+y^4), {x,6}.

    Калькулятор

    Инструкция

    Примечание: π записывается как pi; корень квадратный как sqrt().

    Шаг 1. Введите в ячейку калькулятора заданную функцию.

    Шаг 2. Нажмите кнопку “Найти”.

    Шаг 3. Получите результат..

    Вторая производная функция

    Рассмотрим дифференцируемую функцию на (a; b) функцию y = f(x). Её производная ещё является функцией аргумента x. Если данную функцию продифференцировать ещё раз, тогда получится вторая производная функция y = f(x). А производная второго порядка – это и есть первая производная от производной первого порядка.

    Данный калькулятор вычисляет первую вторую и другие производные заданной функции.
    В поле функция введите математическое выражение с переменной x, в выражении используйте стандартные операции + сложение, вычитание, / деление, * умножение, ^ — возведение в степень, а также математические функции. Полный синтаксис смотрите ниже. Для сложных функций калькулятор может работать довольно долго, так как используется не очень оптимальный алгоритм упрощения.

    Калькулятор производных второго и более порядка

    PLANETCALC, Производная заданного порядка

    Производная заданного порядка

    Допустимые операции: + — / * ^
    Константы: pi
    Функции: sin cosec cos tg ctg sech sec arcsin arccosec arccos arctg arcctg arcsec exp lb lg ln versin vercos haversin exsec excsc sqrt sh ch th cth csch

    Максимальное число производных

    Файл очень большой, при загрузке и создании может наблюдаться торможение браузера.

    Синтаксис описания формул

    В описании функции допускается использование одной переменной (обозначается как x), скобок, числа пи (pi), экспоненты (e), математических операций: + — сложение, — вычитание, * — умножение, / — деление, ^ — возведение в степень.
    Допускаются также следующие функции: sqrt — квадратный корень, exp — e в указанной степени, lb — логарифм по основанию 2, lg — логарифм по основанию 10, ln — натуральный логарифм (по основанию e), sin — синус, cos — косинус, tg — тангенс, ctg — котангенс, sec — секанс, cosec — косеканс, arcsin — арксинус, arccos — арккосинус, arctg — арктангенс, arcctg — арккотангенс, arcsec — арксеканс, arccosec — арккосеканс, versin — версинус, vercos — коверсинус, haversin — гаверсинус, exsec — экссеканс, excsc — экскосеканс, sh — гиперболический синус, ch — гиперболический косинус, th — гиперболический тангенс, cth — гиперболический котангенс, sech — гиперболический секанс, csch — гиперболический косеканс, abs — абсолютное значение (модуль), sgn — сигнум (знак), log__p — логарифм по основанию p, например log7(x) — логарифм по основанию 7, root__p — корень степени p, например root3(x) — кубический корень.

    Пошаговый алгоритм вычисления одной производной, а также правила вычисления производных можно найти тут Производная функции.

    Понравилась статья? Поделить с друзьями:

    Не пропустите также:

  • Как найти уравнение сторон ромба
  • Как найти списки выпускников вуза
  • Как найти объем 1 литра масла
  • Как найти градиент сложной функции
  • Как найти цитирование в тексте

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии