б) 2arccos 0 + 3 arccos 1. Ответ: ?
в) arcsin + arcsin
. Ответ:
.
г) 5 arctg (-) – arccos (-
). Ответ:–
.
– Проверим домашнее задание, откройте свои тетради с домашними работами.
Некоторые из вас нашли решение методом подбора, а некоторые с помощью графика.
2. Вывод о способах решения данных заданий и постановка проблемы, т. е. сообщение темы и цели урока.
– а) С помощью подбора решать сложно, если задан большой промежуток.
– б) Графический способ не даёт точных результатов, требует проверку, и занимает много времени.
– Поэтому должен быть ещё как минимум один способ, наиболее универсальный -попробуем его найти. Итак, чем мы будем заниматься сегодня на уроке? (Учиться выбирать корни тригонометрического уравнения на заданном промежутке.)
– Пример 1. (Ученик выходит к доске)
cos x = -0,5, где хI [- ].
Вопрос: Отчего зависит ответ на данное задание? (От общего решения уравнения. Запишем решение в общем виде). Решение записывается на доске
х =
+ 2?k, где k
R.
– Запишем это решение в виде совокупности:
– Как вы считаете, при какой записи решения удобно выбирать корни на промежутке? (из второй записи). Но это ведь опять способ подбора. Что нам необходимо знать, чтобы получить верный ответ? (Надо знать значения k).
(Составим математическую модель для нахождения k).
1 уровень: № 295 (а,б), № 317 (а,б)
2 уровень: № 307 (в), № 308 (б), № 326(б), № 327(б).
РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ
Простейшими тригонометрическими уравнениями называют уравнения
Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.
19.1. Уравнение cos x = a
Объяснение и обоснование
- Корни уравненияcosx=a.
При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n ∈ Z (3)
2.Частые случаи решения уравнения sin x = a.
Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).
Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда
Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,
Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,
Примеры решения задач
Замечание. Ответ к задаче 1 часто записывают в виде:
19.3. Уравнения tg x = a и ctg x = a
Объяснение и обоснование
1.Корни уравнений tg x = a и ctg x = a
Рассмотрим уравнение tg x = a. На промежутке функция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.
Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n ∈ Z). Получаем следующую формулу корней уравнения tg x = a:
При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n ∈ Z).
Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.
Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n ∈ Z). Получаем следующую формулу корней уравнения ctg x = a:
таким образом, уравнение ctg x = 0 имеет корни
Примеры решения задач
Вопросы для контроля
- Какие уравнения называют простейшими тригонометрическими?
- Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
- Выведите формулы решения простейших тригонометрических уравнений.
- Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.
Упражнения
Решите уравнение (1-11)
Найдите корни уравнения на заданном промежутке (12-13)
Тригонометрические уравнения и неравенства с примерами решения и образцами выполнения
Корень уравнения есть число, которое, будучи подставленным в
уравнение вместо обозначающей его буквы или вида, приводит к
исчезновению всех его членов.
И. Ньютон
Тригонометрические формулы
В курсе алгебры рассматривались синус, косинус и тангенс
произвольного угла, выраженного в градусах или радианах.
Там же были доказаны основные формулы, которые
использовались для преобразований тригонометрических выражений.
Напомним эти формулы:
1. Основное тригонометрическое тождество:
2. Зависимость между синусом, косинусом, тангенсом и котангенсом:
Ньютон Исаак (1643— 1727) — английский математик, физик, механик, астроном; основоположник современной механики; одновременно с немецким математиком Г. Лейбницем ему принадлежит разработка дифференциального и интегрального исчислений.
3. Формулы сложения:
4. Формулы синуса и косинуса двойного угла:
5. Формулы приведения:
Формулы приведения запоминать необязательно. Для того
чтобы записать любую из них, можно руководствоваться
следующими правилами:
1) В правой части формулы который
2) Если в левой части формулы угол равен или
то синус заменяется на косинус, тангенс —
на котангенс и наоборот. Если угол равен то замены
не происходит.
Например, покажем, как с помощью этих правил можно
получить формулу приведения для
По первому правилу в правой части формулы нужно поставить знак >,
так как если то
a косинус во второй четверти отрицателен. По второму правилу косинус нужно заменить на синус, следовательно,
6. Формулы синуса, косинуса, тангенс угла
7. Формулы синуса и косинуса угла
тангенса угла
Приведем несколько примеров применения формул (1) — (9).
Пример:
Вычислить , если
и
Сначала найдем . Из формулы (1)
Так как в третьей четверти
то
По формулам (2) находим
Пример:
Используя формулы (1), (3) и (4), получаем:
Пример:
Вычислить
Используя формулы (8) и (9), получаем:
По формулам приведения находим:
Ответ.
Сумма и разность синусов. Сумма и разность косинусов
Пример:
Используя формулу сложения и формулу синуса двойного
угла, получаем:
Эту задачу можно решить проще, если использовать формулу
суммы синусов:
С помощью этой формулы получаем:
Докажем теперь справедливость формулы (1).
Обозначим
Тогда и поэтому
Наряду с формулой (1) используются формула разности
синусов, а также формулы суммы и разности косинусов:
Формулы (3) и (4) доказываются так же, как и формула (1);
формула (2 ) получается из формулы ( 1 ) заменой на
(докажите самостоятельно).
Пример:
Вычислить
Пример:
Преобразовать в произведение
Пример:
Доказать, что наименьшее значение выражения равно
а наибольшее равно
Преобразуем данное выражение в произведение:
Так как наименьшее значение косинуса равно — 1, а наибольшее равно 1, то наименьшее значение данного выражения
равно а наибольшее равно
Уравнение cos х = а
Из курса алгебры известно, что значения косинуса заключены
в промежутке [— 1; 1], т. е.
Поэтому если |а |> 1 , то уравнение cos x = a не имеет корней. Например, уравнение cos x = — 1,5 не имеет корней.
Пример:
Решить уравнение
Напомним, что cos х — абсцисса точки единичной окружности, полученной поворотом точки Р (1; 0) вокруг начала координат на угол х. Абсциссу, равную имеют две точки окружности
и (рис. 18). Так как
, то точка
получается из точки Р (1; 0) поворотом на угол
, а также на
углы где
. . . . Точка
получается из точки Р (1; 0) поворотом на угол
, f также на углы
где
. . . . Итак, все корни уравнения
— можно найти по формулам
Вместо этих двух формул обычно пользуются одной:
Пример:
Решить уравнение
Абсциссу, равную , имеют две точки окружности
и
(рис. 19). Так как
, то угол
а потому угол . Следовательно, все корни уравнения
можно найти по формуле
Таким образом, каждое из уравнений
и имеет бесконечное множество корней. На отрезке
каждое из этих уравнений имеет только один корень:
— корень уравнения
и
— корень уравнения . Число
называют арккосинусом числа
и записывают:
а число — арккосинусом числа
и записывают:
Вообще уравнение , где
, имеет на отрезке
только один корень. Если
, то корень заключен в промежутке
; если а
Например, так как
и
так как
и
Аналогично тому, как это сделано при решении задач 1 и 2, можно показать, что все корни уравнения , где
, выражаются формулой
Пример:
Решить уравнение cos x = — 0,75.
По формуле (2) находим
Значение arccos ( — 0,75) можно приближенно найти на рисунке 21, измеряя угол РОМ транспортиром.
Приближенные значения арккосинуса можно также находить
с помощью специальных таблиц или микрокалькулятора. На
пример, значение arccos (—0,75) можно вычислить на
микрокалькуляторе МК-54 по программе
Итак,
В данном случае переключатель микрокалькулятора Р-ГРД-Г
был установлен в положение Р (радиан).
Если вычисления проводить в градусной мере, то переключатель микрокалькулятора Р-ГРД-Г следует установить в положение Г (градус). Программа вычислений остается прежней:
Итак, .
Пример:
Решить уравнение (4 cos х — 1) (2 cos 2x + 1)=0.
Ответ.
,
Можно доказать, что для любого справедлива
формула
Эта формула позволяет выражать значения арккосинусов
отрицательных чисел через значения арккосинусов
положительных чисел. Например:
Из формулы (2) следует, что корни уравнения cos х = а при а = 0,
а = 1, а = — 1 можно находить по более простым формулам:
Задача 5. Решить уравнение
По формуле (6) получаем
откуда
Уравнение sin х= а
Известно, что значения синуса заключены в промежутке
[— 1; 1], т. е. Поэтому если |а |> 1 , то
уравнение sin x = a не имеет корней. Например, уравнение
sin x = 2 не имеет корней.
Пример:
Решить уравнение
Напомним, что sin x — ордината точки единичной окружности, полученной поворотом точки Р (1; 0) вокруг начала координат на угол x. Ординату, равную , имеют две точки окружности
и
(рис. 22). Так как —
, то точка
получается из точки Р(1; 0) поворотом на угол
, а также на
углы где
……. Точка
получается из точки Р (1; 0) поворотом на угол
, а также на углы
где
……. Итак, все корни уравнения
можно найти по формулам
Эти формулы объединяются в одну:
В самом деле, если n — четное число, т. е. n = 2k, то из формулы (1) получаем а если n — нечетное число, т. е.
, то из формулы (1) получаем
О т в е т .
Пример:
Решить уравнение
Ординату, равную имеют две точки единичной окружности
и
(рис. 23), где
. Следовательно, все корни уравнения
можно найти по формулам
Эти формулы объединяются в одну:
В самом деле, если n = 2k, то по формуле (2) получаем , а если n = 2k — 1, то по формуле (2) находим
.
.
Ответ.
Итак, каждое из уравнений и
имеет
бесконечное множество корней. На отрезке
каждое из этих уравнений имеет только один корень: — корень уравнения
и
— корень уравнения
. Число
называют арксинусом числа
и записывают:
; число
— называют арксинусом числа
и пишут:
Вообще уравнение sin x = a, где , на отрезке
имеет только один корень. Если
, то корень заключен в промежутке
; если а
Например, так как
и
так как
и
Аналогично тому, как это сделано при решении задач 1 и 2 можно показать, что корни уравнения sin x = a, где выражаются формулой
Пример:
Решить уравнение .
По формуле (4) находим
Значение можно приближенно найти из рисунка 25,
измеряя угол РОМ транспортиром.
Значения арксинуса можно находить с помощью специальных
таблиц или с помощью микрокалькулятора. Например, значение можно вычислить на микрокалькуляторе МК-54 по
программе
Итак,
При этом переключатель микрокалькулятора Р-ГРД-Г был установлен в положение Р (радиан).
Пример:
Решить уравнение (3 sin х — 1) (2 sin 2х + 1) = 0.
Можно доказать, что для любого справедлива
формула
Эта формула позволяет находить значения арксинусов отри
цательных чисел через значения арксинусов положительных
чисел. Например:
Отметим, что из формулы (4) следует, что корни уравнения
sin x = a при а = 0 , а = 1 , а = — 1 можно находить по более
простым формулам:
Пример:
Решить уравнение sin 2х = 1.
По формуле (7) имеем
откуда
Уравнение tg x = а
Известно, что тангенс может принимать любое действительное
значение. Поэтому уравнение tg x = a имеет корни при любом
значении а.
Пример:
Решить уравнение
Построим углы, тангенсы которых равны Для этого проведем через точку Р (рис. 26) прямую, перпендикулярную РО,
и отложим отрезок через точки М и О проведем пря
мую. Эта прямая пересекает единичную окружность в двух диа
метрально противоположных точках и
. Из прямоугольного треугольника РОМ находим
, откуда
.
Таким образом, точка получается из точки Р (1; 0) поворотом
вокруг начала координат на угол а также на углы , где
, … .
Точка получается поворотом точки Р (1; 0) на угол
а также на углы , где
… .
Итак, корни уравнения можно найти по формулам
Эти формулы объединяются в одну
Пример:
Решить уравнение
Углы, тангенсы которых равны указаны на рисунке 27, где
Из прямоугольного треугольника РОМ находим
, т.е.
. Таким образом, точка
получается поворотом точки P(1; 0) вокруг начала
координат на угол , а также на углы
где k = ± 1, ± 2,….. Точка
получается поворотом точки Р (1; 0) на углы
.
Поэтому корни уравнения можно найти по формуле
Итак, каждое из уравнений и
имеет
бесконечное множество корней. На интервале — каждое из этих уравнений имеет только один корень: — корень уравнения
и
— корень уравнения
. Число
называют арктангенсом числа
и записывают:
; число
— называют арктангенсом числа
и пишут:
.
Вообще уравнение tg х = а для любого имеет на интервале
только один корень. Если
, то корень
заключен в промежутке ; если а
Например, , так как
; и
так как
и
.
Аналогично тому, как это сделано при решении задач 1 и 2, можно показать, что все корни уравнения tg x = a, где выражаются формулой
Пример:
Решить уравнение tg х = 2.
По формуле (2) находим
Значение arctg 2 можно приближенно найти из рисунка 29,
измеряя угол РОМ транспортиром.
Приближенные значения арктангенса можно также найти по
таблицам или с помощью микрокалькулятора.
Например, значение arctg 2 можно вычислить на МК-54 по
программе
Итак,
Пример:
При этих значениях х первая скобка левой части исходного
уравнения обращается в нуль, а вторая не теряет смысла, так
как из равенства tg x = — 4 следует, что
Следовательно, найденные значения х являются корнями исходного уравнения.
Эти значения x также являются корнями исходного уравнения, так как при этом вторая скобка левой части уравнения
равна нулю, а первая скобка не теряет смысла.
Ответ.
Можно доказать, что для любого справедлива формула
Эта формула позволяет выражать значения арктангенсов
отрицательных чисел через значения арктангенсов положительных чисел.
Например:
Решение тригонометрических уравнений
Формулы корней простейших тригонометрических уравнений sin x = a, cos x = a, tg х = а. К этим уравнениям сводятся другие тригонометрические уравнения. Для решения большинства таких уравнений требуется применение формул преобразований тригонометрических выражений. Рассмотрим некоторые примеры решения тригонометрических уравнений.
Уравнения, сводящиеся к квадратам
Пример:
Решить уравнение
Это уравнение является квадратным относительно sin х.
Обозначив sin x= y, получим уравнение Его корни
Таким образом, решение исходного уравнения свелось к решению простейших уравнений sin х = 1 и sin х = — 2.
Уравнение sin x = l имеет корни уравнение
sin x = — 2 не имеет корней.
Ответ.
Пример:
Решить уравнение
Заменяя на
получаем:
Обозначая sin х = у, получаем откуда
1) sin х = — 3 — уравнение не имеет корней, так как | — 3 | > 1.
2)
Ответ.
Пример:
Решить уравнение
Используя формулу получаем:
Ответ.
Пример:
Решить уравнение tg x — 2 ctg x + 1 = 0 .
Так как то уравнение можно записать в виде
Умножая обе части уравнения на tg x, получаем:
Отметим, что левая часть исходного уравнения имеет смысл,
если и
Так как для найденных корней
и
то исходное уравнение равносильно уравнению
Ответ.
Пример:
Обозначив sin 6 x = у, получим уравнение откуда
Уравнения вида a sin х + b cos х = с
Пример:
Решить уравнение 2 sin x —3 cos x = 0.
Поделив уравнение на cos x, получим 2tg x — 3 = 0,
При решении этой задачи обе части уравнения 2 sin x — cos x = 0 были поделены на cos x. Напомним, что при делении
уравнения на выражение, содержащее неизвестное, могут быть
потеряны корни. Поэтому нужно проверить, не являются ли
корни уравнения cos x = 0 корнями данного уравнения. Если
cos x = 0, то из уравнения 2 sin x — cos x = 0 следует, что sin x = 0. Однако sin х и cos х не могут одновременно равняться нулю, так как они связаны равенством Следовательно, при
делении уравнения a sin х + b cos x = 0, где
cos x
(или sin x) корни этого уравнения не теряются.
Пример:
Решить уравнение 2 sin x + cos x = 2.
Используя формулы
и записывая правую часть уравнения в виде
, получаем
Поделив это уравнение на
Обозначая получаем уравнение
откуда
Ответ.
Пример:
Решить уравнение sin 2x — sin x — cos x — 1 = 0.
Выразим sin 2 x через sin x + cos x , используя тождество
Обозначим sin x + cos x = t, тогда и уравнение примет вид
, откуда
2) Уравнение sin x + cos x = 2 не имеет корней, так как
и равенства sin x = 1, cos x = l одновременно не могут
выполняться.
Ответ.
Уравнения, решаемые разложением левой части на множители
Многие тригонометрические уравнения, правая часть которых равна нулю, решаются разложением их левой части на
множители.
Пример:
Решить уравнение sin 2х — sin х = 0.
Используя формулу для синуса двойного аргумента, запишем уравнение в виде 2 sin х cos х — sin х = 0.
Вынося общий множитель sin х за скобки, получаем
sin x (2 cos x — 1) = 0
Ответ.
Пример:
Решить уравнение cos Зх + sin 5x = 0.
Используя формулу приведения , запишем уравнение в виде
Используя формулу для суммы косинусов, получаем:
Ответ.
Пример:
Решить уравнение sin 7 x + sin 3 х = 3 cos 2х.
Применяя формулу для суммы синусов, запишем уравнение в виде
Уравнение cos2x = 0 имеет корни а уравнение
не имеет корней.
Ответ.
Пример:
Решить уравнение
уравнение примет вид:
Заметим, что числа вида содержатся среди чисел вида
так как если n = 3k, то
Следовательно, первая серия корней содержится во второй.
Ответ.
Часто бывает трудно усмотреть, что две серии корней, полу
ченных при решении тригонометрического уравнения, имеют об
щую часть. В этих случаях ответ можно оставлять в виде двух
серий. Например, ответ к задаче 12 можно было записать и так:
Пример:
Эти значения х являются корнями исходного уравнения, так
как при этом первая скобка левой части уравнения равна нулю,
а вторая не теряет смысла.
При этих значениях х вторая скобка левой части исходного
уравнения равна нулю, а первая скобка не имеет смысла. Поэтому
эти значения не являются корнями исходного уравнения.
Ответ.
Пример:
Решить уравнение
Выразим
Так как
то
откуда
Поэтому исходное уравнение можно записать так:
2) уравнение — корней не имеет.
Ответ.
Решение тригонометрического уравнения состоит из двух частей: 1) преобразование тригонометрического выражения к простейшему виду; 2) решение простейшего тригонометрического уравнения. Первая часть сложна из-за множества применяемых формул как тригонометрических, так и алгебраических. Применяются такие приемы как разложение на множители, преобразование суммы или разности тригонометрических функций в произведение и, наоборот, произведения в сумму. Достаточно часто тригонометрические уравнения сводятся к линейным и квадратным уравнениям и уравнениям с корнями. Тригонометрические уравнения во всяком случае имеют ограничения, содержащиеся в тангенсе и котангенсе, т.к. ,
, то здесь
и
.Простейшими тригонометрическими уравнениями называются уравнения вида:
;
и
1) Решение уравнения . Арксинусом числа
называется число, обозначаемое
, синус которого равен
, при этом
. Поэтому решение уравнения
записывается:
Этому решению соответствуют две точки на окружности:
Напоминаем, что ось — это ось синусов, и значение синуса
отмечается на оси .
2) Решение уравнения . Арккосинусом числа
называется число, обозначаемое
, косинус которого равен
, при этом
Поэтому решение уравнения
записывается:
Этому решению соответствуют две точки на окружности:
Эти решения отмечены на окружности.
Напоминаем, что ось — ось косинусов, и значение косинуса отмечается на оси
.
3) Решение уравнения Арктангенсом числа
называется число, обозначаемое
, тангенс которого равен
, при этом
. Поэтому решение уравнения
записывается:
Этому решению соответствуют две точки на окружности:
Напоминаем, что значение тангенса отмечается на оси тангенсов, которая параллельна оси и касается единичной окружности в крайней правой точке.
Там, где возможно, и
заменяются табличными значениями. Соответствующая таблица и тригонометрические формулы приведены в разделе преобразования тригонометрических выражений. Там же рассмотрены примеры таких преобразований.
Здесь использована специальная формула, отличная от стандартной для уравнения
Существуют следующие специальные формулы:
Следует заметить также, что буква для обозначения целого числа может быть выбрана любая, но принято брать Если уравнение имеет два и более решений, эти буквы принято брать различными.
Т.к. решения 1-го и 2-го уравнений должны совпадать, то, как видно на окружности, единственно возможная точка соответствует решению
Эта система, как видно на окружности, решений не имеет
Этот материал взят со страницы решения задач по математике:
Возможно вам будут полезны эти страницы:
Тригонометрические уравнения и неравенства — основные понятия и определения
В этой главе мы рассмотрим некоторые уравнения, а также простейшие системы уравнений, содержащие неизвестную иод знаком тригонометрических функций. Такие уравнения называются тригонометрическими уравнениями.
Приведем некоторые примеры тригонометрических уравнений и их систем:
1) ; 2)
; 3)
; 4)
5)
6)
.
Решение различных типов тригонометрических уравнений большей частью основано на сведении их к некоторым простейшим уравнениям, которые мы рассмотрим ниже. При этом остаются в силе общие правила, относящиеся к решению уравнений. В частности, данное уравнение не всегда приводится к простейшей форме с помощью одних лишь равносильных преобразований. Поэтому следует проверить найденные решения, подставляя их в исходное уравнение.
Тригонометрические уравнения слишком разнообразны для того, чтобы пытаться дать их общую классификацию или общий метод решения. Мы можем указать лишь способы решения некоторых типов таких уравнений.
Уравнения, разрешенные относительно одной из тригонометрических функций
При решении различных тригонометрических уравнений мы будем часто приходить к некоторым простейшим уравнениям, решения которых следует запомнить. Приведем эти уравнения. Для того чтобы можно было дать геометрическую иллюстрацию к этим уравнениям, будем считать х углом в радианной мере.
Уравнение sin х = а
имеет решение при . Для вывода общей формулы, которая заключает в себе все корни нашего уравнения, воспользуемся рис. 127. Допустим, что мы нашли какой-то корень
уравнения sin х = а:
Тогда, в силу периодичности функции sin х, имеем
т.е. и числа вида , где k = 0, ±1, ±2, …, удовлетворяют уравнению (139.1). Заметим еще, что и
т. е. также удовлетворяет уравнению (139.1). Следовавательно также удовлетворяют данному уравнению. Следовательно, зная одно какое-то значение
, удовлетворяющее уравнению sin х = а, мы можем получить две серии значений аргумента, удовлетворяющих этому же уравнению:
где k= 0, ±1, ±2, …
В качестве будем, как правило, брать arcsin а.
Объединив две серии (139.2) и (139.3) корней данного уравнения sin х = а одной формулой, мы будем записывать в дальнейшем его общее решение (совокупность всех корней) в виде
где n = 0, ±1, ±2, … и .
Поясним формулу (139.4) и другим способом, с помощью рис. 139.
Известно, что sin x = а (на рис. 139 ОA = 1, ).
Уравнению (139.1) удовлетворят углы:
а) положительные: и
(k = 0, +1, +2, …);
б) отрицательные: и
(k = 0, —1, —2, …).
Все эти углы можно задать одной формулой (139.4), и, обратно, любой угол, полученный по формуле (139.4), есть угол либо вида а), либо вида б). Проверим, например, обратное утверждение для положительных углов.
Если (четное число), то из (139.4) получаем
если же (нечетное число), то из (139.4) получаем
Аналогично проводится проверка и для отрицательных углов.
Пример:
sin x = 1/2.
Решение:
Так как , то
.
Пример:
.
Решение:
Так как , то
.
Замечание. При выводе формулы (139.4) мы воспользовались рис. 127, на котором и
. Очевидно, что при помощи этой формулы получаются все корни уравнения sin x = a. Формула (139.4) остается в силе и тогда, когда
, а также при а = 0, 1 или —1. Однако эти последние случаи удобней рассмотреть особо.
Допустим, что а = 1 или a = — 1. Корни уравнения sin х = 1 можно записать так:
где n = 0, ±1, ±2, …, а корни уравнения sin x = — 1 можно записать так:
где n = 0, ±1, ±2…. . Допустим теперь, что а = 0. Корни уравнения sin x = 0 можно записать так:
Уравнение cos x = a
имеет решение при . Для вывода общей формулы корней уравнения (140.1) воспользуемся рис. 128. Допустим, что мы нашли какое-нибудь решение
уравнения (140.1):
.
Тогда в силу периодичности , т. е. и числа вида
, где n = 0, ±1, ±2, …, удовлетворяют уравнению cos х = а. В силу четности косинуса
; применив еще свойство периодичности, мы получим, что числа вида
также удовлетворяют уравнению cos х = а. (На рис. 128 мы видим, что
.) Следовательно, зная одно какое-либо значение
, удовлетворяющее уравнению cos x = a, мы можем получить две серии значений аргумента, удовлетворяющих этому же уравнению:
где n = 0, ±1, ±2, …
В качестве будем, как правило, брать arccos а.
Объединив две серии (140.2) и (140.3) корней уравнения cos x = a одной формулой, мы будем писать в дальнейшем его общее решение (совокупность всех корней) в виде
где n = 0, ±1, ±2, … и .
Рекомендуем читателю пояснить формулу (140.4) с помощью рисунка, аналогичного рис. 139.
Пример:
.
Решение:
Пример:
cos x = — х/2.
Решение:
Пример:
cos х = 0,995.
Решение:
(см. приложение II).
Замечание. При выводе формулы (140.4) мы воспользовались рис. 128, на котором и
. Очевидно, что при помощи этой формулы получаются все корни уравнения cos x = a. Рекомендуем читателю доказать, что формулой (140.4) можно пользоваться и во всех остальных случаях (—1
Уравнение cos x = l имеет корни:
Уравнение cos x = 0 имеет корни:
Уравнение tg x = a
имеет решение при любом а (). Воспользуемся рис. 129 для вывода общей формулы, которая заключает в себе все корни уравнения (141.1). Допустим, что мы нашли какое-нибудь решение
уравнения (141.1), т. е.
. Тогда, в силу периодичности,
, т.е. и числа вида
, где n = 0, ±1. ±2, …, удовлетворяют уравнению tg x = a. Следовательно, зная одно какое-то значение
удовлетворяющее уравнению tg x = а, мы можем получить общее решение (совокупность всех корней) в виде
В качестве будем, как правило, брать arctg a. Итак, общее решение уравнения tg х = а выражается формулой
где n = 0, ±1, ±2, … и .
Пример:
.
Решение:
Пример:
.
Решение:
Пример:
tg x = —1,9648.
Решение:
(см. приложение II).
Уравнение ctg х = а
имеет решение при любом а (). Для вывода общей формулы корней уравнения (142.1) воспользуемся рис. 130. Допустим, что мы нашли какое-нибудь решение
уравнения (142.1), т. е.
. Тогда, в силу периодичности,
, т. е. и числа вида
, где n = 0, ±1, ±2, …. удовлетворяют уравнению ctg х = а. Следовательно, зная одно какое-то значение
, удовлетворяющее уравнению ctg х = а, мы можем получить общее решение в виде
В качестве будем, как правило, брать arcctg a. Итак, общее решение уравнения ctg х = а выражается формулой
где n = 0, ±1, ±2, … и .
Пример:
.
Решение:
Пример:
.
Решение:
Пример:
ctg х = —28,64.
Решение:
. Воспользовавшись формулой
, будем иметь
(см. приложение I). Следовательно,
Некоторые дополнения
Если в уравнениях sin x = a, cos х = а, tg х = а и ctg x = a известно, что х — угол в градусной мере, то общие решения нужно записывать по-другому.
Для уравнения sin x = a, где , нужно писать:
где n = 0, ±1, ±2, … и .
Для уравнения cos х = а, где , нужно писать:
где n = 0, ±1, ±2, … и .
Для уравнения tg х = а, где а — любое число, нужно писать:
где n = 0, ±1, ±2, … и — 90°
где n = 0, ±1, ±2. … и 0°
б) Нельзя, однако, писать
Разберем примеры уравнений, непосредственно сводящихся к уже рассмотренным.
Пример:
Решить уравнение .
Решение:
sinх = 1 /]/2, откуда согласно (143.1) имеем х — 180°и + (—1)»45°, где я = 0, ±1, ±2, …
Пример:
Решить уравнение .
Решение:
, откуда согласно (140.4) имеем
, где n = 0, ±1, ±2, …
Пример:
Решить уравнение 3 sin х — 4 = 0.
Решение:
Из нашего уравнения получаем равносильное уравнение sin x = 4/3, которое решений не имеет, ибо не выполняется условие . Следовательно, первоначальное уравнение также не имеет решений.
Пример:
Решить уравнение 3 tg х + 1 = 0.
Решение:
tg x = —1/3, откуда согласно (141.3) имеем , где n = 0, ±1, ±2, …, или
.
Замечание. Ответ можно записать так:
где n = 0, ±1, ±2, …
Пример:
Решить уравнение 3 ctg x + 2 = 0.
Решение:
ctg x = —2/3, откуда согласно (142.3) имеем , где n = 0, ±1, ±2, …, или
.
Пример:
Решить уравнение 2 sin 5x + l = 0.
Решение:
Записав уравнение в виде sin 5x = —1/2, найдем отсюда сначала промежуточный аргумент , откуда получим общее решение данного уравнения
, где n = 0, ±1, ±2,…
Способ приведения к одной функции одного и того же аргумента
Сущность способа: Мы получили решения уравнений вида sin x = a, cos х = а, tg x = a и cxg x = a. Во многих случаях решение тригонометрических уравнений сводится к решению основных элементарных уравнений после выполнения ряда алгебраических действий.
Так, пусть имеется уравнение, левая часть которого содержит х только под знаком одной тригонометрической функции, например:
Во всех этих случаях задача решения уравнения распадается на две:
1) Решение алгебраического уравнения относительно новой неизвестной t = sin x, t = tg x, t = cos x.
2) Решение уравнений вида sin x = a, cos x = a, tg x = a.
Пример:
Решение:
1) Положив sin x = t, приходим к алгебраическому уравнению (в данном случае к квадратному уравнению) относительно новой неизвестной t:
Решив уравнение , получим
и
.
2) Задача решения уравнения свелась к решению двух тригонометрических уравнении:
Уравнение sin x = — 3 решений не имеет. Общее решение уравнения sin x = 1/2 имеет вид
Так как при переходе от тригонометрического уравнения к двум тригонометрическим уравнениям
мы нигде не теряли и не получали посторонних корней, то решение
является решением первоначального уравнения
.
В большинстве случаев, однако, приходится исходное уравнение еще преобразовывать так, чтобы оно приобрело нужный вид:
В п. 145 показаны приемы таких преобразований.
Некоторые типы уравнений, приводящихся к уравнениям относительно функции одного аргумента
1) Рассмотрим уравнение типа
где a, b и с — какие-то действительные числа. Изучим случай, когда . Разделиз обе части уравнения (145.1) на
, придем к следующему уравнению, содержащему только t = tg х:
Заметим, что уравнения (145.1) и (145.2) будут равносильны, ибо мы предполагаем, что . (Те значения х, при которых cos x = 0, не являются корнями уравнения (145.1) при
.) Далее следует найти значения t = tg x из уравнения (145.2) и, если они окажутся действительными, отыскать соответствующие серии решений х.
Пример:
Решение:
Разделим обе части уравнения на . (Те значения х, при которых cos x = 0, не являются корнями данного уравнения, ибо при этом
, следовательно, потери корней не происходит). Получим уравнение
, откуда
.
а) ,
;
б) ,
.
где п = 0, ±1, ±2, …
Замечание:
где , сводится к уравнению типа (145.1), если его записать сначала так:
Пример:
Запишем данное уравнение так:
После этого будем иметь
Разделим обе части последнего уравнения на . (Те значения х, для которых cos x = 0, не являются корнями данного уравнения.) Получим уравнение
откуда и
. Решив последние уравнения, получим решения первоначального уравнения:
2) Рассмотрим уравнение типа
где a, b и с — какие-то действительные числа. Пусть . Заменив
через
, мы придем к уравнению
Из уравнения (145.6) находим возможные значения для t = соs x; естественно, что они будут иметь смысл лишь в случае . Рассмотрим несколько примеров. Пример 3. Решить уравнение
Решение. Заменяя через
, придем к уравнению
, откуда cos x = 1 и cos x = —1/2. Уравнение cos x = l имеет решение
, а уравнение cos x = —1/2 — решение
. Совокупность значений
и
является решением данного уравнения.
Пример:
Решение:
Заменив через
, придем к уравнению
откуда cos x = 1/2 и cos x = —3/2. Последнее уравнение не имеет решений, ибо не выполнено условие . /Мы получаем одну серию решений данного уравнения:
.
3) Рассмотрим уравнение тина
где a, b и с—какие-то действительные числа. Oграничимся рассмотрением примеров.
Пример:
Решение:
Заменив через
, придем к уравнению
откуда sin x = 1/2 и sin x = —1/4. Оба последних уравнения имеют соответственно решения
Совокупность значений и
является множеством всех решений данного уравнения.
Пример:
Решение:
Заменив через
, придем к уравнению
откуда и
. Последнее уравнение не имеет решения, ибо не выполнено условие
. Мы получаем одну серию решении первоначального уравнения:
4) Рассмотрим уравнение типа
где .
Деля обе части уравнения на , получим
где n = 0, ±1, ±2, … Заметим, что, предположив , мы не потеряли корней, ибо если cos x = 0, то
.
Пример:
Решение:
Разделим обе части уравнения на , получим
, откуда
.
5) Если в уравнение входят тригонометрические функции от различных аргументов, то и в этом случае иногда представляется возможным выразить их все через одну тригонометрическую функцию одного и того же аргумента.
Пример:
Решение:
Заменив через
, придем к уравнению
откуда cos 2х = — l/3.
Следовательно, и
(n = 0, ±1, ±2, …).
Пример:
Решить уравнение .
Решение:
Заменив sin 2x через 2sin x cos x, придем к уравнению или
. Последнее уравнение распадается на два:
Первое уравнение имеет корни (n = 0, ±1, ±2, …).
Второе уравнение после деления на дает ctg x = 2, откуда
(n = 0, ±1, ±2, …).
Решениями первоначального уравнения и будут значения и
. Заметим, что в нашем случае деление обеих частей уравнения б) на sinx не привело к потере корней, ибо те значения х, при которых sin x обращается в нуль, не являются корнями первоначального уравнения.
Пример:
Решение:
Умножим обе части уравнения на 2 и, заменив 2sin x cos x на sin 2х, получим sin 2x cos 2x = 1/4. С последним уравнением поступим опять так же, получим sin 4x = 1/2, откуда . Окончательно имеем
Пример:
Решение:
Подставив найденное значение для в исходное уравнение, получим
. Далее имеем
Последнее уравнение распадается на два:
Первое уравнение имеет корни (n = 0, ± 1, ± 2, …). Второе уравнение запишем в виде
. Приравняв нулю числитель (1 — 2cos x), получим корни второго уравнения:
.
Способ разложения на множители
1) Если в уравнении, приведенном к виду f(x) = 0, его левая часть f(x) разлагается на множители, то, как указано в п. 54, следует приравнять каждый из этих множителей к нулю. Получится несколько отдельных уравнений; корни каждого из них будут корнями основного уравнения, если только они входят в о. д. з. каждого из множителей левой части уравнения.
Все полученные решения объединяются в одну совокупность решений первоначального уравнения. Заметим, что этот способ мы уже фактически применяли при решении примеров 9 и 11 из п. 145.
Рассмотрим е;це несколько примеров.
Пример:
Решить уравнение sin x ctg 2x = 0.
Решение:
Согласно предыдущему будем искать отдельно решения двух уравнений: a) sin x = 0 и б) ctg 2x = 0. Первое уравнение имеет корни (n = 0, ±1, ±2, …). Второе уравнение имеет корни
(n = 0, ±1, ±2, …). Проверка показывает, что решениями первоначального уравнения будет лишь совокупность значений
, а значения
не удовлетворяют данному уравнению, ибо при
теряет смысл второй множитель ctg 2х.
http://ya-znau.ru/znaniya/zn/280
http://lfirmal.com/trigonometricheskie-uravneniya-zadachi-s-resheniem/
Цель урока:
а) закрепить умения решать
простейшие тригонометрические уравнения;
б) научить выбирать корни
тригонометрических уравнений из заданного
промежутка
Ход урока.
1. Актуализация знаний.
а)Проверка домашнего задания: классу
дано опережающее домашнее задание – решить
уравнение и найти способ выбора корней из
данного промежутка.
1)cos x = -0,5, где хI [- ]. Ответ:
.
2) sin x = , где хI [0;2?]. Ответ:
;
.
3)cos 2x = —, где хI [0;
]. Ответ:
Ученики записывают решение на доске
кто-то с помощью графика, кто-то методом подбора.
В это время класс работает устно.
Найдите значение выражения:
а) tg –
sin + cos
+ sin
. Ответ: 1.
б) 2arccos 0 + 3 arccos 1. Ответ: ?
в) arcsin + arcsin
. Ответ:
.
г) 5 arctg (-) – arccos (-
). Ответ:–
.
– Проверим домашнее задание, откройте
свои тетради с домашними работами.
Некоторые из вас нашли решение методом
подбора, а некоторые с помощью графика.
См. приложение 1
Приложение 2
Приложение 3
2. Вывод о способах решения данных
заданий и постановка проблемы, т. е. сообщение
темы и цели урока.
– а) С помощью подбора решать сложно,
если задан большой промежуток.
– б) Графический способ не даёт точных
результатов, требует проверку, и занимает много
времени.
– Поэтому должен быть ещё как минимум
один способ, наиболее универсальный -попробуем
его найти. Итак, чем мы будем заниматься сегодня
на уроке? (Учиться выбирать корни
тригонометрического уравнения на заданном
промежутке.)
– Пример 1. (Ученик выходит к доске)
cos x = -0,5, где хI [- ].
Вопрос: Отчего зависит ответ на данное
задание? (От общего решения уравнения. Запишем
решение в общем виде). Решение записывается на
доске
х = + 2?k, где k
R.
– Запишем это решение в виде
совокупности:
– Как вы считаете, при какой записи
решения удобно выбирать корни на промежутке? (из
второй записи). Но это ведь опять способ подбора.
Что нам необходимо знать, чтобы получить верный
ответ? (Надо знать значения k).
(Составим математическую модель для
нахождения k).
Ответ: .
Вывод: Чтобы выбрать корни
из заданного промежутка при решении
тригонометрического уравнения надо:
- для решения уравнения вида sin x = a, cos x = a
удобнее записать корни уравнения, как две серии
корней. - для решения уравнений вида tg x = a, ctg x = a
записать общую формулу корней. - составить математическую модель для каждого
решения в виде двойного неравенства и найти
целое значение параметра k или n. - подставить эти значения в формулу корней и
вычислить их.
3. Закрепление.
Пример №2 и №3 из домашнего задания
решить, используя полученный алгоритм.
Одновременно у доски работают два ученика, с
последующей проверкой работ.
4. Самостоятельная работа.
Самопроверка с выбором ответа. Выбрать №
правильного ответа, получив закодированное
число (312).
1) sin x = —, x
2) 3 tg x = —, x I [0; 2
]
3) 2 cos ,
х [
]
Приложение. Ответы
к примерам
5. Домашнее задание:
1 уровень: № 295 (а,б), № 317 (а,б)
2 уровень: № 307 (в), № 308 (б), № 326(б), № 327(б).
6. Итог урока.
Чтобы успешно решать тригонометрические уравнения удобно пользоваться методом сведения к ранее решенным задачам. Давайте разберемся, в чем суть этого метода?
В любой предлагаемой задаче вам необходимо увидеть уже решенную ранее задачу, а затем с помощью последовательных равносильных преобразований попытаться свести данную вам задачу к более простой.
Так, при решении тригонометрических уравнений обычно составляют некоторую конечную последовательность равносильных уравнений, последним звеном которой является уравнение с очевидным решением. Только важно помнить, что если навыки решения простейших тригонометрических уравнений не сформированы, то решение более сложных уравнений будет затруднено и малоэффективно.
Кроме того, решая тригонометрические уравнения, никогда не стоит забывать о возможности существования нескольких способов решения.
Пример 1. Найти количество корней уравнения cos x = -1/2 на промежутке [0; 2π].
Решение:
I способ. Изобразим графики функций y = cos x и y = -1/2 и найдем количество их общих точек на промежутке [0; 2π] (рис. 1).
Так как графики функций имеют две общие точки на промежутке [0; 2π], то уравнение содержит два корня на данном промежутке.
II способ. С помощью тригонометрического круга (рис. 2) выясним количество точек, принадлежащих промежутку [0; 2π], в которых cos x = -1/2. По рисунку видно, что уравнение имеет два корня.
III способ. Воспользовавшись формулой корней тригонометрического уравнения, решим уравнение cos x = -1/2.
cos x = -1/2;
x = ± arccos (-1/2) + 2πk, k – целое число (k € Z);
x = ± (π – arccos 1/2) + 2πk, k – целое число (k € Z);
x = ± (π – π/3) + 2πk, k – целое число (k € Z);
x = ± 2π/3 + 2πk, k – целое число (k € Z).
Промежутку [0; 2π] принадлежат корни 2π/3 и -2π/3 + 2π, k – целое число. Таким образом, уравнение имеет два корня на заданном промежутке.
Ответ: 2.
В дальнейшем тригонометрические уравнения будут решаться одним из предложенных способов, что во многих случаях не исключает применения и остальных способов.
Пример 2. Найти количество решений уравнения tg (x + π/4) = 1 на промежутке [-2π; 2π].
Решение:
Воспользовавшись формулой корней тригонометрического уравнения, получим:
x + π/4 = arctg 1 + πk, k – целое число (k € Z);
x + π/4 = π/4 + πk, k – целое число (k € Z);
x = πk, k – целое число (k € Z);
Промежутку [-2π; 2π] принадлежат числа -2π; -π; 0; π; 2π. Итак, уравнение имеет пять корней на заданном промежутке.
Ответ: 5.
Пример 3. Найти количество корней уравнения cos2 x + sin x · cos x = 1 на промежутке [-π; π].
Решение:
Так как 1 = sin2 x + cos2 x (основное тригонометрическое тождество), то исходное уравнение принимает вид:
cos2 x + sin x · cos x = sin2 x + cos2 x;
sin2 x – sin x · cos x = 0;
sin x(sin x – cos x) = 0. Произведение равно нулю, а значит хотя бы один из множителей должен быть равен нулю, поэтому:
sin x = 0 или sin x – cos x = 0.
Так как значение переменной, при которых cos x = 0, не являются корнями второго уравнения (синус и косинус одного и того же числа не могут одновременно быть равными нулю), то разделим обе части второго уравнения на cos x:
sin x = 0 или sin x / cos x — 1 = 0.
Во втором уравнении воспользуемся тем, что tg x = sin x / cos x, тогда:
sin x = 0 или tg x = 1. С помощью формул имеем:
x = πk или x = π/4 + πk, k – целое число (k € Z).
Из первой серии корней промежутку [-π; π] принадлежат числа -π; 0; π. Из второй серии: (π/4 – π) и π/4.
Таким образом, пять корней исходного уравнения принадлежат промежутку [-π; π].
Ответ: 5.
Пример 4. Найти сумму корней уравнения tg2 x + сtg2 x + 3tg x + 3сtgx + 4 = 0 на промежутке [-π; 1,1π].
Решение:
Перепишем уравнение в следующем виде:
tg2 x + сtg2 x + 3(tg x + сtgx) + 4 = 0 и сделаем замену.
Пусть tg x + сtgx = a. Обе части равенства возведем в квадрат:
(tg x + сtg x)2 = a2. Раскроем скобки:
tg2 x + 2tg x · сtgx + сtg2 x = a2.
Так как tg x · сtgx = 1, то tg2 x + 2 + сtg2 x = a2, а значит
tg2 x + сtg2 x = a2 – 2.
Теперь исходное уравнение имеет вид:
a2 – 2 + 3a + 4 = 0;
a2 + 3a + 2 = 0. С помощью теоремы Виета получаем, что a = -1 или a = -2.
Сделаем обратную замену, имеем:
tg x + сtgx = -1 или tg x + сtgx = -2. Решим полученные уравнения.
tg x + 1/tgx = -1 или tg x + 1/tgx = -2.
По свойству двух взаимно обратных чисел определяем, что первое уравнение не имеет корней, а из второго уравнения имеем:
tg x = -1, т.е. x = -π/4 + πk, k – целое число (k € Z).
Промежутку [-π; 1,1π] принадлежат корни: -π/4; -π/4 + π. Их сумма:
-π/4 + (-π/4 + π) = -π/2 + π = π/2.
Ответ: π/2.
Пример 5. Найти среднее арифметическое корней уравнения sin 3x + sin x = sin 2x на промежутке [-π; 0,5π].
Решение:
Воспользуемся формулой sin α + sin β = 2sin ((α + β)/2) · cos ((α – β)/2), тогда
sin 3x + sin x = 2sin ((3x + x)/2) · cos ((3x – x)/2) = 2sin 2x · cos x и уравнение принимает вид
2sin 2x · cos x = sin 2x;
2sin 2x · cos x – sin 2x = 0. Вынесем общий множитель sin 2x за скобки
sin 2x(2cos x – 1) = 0. Решим полученное уравнение:
sin 2x = 0 или 2cos x – 1 = 0;
sin 2x = 0 или cos x = 1/2;
2x = πk или x = ±π/3 + 2πk, k – целое число (k € Z).
Таким образом, имеем корни
x = πk/2, x = π/3 + 2πk, x = -π/3 + 2πk, k – целое число (k € Z).
Промежутку [-π; 0,5π] принадлежат корни -π; -π/2; 0; π/2 (из первой серии корней); π/3 (из второй серии); -π/3 (из третьей серии). Их среднее арифметическое равно:
(-π – π/2 + 0 + π/2 + π/3 – π/3)/6 = -π/6.
Ответ: -π/6.
Пример 6. Найти количество корней уравнения sin x + cos x = 0 на промежутке [-1,25π; 2π].
Решение:
Данное уравнение является однородным уравнением первой степени. Разделим обе его части на cosx (значение переменной, при которых cos x = 0, не являются корнями данного уравнения, так как синус и косинус одного и того же числа не могут одновременно быть равными нулю). Исходное уравнение имеет вид:
tg x + 1 = 0;
tg x = -1;
x = -π/4 + πk, k – целое число (k € Z).
Промежутку [-1,25π; 2π] принадлежат корни -π/4; (-π/4 + π); и (-π/4 + 2π).
Таким образом, заданному промежутку принадлежат три корня уравнения.
Ответ: 3.
Научитесь делать самое главное – четко представлять план решения задачи, и тогда любое тригонометрическое уравнение будет вам по плечу.
Остались вопросы? Не знаете, как решать тригонометрические уравнения?
Чтобы получить помощь репетитора – зарегистрируйтесь.
© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.
Содержание:
Рассматривая произвольное действительное число
Таким образом, мы установим соответствие между множеством действительных чисел и множеством значений синусов углов. Каждому действительному числу соответствует единственное значение синуса. Такое соответствие определяет тригонометрическую функцию
Определение функция y=sin x
Определение:
Зависимость, при которой каждому действительному числу соответствует значение
называется функцией
Рассмотрим свойства функции и построим ее график:
Область определения функции y=sin x
Областью определения функции является множество всех действительных чисел, так как для любого
существует
Графически это означает, что для любой абсциссы найдется точка графика функции
Множеством значений функции y=sin x
Множеством значений функции является промежуток
так как ординаты точек единичной окружности (значения синусов чисел) изменяются от -1 до 1.
Графически это означает, что график функции расположен в полосе между прямыми
(рис. 74).
Периодичность функции y=sin x
Периодичность функции Точки единичной окружности
совпадают для любого
(рис. 75), значит, значения синусов этих углов также совпадают, т. е.
Говорят, что число является периодом функции
Определение:
Функция называется периодической функцией с периодом
если для любого значения
из области определения функции числа
также принадлежат области определения и при этом верно равенство
Чтобы определить, является ли функция периодической с периодом необходимо проверить:
- принадлежат ли области определения функции числа
если
принадлежит области определения функции;
- выполняется ли равенство
Определим, верно ли, что число является периодом функции
- Числа
принадлежат области определения функции, так как
- Проверим, выполняется ли равенство
для всех
Пусть
Значит, число не является периодом функции
Периодом функции являются числа вида
Число
является наименьшим положительным периодом функции
Функция является периодической с наименьшим положительным периодом
(рис. 76). Это означает, что ее график состоит из повторяющихся частей, поэтому достаточно его построить на отрезке длиной
(например,
а затем повторить построение на каждом следующем отрезке длиной
Четность (нечетность) функции y=sin x
Четность (нечетность) функции y=sin x — симметрична относительно нуля. Так как точки
единичной окружности симметричны относительно оси абсцисс для любого
то ординаты этих точек противоположны, т. е.
(рис. 77). Значит, функция
нечетная.
Для построения ее графика достаточно построить его часть для неотрицательных значений аргумента и отобразить эту часть симметрично относительно начала координат.
Нули функции y=sin x
Нули функции. Ординаты точек и
равны нулю. Значит,
в точка
(рис. 78), т. е. график функции пересекает ось абсцисс в точках с абсциссами
Промежутки знакопостоянства функции y=sin x
На промежутках функция
принимает положительные значения, так как ординаты точек единичной окружности положительны в первой и во второй четвертях (рис. 79, а).
На промежутках функция
принимает отрицательные значения, так как ординаты точек единичной окружности отрицательны в третьей и четвертой четвертях (рис. 79, б).
Монотонность функции y=sin x
Монотонность функции. Так как ординаты точек единичной окружности увеличиваются от -1 до 1 при изменении угла от (рис. 80, а) и уменьшаются от 1 до -1 при изменении угла от
(рис. 80, б), то с учетом периодичности определим промежутки возрастания функции
и промежутки убывания функции
Функции возрастает на промежутках
и убывает на промежутках
Наибольшее значение функции равно 1 и достигается в точках
Наименьшее значение функции равно
и достигается в точках
На основании проведенного исследования построим график функции на отрезке от
длина которого равна
т. е. длине периода функции
На этом периоде функция
На рисунке 81 изображена часть графика функции на промежутке от
Перенесем эту часть на другие периоды и получим график функции (рис. 82). График функции
называется синусоидой.
Примеры заданий и их решения
Пример №1
Определите, принадлежит ли графику функции точка:
Решение:
а) Подставим в формулу значение аргумента
найдем соответствующее значение функции
Полученное значение функции равно ординате точки значит, точка
принадлежит графику функции
б) При получим
Точка
не принадлежит графику функции
в) При получим
Точка
принадлежит графику функции
г) При получим
Точка
не принадлежит графику функции
Пример №2
Найдите область определения и множество значений функции:
Решение:
а) Так как область определения функции все действительные числа, т.е
значит,
Таким образом,
Множеством значений функции является отрезок
значит,
Тогда по свойству неравенств
Таким образом,
б) Поскольку
то по свойству неравенств
т.е.
Пример №3
Найдите наибольшее значение функции
Решение:
Так как значит,
тогда
Таким образом, имеем:
Наибольшее значение функции
равно 7.
- Заказать решение задач по высшей математике
Пример №4
Найдите значение выражения, используя свойство периодичности функции
Решение:
Так как число является наименьшим положительным периодом функции
Тогда:
Пример №5
Найдите значение выражения, используя свойство нечетности функции
Решение:
Так как функция нечетная, то
Тогда:
Пример №6
Исследуйте функцию на четность (нечетность):
Решение:
a) — область определения симметрична относительно нуля;
значит, функция является нечетной.
область определения симметрична относительно нуля;
значит, функция является четной.
Пример №7
Найдите нули функции:
Решение:
а) Пусть Нулями функции
являются числа
Тогда
значит,
Таким тобразом, числа
являются нулями функции
б) Пусть Нулями функции
являются числа
Тогда
значит,
Таким образом, числа являются нулями функции
Пример №8
Определите знак произведения
Решение:
Так как то
т. е. угол 4 радиана принадлежит промежутку
на котором функция
принимает отрицательные значения, значит,
Углы 2 радиана и 1 радиан принадлежат промежутку на котором функция
принимает положительные значения, т. е.
Значит,
Пример №9
Что больше: или
Решение. Так как функция возрастает на промежутке
то из того, что
следует, что
Пример №10
Постройте график функции:
Решение:
а) График функции получаем из графика функции
сдвигом его вдоль оси абсцисс на
влево (рис. 84).
б) График функции получаем из графика функции
сдвигом его вдоль оси ординат на 2 единицы вверх (рис. 85).
- Функция y=cos x и её свойства и график
- Функции y=tg x и y=ctg x — их свойства, графики
- Арксинус, арккосинус, арктангенс и арккотангенс числа
- Тригонометрические уравнения
- Единичная окружность — в тригонометрии
- Определение синуса и косинуса произвольного угла
- Определение тангенса и котангенса произвольного угла
- Соотношения между синусом, косинусом, тангенсом и котангенсом одного и того же угла (тригонометрические тождества)
- Решение неравенств с синусом
- Решение неравенств с косинусом
- Решение неравенств с тангенсом
- Решение неравенств с котангенсом
- Примеры
п.1. Решение неравенств с синусом
Алгоритм решения неравенства (sinxgt a)
Шаг 1. В числовой окружности на оси синусов отметить точку с ординатой (a). Провести горизонталь (y=a), отметить точки её пересечения с окружностью.
Шаг 2. Решить уравнение (sinx=a). Про решение простейших тригонометрических уравнений – см. §19 данного справочника. Полученные базовые решения являются значениями точек пересечения, подписать их.
Шаг 3. Дуга числовой окружности над проведенной горизонталью – искомое решение. Записать ответ, обходя дугу против часовой стрелки. Добавить к концам полученного интервала полный период.
Решение имеет вид: ((arcsina+2pi k; pi-arcsin a+2pi k))
Например:
$$ sin xgt frac12 $$ 1. Проводим горизонталь (y=frac12), отмечаем точки пересечения (незакрашенные, т.к. неравенство строгое). 2. Решаем уравнение (sinx=frac12) begin{gather*} x=(-1)^kfracpi6+pi k= left[ begin{array}{l l} fracpi6+2pi k\ frac{5pi}{6}+2pi k end{array} right. end{gather*} Подписываем точку справа (fracpi6) и точку слева (frac{5pi}{6}). 3. При обходе полученной дуги против часовой стрелки получаем интервал: ((fracpi6; frac{5pi}{6})). Добавляем к концам интервала полный период. Ответ: (left(fracpi6;+2pi k; frac{5pi}{6}+2pi kright)) |
Алгоритм решения неравенства (sinxgeq a) будет таким же, только точки на числовой окружности будут закрашенными, и в ответе будет отрезок (с квадратными скобками).
Алгоритм решения неравенства (sinxlt a) будет отличаться тем, что в ответе нужно записывать дугу под горизонталью (y=a). При этом не забываем, что дугу нужно обходить в сторону возрастания. Поэтому угол слева пишут отрицательным (отсчитывая период назад).
Наконец, в неравенстве (sinxleq a) всё будет то же, что и в (sinxlt a). Только точки на концах будут закрашенными и войдут в ответ (с квадратными скобками).
Например:
$$ sin xleq -frac{sqrt{2}}{2} $$ 1. Проводим горизонталь (y=-frac{sqrt{2}}{2}), отмечаем точки пересечения (закрашенные, т.к. неравенство нестрогое). 2. Решаем уравнение (sinx=-frac{sqrt{2}}{2}) begin{gather*} x=(-1)^kleft(-fracpi4right)+pi k= left[ begin{array}{l l} -frac{3pi}{4}+2pi k\ -frac{pi}{4}+2pi k end{array} right. end{gather*} Подписываем точку справа (-frac{3pi}{4}) и точку слева (-frac{pi}{4}). 3. При обходе полученной дуги против часовой стрелки получаем отрезок: (left[-frac{3pi}{4};-frac{pi}{4}right]). Добавляем к концам отрезка полный период. Ответ: (left[-frac{3pi}{4}+2pi k;-frac{pi}{4}+2pi kright]) |
п.2. Решение неравенств с косинусом
Алгоритм решения неравенства (cosxgt a)
Шаг 1. В числовой окружности на оси косинусов отметить точку с абсциссой (a). Провести вертикаль (x=a), отметить точки её пересечения с окружностью.
Шаг 2. Решить уравнение (cosx=a). Полученные базовые решения являются значениями точек пересечения, подписать их.
Шаг 3. Дуга числовой окружности справа от проведенной вертикали – искомое решение. Записать ответ, обходя дугу против часовой стрелки. Добавить к концам полученного интервала полный период.
Решение имеет вид: ((-arccosa+2pi k; arccosa+2pi k))
Например:
$$ cosxgt frac{sqrt{3}}{2} $$ 1. Проводим вертикаль (x=frac{sqrt{3}}{2}), отмечаем точки пересечения (незакрашенные, т.к. неравенство строгое). 2. Решаем уравнение (cosx=frac{sqrt{3}}{2}) begin{gather*} x=pmfracpi6+2pi k end{gather*} Подписываем точку снизу (-fracpi6) и точку сверху (frac{pi}{6}). 3. При обходе полученной дуги против часовой стрелки получаем интервал: (left(-fracpi6;fracpi6right)). Добавляем к концам интервала полный период. Ответ: (left(-fracpi6;+2pi k; frac{pi}{6}+2pi kright)) |
Алгоритм решения неравенства (cosxgeq a) будет таким же, только точки на числовой окружности будут закрашенными, и в ответе будет отрезок (с квадратными скобками).
Алгоритм решения неравенства (cosxlt a) будет отличаться тем, что в ответе нужно записывать дугу слева от вертикали (x=a). При этом не забываем, что дугу нужно обходить в сторону возрастания, сверху вниз. Значение угла снизу должно быть больше, чем угла сверху.
Наконец, в неравенстве (cosxleq a) всё будет то же, что и в (cosxlt a). Только точки на концах будут закрашенными и войдут в ответ (с квадратными скобками).
п.3. Решение неравенств с тангенсом
Алгоритм решения неравенства (tgxgt a)
Шаг 1. На оси тангенсов (касательной к числовой окружности в точке (1,0)) отметить точку с ординатой (a). Провести луч из начала координат через отмеченную точку, отметить точку её пересечения с окружностью.
Шаг 2. Решить уравнение (tgx=a). Полученное базовое решение является значением точки пересечения.
Шаг 3. Дуга числовой окружности от отмеченной точки до (fracpi2) (в которой (tgxrightarrow +infty)) – искомое решение. Записать ответ, обходя дугу против часовой стрелки. Добавить к концам полученного интервала полный период.
Решение имеет вид: (left(arctga+pi k; fracpi2+pi kright))
Например:
$$ tg xgt -frac{1}{sqrt{3}} $$ 1. На оси тангенсов отмечаем точку (-frac{1}{sqrt{3}}). Проводим луч из начала координат через эту точку. 2. Решаем уравнение (tgx=-frac{1}{sqrt{3}}) begin{gather*} x=-fracpi6+pi k end{gather*} Подписываем точку снизу (-fracpi6.) Верхней границей интервала будет (fracpi2), угол, в котором (tgxrightarrow +infty .) 3. При обходе полученной дуги против часовой стрелки получаем интервал: (left(-fracpi6;fracpi2right)). Добавляем к концам интервала период для тангенса. Строго говоря, на числовой окружности длиной (2pi) получим две дуги для тангенса с периодом (pi). Ответ: (left(-fracpi6;+pi k; frac{pi}{2}+pi kright)) |
Алгоритм решения неравенства (tgxlt a) будет отличаться тем, что в ответе нужно записывать дугу от точки (-fracpi2) (в которой (tgxrightarrow -infty)) до найденного арктангенса.
Для нестрогих неравенств будут получаться полуинтервалы, в которых точки (pmfracpi2) ((tgxrightarrow pminfty)) будут ограничены круглой скобкой, а найденные арктангенсы – квадратной.
п.4. Решение неравенств с котангенсом
Решение неравенств с котангенсом аналогично решению с тангенсом. Для решения используется ось котангенсов (касательная к числовой окружности в точке (0;1)).
В неравенствах вида (ctgxgt a) пределу (ctgxrightarrow +infty) соответствует угол 0.
В неравенствах вида (ctgxlt a) пределу (ctgxrightarrow -infty) соответствует угол (pi).
п.5. Примеры
Пример 1. Решите неравенства:
Пример 2*. Решите неравенства:
a) (cosxgt -1) Справа от вертикали (x=-1) расположена вся числовая окружность, кроме точки (pi). Ответ: (xne pi+2pi k) |
|
б) (4cos^2frac x2-3leq 0) (4cdot frac{1+cosx}{2}leq 3) (2+2cosxleq 3) (cosxleqfrac12) Ответ: (left[fracpi3+2pi k; frac{5pi}{3}+2pi kright]) |
в) (-sqrt{3}lt tgxleq 5)
(-arctgsqrt{3}+pi klt xleq arctg5+pi k)
(-fracpi3+pi klt xleq arctg5+pi k)
Ответ: (left.left(-frac{pi}{3}+pi k; arctg5+pi kright.right])
г) (tgleft(x-fracpi4right)gtsqrt{3})
(arctgsqrt{3}+pi klt x-fracpi4ltfracpi2+pi k)
(fracpi4+fracpi3+pi klt xltfracpi4+fracpi2+pi k)
(frac{7pi}{12}+pi klt xltfrac{3pi}{4}+pi k)
Ответ: (left(frac{7pi}{12}+pi k; frac{3pi}{4}+pi kright))