«Формула времени. Решение задач»
Скорость, время и расстояние — физические величины, взаимосвязаны процессом движения. Виды движений: 1) равномерное (прямолинейное, криволинейное и по окружности), 2) равноускоренное (с постоянным ускорением), 3) гармоническое. Для каждого вида движения своя формула времени.
Время обозначается как t. Единица измерения времени – с (секунды).
Самая простая формула при равномерном прямолинейном движении. Время, необходимое для прохождения пути равняется частному от деления пути на скорость равномерного прямолинейного движения: t = S / v.
При равноускоренном движении время равняется частному от деления разницы конечной и начальной скорости на ускорение: t = (v — v0) / a или частному от деления пути на разность конечной и начальной скорости: t = S / (v — v0).
Решение задач через формулу времени
Задача № 1.
Конькобежец может развивать скорость до 13 м/с. За какое время он пробежит дистанцию длиной 2,6 км?
Ответ: 200 с.
Задача № 2.
Двигаясь с ускорением 5 м/с2 скорость космической ракеты увеличилась на 100 м/с. За какое время произошло такое изменение скорости?
Ответ: 20 с.
Задача № 3.
Пункты А и В находятся на берегу реки на некотором расстоянии друг от друга. Моторная лодка проходит расстояние АВ вниз по течению реки за время t1 = 3 ч, а плот то же расстояние – за время t0 =12 ч. Какое время t2 затратит моторная лодка на обратный путь?
Решение. Обозначим расстояние между пунктами А и В через L, скорость моторной лодки относительно воды через vл , а скорость течения через vт. Тогда t0 = L / vт , t1 = L / (vл + vт) , t2 = L / (vл — vт) . Исключая из записанной системы уравнений L, vл и vт
находим
Ответ: 6 ч.
Конспект урока «Формула времени. Решение задач».
Следующая тема: «».
Прямолинейное равноускоренное движение — это прямолинейное движение, при котором скорость тела изменяется (увеличивается или уменьшается) на одну и ту же величину за равные промежутки времени.
Ускорение — физическая величина, характеризующая быстроту изменения скорости тела. То есть, показывает, на какую величину изменяется скорость за единицу времени.
Примеры равноускоренного движения:
- разгон самолета перед взлетом;
- падающая с крыши сосулька;
- торможение лыжника на горном склоне;
- разгоняющийся на склоне сноубордист;
- свободное падение в результате прыжка с парашютом;
- камень брошенный под углом к горизонту;
Равномерное прямолинейное движение является частным случаем равноускоренного движения, при котором ускорение равно нулю.
Равноускоренное движение: формулы
Формула для скорости при равноускоренном движении:
Vк=Vн+at
где: Vк — конечная скорость тела,
Vн — начальная скорость тела,
a=const — ускорение (a>0 при ускорении, a<0 при замедлении)
t — время.
Формула для ускорения при равноускоренном движении:
a=(Vк-Vн)/t
Во время движения тела ускорение остается постоянным.
Задача 1
Кирилл ехал на велосипеде со скоростью 6 м/с, затем начал разгоняться на горке. Чему будет равна его скорость через 10 секунд, если ускорение равно 0,5 м/с?
Решение. Vн=6м/с, ускорение a=0,5м/с, время разгона t=10 секунд.
Получаем: Vн= 6 + 0,5 · 10 = 11 м/с.
Ответ: за 10с Кирилл разгонится до скорости 11 м/с.
Формула расстояния при равноускоренном движении
- Если известны время, скорость начальная и скорость конечная
S = t*(Vн+ Vк)/2
- Если известны время, скорость начальная и ускорение
S = Vнt + at2/2 = t*(Vн + at/2)
где: S — путь, пройденный за время t,
Vн — начальная скорость,
Vк — конечная скорость,
a — ускорение тела,
t — время.
В случае равноускоренного движения с неизвестным временем движения, но с заданными начальной и конечной скоростями пройденный путь можно найти с помощью следующей формулы:
2аS = Vк2−Vн2
где S — путь, пройденный за время t ,
V0 — начальная скорость,
V — скорость в момент времени t,
a — ускорение тела.
Задача 2
Таксист получил заказ и начал движение с ускорением 0,1 м/с2. На каком расстоянии от начала движения его скорость станет равной 15м/с?
Решение. Так как таксист начал движение, начальная скорость равна нулю (Vн=0), Vк=15м/с, ускорение a=0,1м/с2.
Получаем:
S = 15^2 — 0^2 =1125 м.
Ответ: на расстоянии 1 125 м от начала движения скорость такси станет равной 15 м/с.
Перемещение при равноускоренном движении
Важно напомнить разницу между путем и перемещением тела.
- Путь — длина траектории. Если тело движется в любом направлении, то его путь увеличивается. Путь — всегда положительное значение.
- Перемещение — вектор, соединяющий начальное и конечное положение тела. Проекция перемещения может принимать отрицательное значение.
Например, если путник прошел в одну сторону расстояние S1, а обратно — S2, то: путь тела равен S1 + S2, а перемещение равно S1 − S2. В некоторых задачах путь и перемещение могут совпадать, но не всегда.
Равноускоренное движение: графически
График зависимости ускорения от времени:
Во время движения тела ускорение остается постоянным.
Взаимосвязь скорости, времени и расстояния:
На рисунке показан график, в котором скорость равномерно увеличивается.
С помощью графика скорости можно определить ускорение тела как тангенс угла наклона графика к оси времени.
Из графика скорости получим формулу пути при равноускоренном движении тела.
Пройденный телом путь при равноускоренном движении численно равен площади фигуры под графиком зависимости скорости от времени. Вычислим площадь трапеции как сумму площадей прямоугольника Vнt и треугольника at2/2. Получим: S = Vнt + at2/2.
Математически зависимость координаты от времени при равноускоренном движении представляет собой квадратичную функцию, ее график — парабола.
Задача 3
Лыжник подъехал со скоростью 3 м/с к спуску длиной 36 м и съехал с него за несколько секунд, при этом его конечная скорость составила 15 м/с. Определите местонахождение лыжника спустя 2с после начала движения из начала координат.
Дано:
Vн = 3 м/с, начальная координата (t) равна нулю,
Vк = 15м/с,
a — скорость лыжника увеличивается, поэтому ускорение — положительное число,
S = 36м — путь с горы,
t — 2с.
Решение:
Найдем ускорение из формулы пути при равноускоренном движении: 2аS = Vк2−Vн2
Получим: а = (Vк2−Vн2 )/2S = (225-9)/(2*36) = 3 м/с2.
Составим уравнение движения лыжника исходя из формулы: S = Vнt + at2/2.
Получаем: x(t) = 3t + 1,5t2
По уравнению определим координату лыжника в момент времени t = 2с:
Получаем: x(2) = 3*2 + 1,5*22 =6+6=12 м.
Ответ: через 2 с после начала движения координата лыжника будет равна 12 м.
Для того, чтобы проверить правильность решения задач на равноускоренное движение, воспользуйтесь калькулятором равноускоренного движения.
Для того, чтобы перевести единицы измерения, воспользуйтесь конвертерами единиц измерения:
- Конвертер единиц измерения расстояния (длины)
- Конвертер единиц измерения скорости
- Конвертер единиц измерения времени
Равноускоренное движение.
-
Зависимость скорости от времени.
-
Закон движения.
-
Прямолинейное равноускоренное движение.
-
Свободное падение.
-
Горизонтальный бросок.
-
Бросок под углом к горизонту.
Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: виды механического движения, скорость, ускорение, уравнения прямолинейного равноускоренного движения, свободное падение.
Равноускоренное движение — это движение с постоянным вектором ускорения . Таким образом, при равноускоренном движении остаются неизменными направление и абсолютная величина ускорения.
к оглавлению ▴
Зависимость скорости от времени.
При изучении равномерного прямолинейного движения вопрос зависимости скорости от времени не возникал: скорость была постоянна в процессе движения. Однако при равноускоренном движении скорость меняется с течением времени, и эту зависимость нам предстоит выяснить.
Давайте ещё раз потренируемся в элементарном интегрировании. Исходим из того, что производная вектора скорости есть вектор ускорения:
. (1)
В нашем случае имеем . Что надо продифференцировать, чтобы получить постоянный вектор
? Разумеется, функцию
. Но не только: к ней можно добавить ещё произвольный постоянный вектор
(ведь производная постоянного вектора равна нулю). Таким образом,
. (2)
Каков смысл константы ? В начальный момент времени
скорость равна своему начальному значению:
. Поэтому, полагая
в формуле (2), получим:
.
Итак, константа — это начальная скорость тела. Теперь соотношение (2) принимает свой окончательный вид:
. (3)
В конкретных задачах мы выбираем систему координат и переходим к проекциям на координатные оси. Часто хватает двух осей и
прямоугольной декартовой системы координат, и векторная формула (3) даёт два скалярных равенства:
, (4)
. (5)
Формула для третьей компоненты скорости, если она необходима, выглядит аналогично.)
к оглавлению ▴
Закон движения.
Теперь мы можем найти закон движения, то есть зависимость радиус-вектора от времени. Вспоминаем, что производная радиус-вектора есть скорость тела:
Подставляем сюда выражение для скорости, даваемое формулой (3):
(6)
Сейчас нам предстоит проинтегрировать равенство (6). Это несложно. Чтобы получить , надо продифференцировать функцию
. Чтобы получить
, нужно продифференцировать
. Не забудем добавить и произвольную константу
:
.
Ясно, что — это начальное значение
радиус-вектора
в момент времени
. В результате получаем искомый закон равноускоренного движения:
. (7)
Переходя к проекциям на координатные оси, вместо одного векторного равенства (7) получаем три скалярных равенства:
. (8)
. (9)
. (10)
Формулы (8) — (10) дают зависимость координат тела от времени и поэтому служат решением основной задачи механики для равноускоренного движения.
Снова вернёмся к закону движения (7). Заметим, что — перемещение тела. Тогда
получаем зависимость перемещения от времени:
.
к оглавлению ▴
Прямолинейное равноускоренное движение.
Если равноускоренное движение является прямолинейным, то удобно выбрать координатную ось вдоль прямой, по которой движется тело. Пусть, например, это будет ось . Тогда для решения задач нам достаточно будет трёх формул:
,
,
,
где — проекция перемещения на ось
.
Но очень часто помогает ещё одна формула, являющаяся их следствием. Выразим из первой формулы время:
и подставим в формулу для перемещения:
.
После алгебраических преобразований (проделайте их обязательно!) придём к соотношению:
.
Эта формула не содержит времени и позволяет быстрее приходить к ответу в тех задачах, где время не фигурирует.
к оглавлению ▴
Свободное падение.
Важным частным случаем равноускоренного движения является свободное падение. Так называется движение тела вблизи поверхности Земли без учёта сопротивления воздуха.
Свободное падение тела, независимо от его массы, происходит с постоянным ускорением свободного падения , направленным вертикально вниз. Почти во всех задачах при расчётах полагают
м/с
.
Давайте разберём несколько задач и посмотрим, как работают выведенные нами формулы для равноускоренного движения.
Задача. Найти скорость приземления дождевой капли, если высота тучи км.
Решение. Направим ось вертикально вниз, расположив начало отсчёта в точке отрыва капли. Воспользуемся формулой
.
Имеем: — искомая скорость приземления,
. Получаем:
, откуда
. Вычисляем:
м/с. Это 720 км/ч, порядка скорости пули.
На самом деле капли дождя падают со скоростью порядка нескольких метров в секунду. Почему такое расхождение? Сопротивление воздуха!
Задача. Тело брошено вертикально вверх со скоростью м/с. Найти его скорость через
c.
Решение. Направим ось вертикально вверх, поместив начало отсчёта на поверхности Земли. Используем формулу
.
Здесь , так что
. Вычисляем:
м/с. Значит, скорость будет равна 20 м/с. Знак проекции указывает на то, что тело будет лететь вниз.
Задача. С балкона, находящегося на высоте м, бросили вертикально вверх камень со скоростью
м/с. Через какое время камень упадёт на землю?
Решение. Направим ось вертикально вверх, поместив начало отсчёта на поверхности Земли. Используем формулу
.
Имеем: так что
, или
. Решая квадратное уравнение, получим
c.
к оглавлению ▴
Горизонтальный бросок.
Равноускоренное движение не обязательно является прямолинейным. Рассмотрим движение тела, брошенного горизонтально.
Предположим, что тело брошено горизонтально со скоростью с высоты
. Найдём время и дальность полёта, а также выясним, по какой траектории происходит движение.
Выберем систему координат так, как показано на рис. 1.
Рис. 1. Горизонтальный бросок |
Используем формулы:
В нашем случае . Получаем:
. (11)
Время полёта найдём из условия, что в момент падения координата тела
обращается в нуль:
.
Дальность полёта — это значение координаты
в момент времени
:
.
Уравнение траектории получим, исключая время из уравнений (11). Выражаем из первого уравнения и подставляем во второе:
.
Получили зависимость от
, которая является уравнением параболы. Следовательно, тело летит по параболе.
к оглавлению ▴
Бросок под углом к горизонту.
Рассмотрим несколько более сложный случай равноускоренного движения: полёт тела, брошенного под углом к горизонту.
Предположим, что тело брошено с поверхности Земли со скоростью , направленной под углом
к горизонту. Найдём время и дальность полёта, а также выясним, по какой траектории двигается тело.
Выберем систему координат так, как показано на рис. 2.
Рис. 2. Бросок под углом к горизонту |
Начинаем с уравнений:
,
.
В нашем случае . Получаем:
.
Дальше действуем так же, как и в случае горизонтального броска. В результате приходим к соотношениям:
,
,
.
(Обязательно проделайте эти вычисления самостоятельно!) Как видим, зависимость от
снова является уравнением параболы.Попробуйте также показать, что максимальная высота подъёма определяется формулой:
.
Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Равноускоренное движение.» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена:
07.05.2023
Определение
Равноускоренным движением называется движение при котором скорость за одинаковое время изменяется на одно и то же значение. В физике это самый простой вид движения с ускорением.
К примерам движения тела с постоянным ускорением можно отнести падение камня с обрыва, полёт гранаты, после выстрела из гранатомёта, скатывание санок с горы. Равномерное движение можно считать частным случаем равноускоренного, при котором ускорение всегда остаётся равным нулю.
Давайте подробно рассмотрим движение тела под действием постоянного поля силы тяжести вблизи земли. Пусть оно будет брошено под углом к горизонту. Это одновременно и равномерное и равноускоренное движение. Равномерное – по горизонтали (оси X), равноускоренное – по вертикали (оси Y). Сопротивлением воздуха, влиянием на движение вращения Земли и другими подобными факторами пренебрегаем.
В каждой точке пути на тело действует постоянное ускорение g. Оно не меняется ни по величине, ни по направлению.
Основные формулы равноускоренного движения и график равноускоренного движения
Формула
Скорость при равноускоренном движении тела вычисляется с помощью выражения:
[v=v0+at];
[v0 – text { начальная скорость тела; }]
[a=const – text { —ускорение; }]
Ускорение здесь определяется, как угол наклона графика скорости. Посмотрите на треугольник ABC.
a=(v-v0)/t=BC/AC.
Чем больше угол β, тем более наклонно выглядит график ускорения по отношению к оси времени. Следовательно, тем большее значение имеет ускорение тела.
Для первого из графиков положим V0=-2м/с. a=0,5м/с².
Для второго графика положим V0=3м/с. a=(-1/3)м/с².
Указанный график позволяет понять многие зависимости равноускоренного движения и вычислить его основные параметры при проецировании на направление движения. Сначала нужно выделить на графике крохотный отрезок времени Δt. Будем считать его настолько коротким, что движение на нём можно принять за равномерное со значением скорости равным скорости в середине указанного временного промежутка. Тогда, перемещение Δs за Δt можно принять равным Δs=vΔt. Заштрихованная область на первом из графиков.
Разделим всё время движения тела на такие бесконечно короткие промежутки Δt. Перемещение s за указанное время t будет равняться площади трапеции обозначаемой ODEF.
S=(|OD|+|EF|/2)*OF|= [(v+v0)/2]*t =[2v0+(v-v0)]*t/2;
Как известно, v-v0=at, исходя из этого окончательная формула равноускоренного движения выглядит следующим образом:
S=v0*t+at²/2
Чтобы узнать, какой будет координата тела в любое время его движения, к начальной координате следует ещё вписать перемещение. Изменение координаты в зависимости от времени есть закон равноускоренного движения по оси Y:
Y=y0+v0*t+at²/2.
Нет времени решать самому?
Наши эксперты помогут!
Закон равноускоренного движения
Формула
[Y=y0+v0*t+at²/2];
Из него видна зависимость равноускоренного движения от начального положения и начальной скорости тела. Если то и другое равно нулю, график равноускоренного движения приобретает вид параболы, пересекающей начало координат и обращённой своими ветвями вниз. Само движение при этом будет происходить по прямой вертикальной линии. Выражение станет законом равноускоренного прямолинейного движения.
S=at²/2
Это самый простой класс равноускоренного движения. Вектор скорости тела в нём всегда направлен по оси Y, меняет только свой знак. С формулами равноускоренного прямолинейного движения работать легче всего, поэтому при решении задач нужно стараться выбрать систему отсчёта именно таким образом.
Подставляя разные начальные значения скорости и координаты, меняя знак ускорения, можно получить самые разные значения. Вы спросите –«Зачем менять знак ускорения? Оно ведь всегда постоянно и направлено точно вниз.» При решении задач, чтобы найти равноускоренное движение, часто бывает удобно изменить направление оси Y, вместе с этим меняется и знак ускорения, оно становится положительным.
Как найти равноускоренное движение тела, если неизвестно время
Часто возникает задача нахождения координаты тела при заданной начальной скорости движения тела, конечной скорости его движения и ускорении, но не заданном времени. Как быть в этой ситуации.
Рассмотрим уравнения:
v=v0+at;
S=v0*t+at²/2
Как систему уравнений. Для её решения, нужно исключить переменную t.
Сначала находим t из первого уравнения
t=(v-v0)/a
Затем подставляем его в выражение для перемещения. В результате получаем уравнение равноускоренного движения, не содержащее время.
s=[v²- (v0)²]/2a
Из данного выражения уже достаточно легко вычислить скорость. Она равна:
V=√(v0)²-2as
При v0=0 s=v²/2a и v=√2as