Как найти угол синуса аов

Условие задачи

Найдите синус угла АОВ, изображённого на рисунке.

Решение

Опустим из точки В перпендикуляр на прямую ОА. Получим прямоугольный треугольник, катеты которого равны 3 и 4. По теореме Пифагора, его гипотенуза равна 5. Тогда синус угла АОВ равен frac{3}{5}=0,6. Мы нашли синус угла как отношение противолежащего катета к гипотенузе.

Ответ:

0,6.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «ОГЭ. Решение. Задание 19, Вариант 2» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
07.05.2023

Найдите синус угла AOB изображенного на рисунке?

Геометрия | 5 — 9 классы

Найдите синус угла AOB изображенного на рисунке.

Рисунок во вложении.

Я просто не помню как делать.

Нам обьясняли что сначало нужно достроить до треугольника потом по теореме пифагора.

Ответ должен получится 0, 6.

ОА = 4 клетки, АВ = 3 клетки.

По теореме Пифагора : квадрат гипотенузы ОВ = квадрат катета ОА + квадрат катета АВ

Синус угла АОВ = АВ / ОВ = 3 / 5 = 0, 6.

Найдите синус угла ВАС треугольника АВС, изображенного на рисунке?

Найдите синус угла ВАС треугольника АВС, изображенного на рисунке.

Найдите синус угла ВАС треугольника АВС, изображенного на рисунке?

Найдите синус угла ВАС треугольника АВС, изображенного на рисунке.

Найдите косинус угла AOB, изображенного на рисунке?

Найдите косинус угла AOB, изображенного на рисунке.

ПОМОГИТЕ ПОЖАЛУЙСТА?

Найти синус угла AOB, изображенного на рисунке , ДОЛЖНО ПОЛУЧИТСЯ 0.

Найдите синус угла, изображенного на рисунке?

Найдите синус угла, изображенного на рисунке.

Определите углы треугольника со сторонами 1, корень из 3, 2 без синусов косинусов по теореме пифагора?

Определите углы треугольника со сторонами 1, корень из 3, 2 без синусов косинусов по теореме пифагора!

Найдите синус угла аов , изображенного на рисунке?

Найдите синус угла аов , изображенного на рисунке.

Найдите синус угла AOB изображенного на рисунке?

Найдите синус угла AOB изображенного на рисунке.

Найдите тангенс угла AOB, изображенного на рисунке?

Найдите тангенс угла AOB, изображенного на рисунке.

Найдите синус угла ВАС треуголника АВС, изображенного на рисунке?

Найдите синус угла ВАС треуголника АВС, изображенного на рисунке.

Вы перешли к вопросу Найдите синус угла AOB изображенного на рисунке?. Он относится к категории Геометрия, для 5 — 9 классов. Здесь размещен ответ по заданным параметрам. Если этот вариант ответа не полностью вас удовлетворяет, то с помощью автоматического умного поиска можно найти другие вопросы по этой же теме, в категории Геометрия. В случае если ответы на похожие вопросы не раскрывают в полном объеме необходимую информацию, то воспользуйтесь кнопкой в верхней части сайта и сформулируйте свой вопрос иначе. Также на этой странице вы сможете ознакомиться с вариантами ответов пользователей.

Геометрия. Урок 1. Задания. Часть 2.

№8. Найдите тангенс угла A O B , изображенного на рисунке.

Решение:

Опустим перпендикуляр A H на сторону O B .

Рассмотрим прямоугольный △ A O H :

Тангенс угла – отношение противолежащего катета к прилежащему.

tg ∠ A O H = A H O H = 4 2 = 2

№9. Найдите тангенс угла A треугольника A B C б изображённого на рисунке.

Решение:

Тангенс угла – это отношение противолежащего катета к прилежащему.

tg ∠ B A C = B C A C = 2 5 = 0,4

№10. На рисунке изображена трапеция A B C D . Используя рисунок, найдите sin ∠ B A H .

Решение:

Рассмотрим прямоугольный △ A B H :

Синус угла – отношение противолежащего катета к гипотенузе.

sin ∠ A = B H A B

Найдем A B по теореме Пифагора:

A B 2 = A H 2 + B H 2

A B 2 = 3 2 + 4 2

A B 2 = 9 + 16 = 25

A B = ± 25 = [ − 5 не подходит 5 подходит

sin ∠ A = B H A B = 4 5 = 0,8

№11. На рисунке изображен ромб A B C D . Используя рисунок, найдите tg ∠ O B C .

Решение:

Тангенс угла – это отношение противолежащего катета к прилежащему.

tg ∠ O B C = O C B O = 3 4 = 0,75

№12. На рисунке изображена трапеция A B C D . Используя рисунок, найдите cos ∠ H B A .

Решение:

Рассмотрим прямоугольный △ A B H :

Косинус угла – отношение прилежащего катета к гипотенузе.

cos ∠ A B H = B H A B

Найдем A B по теореме Пифагора:

A B 2 = A H 2 + B H 2

A B 2 = 6 2 + 8 2

A B 2 = 36 + 64 = 100

A B = ± 100 = [ − 10 не подходит 10 подходит

cos ∠ A B H = B H A B = 8 10 = 0,8

№13. Найдите тангенс угла, изображенного на рисунке.

Решение:

tg β = tg ( 180 ° − α ) = − tg α

Рассмотрим прямоугольный △ B C H .

Тангенс угла – отношение противолежащего катета к прилежащему.

tg α = C H B H = 3 1

tg β = − tg α = − 3

№14. Найдите тангенс угла A O B .

Решение:

Опустим высоту B H на сторону O A .

Рассмотрим прямоугольный △ O B H :

Найдем B H и O H по теореме Пифагора:

B H 2 = 2 2 + 8 2 = = 4 + 64 = 68

B H = ± 68 = ± 4 ⋅ 17 = ± 4 ⋅ 17 = ± 2 17 = [ − 2 17 не подходит 2 17 подходит

O H 2 = 1 2 + 4 2 = 1 + 16 = 17

O H = ± 17 = [ − 17 не подходит 17 подходит

Синус угла. Таблица синусов.

Синус угла через градусы, минуты и секунды

Синус угла через десятичную запись угла

Как найти угол зная синус этого угла

У синуса есть обратная тригонометрическая функция — arcsin(y)=x

Пример sin(30°) = 1/2; arcsin(1/2) = 30°

Определение синуса

Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

Синусом угла α называется ордината точки B единичной окружности, полученной при повороте точки P(1;0) на угол α.

Периодичность синуса

Функция y = sin(x) периодична, с периодом 2π

источники:

Геометрия. Урок 1. Задания. Часть 2.

http://calc-best.ru/matematicheskie/trigonometriya/sinus-ugla

Угол на клетчатой бумаге. В этой статье мы с вами рассмотрим задачу, суть которой заключается в том, чтобы найти синус, косинус, тангенс или котангенс угла, построенного на листе в клетку. Такие задания входят в состав экзамена по математике. 

Способы решения существуют разные, их более трёх. Подход изложенный ниже можно было бы назвать универсальным. Если у вас найдутся задачи, которые вы таким способом решить не сможете, пришлите мне их, подберём другой. Углы могут быть построены следующим образом (примеры):

Углы построенные на листке в клетку

Итак, рассмотрим задание:

Найдите тангенс угла AOB. В ответе укажите значение тангенса, умноженное на 8.

Найти тангенс угла!

Соединим точки А и В. Получили треугольник АОВ. На сторонах полученного треугольника построим прямоугольные треугольники так, чтобы эти стороны являлись гипотенузами.

Суть подхода такова: находим все стороны треугольника (это можно сделать по теореме Пифагора); далее используя теорему косинусов, мы можем найти косинус угла; зная косинус мы без труда найдём остальные тригонометрические функции (синус, тангенс, котангенс).

АВ это гипотенуза в прямоугольном треугольнике с катетами 4 и 3,

ОВ это гипотенуза в прямоугольном треугольнике с катетами 6 и 1, 

OА является гипотенузой в прямоугольном треугольнике с катетами 4 и 2,

По теореме косинусов: квадрат любой стороны треугольника равен сумме квадратов двух других сторон, без удвоенного произведения этих сторон на косинус  угла между ними.

Из основного тригонометрического тождества можем найти sin AOB:

*Обратите внимание, что перед знаком корня у нас «+», так как угол острый (от 0 до 90 градусов). А синус острого угла имеет положительное значение. 

Теперь можем найти тангенс:

Умножим результат на 8 и запишем ответ:

Ответ: 11

Ещё раз повторим: как бы не был построен угол, мы всегда можем достроить его до треугольника, найти стороны этого треугольника (используя теорему Пифагора), далее используя теорему косинусов найти косинус угла (заданного в условии). Затем не составит труда, используя основное тригонометрическое тождество, найти синус. Тангенс и котангенс далее не сложно найти по их формулам.

Ниже предложено самостоятельно решить задачи. При их решении на сайте использовались и другие способы (вы решите представленным выше):

Найдите синус угла AOB. В ответе укажите значение синуса, умноженное на два корня из двух.

Посмотреть решение

Найдите тангенс угла AOB.

Посмотреть решение

Найдите синус угла AOB. В ответе укажите значение синуса, умноженное на половину корня из пяти.

Посмотреть решение

Найдите косинус угла AOB. В ответе укажите значение косинуса, умноженное на два корня из пяти.

Посмотреть решение

Найдите синус угла AOB. В ответе укажите значение синуса, умноженное на  два корня из двух.

Посмотреть решение

Найдите синус угла AOB. В ответе укажите значение синуса, умноженное на 2 корня из двух.

Посмотреть решение

Найдите тангенс угла AOB.

Посмотреть решение

В данной рубрике продолжим рассматривать задачи, не пропустите!

С уважением, Александр Крутицких.

*Делитесь информацией в социальных сетях )

kerean163

kerean163

Вопрос по алгебре:

Как найти синус угла АОВ ???

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

Ответы и объяснения 1

watese479

watese479

строим треугольник. ОА , АВ 

По теореме Пифагора: квадрат гипотенузы ОВ = квадрат катета ОА + квадрат катета АВ

 находим ОВ 

Синус угла АОВ = АВ/ОВ = подставляем

Знаете ответ? Поделитесь им!

Гость

Гость ?

Как написать хороший ответ?

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете
    правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не
    побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и
    пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся
    уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не
    знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к
    пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.

Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует?
Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие
вопросы в разделе Алгебра.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи —
смело задавайте вопросы!

Алгебра — раздел математики, который можно нестрого охарактеризовать как обобщение и расширение арифметики.

Спрятать решение

Решение.

Достроим угол до треугольника BOA и опустим высоту OK на основание AB. Из рисунка находим OK=1, OA= корень из: начало аргумента: 10 конец аргумента , OB= корень из: начало аргумента: 5 конец аргумента , AB=5. Воспользуемся теоремой синусов:

 дробь: числитель: OA, знаменатель: синус angle ABO конец дроби = дробь: числитель: AB, знаменатель: синус angle AOB конец дроби ,   где  синус angle ABO= дробь: числитель: OK, знаменатель: OB конец дроби = дробь: числитель: корень из: начало аргумента: 5 конец аргумента , знаменатель: 5 конец дроби .

Тогда:

2 корень из: начало аргумента: 2 конец аргумента синус angle AOB=2 корень из: начало аргумента: 2 конец аргумента умножить на дробь: числитель: AB корень из: начало аргумента: 5 конец аргумента , знаменатель: 5OA конец дроби =2.

Ответ: 2.

Приведем другое решение.

По теореме косинусов в треугольнике АОВ имеем: AB в квадрате =AO в квадрате плюс OB в квадрате минус 2AO умножить на OB косинус angle AOB, откуда  косинус angle AOB = минус дробь: числитель: корень из 2 , знаменатель: 2 конец дроби . Тогда из основного тригонометрического тождества находим  синус angle AOB= дробь: числитель: корень из 2 , знаменатель: 2 конец дроби , что дает  2 корень из 2 синус angle AOB = 2.

Приведем решение Николая Журавлева.

Продлим прямую AO за точку О и отложим на ней отрезок ОD, равный OA. Точка D будет расположена на три клетки влево и на одну клетку вниз от точки O. Рассмотрим треугольник BOD: BO=BD= корень из: начало аргумента: 5 конец аргумента , OD= корень из: начало аргумента: 10 конец аргумента , следовательно, треугольник BOD равнобедренный прямоугольный, тогда угол BOD равен 45 градусов, а смежный с ним угол AOB равен 135 градусов. Синусы смежных углов равны, поэтому

 2 корень из 2 синус angle AOB = 2 корень из 2 синус 45 градусов = 2 корень из 2 умножить на dfrac корень из 2 2=2.

Кодификатор ФИПИ/Решу ЕГЭ:

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как составить согласие на обработку персональных данных образец
  • Как найти конкретную информацию в интернете
  • Как найти объем жидкого вещества
  • Как составить рацион питания по обж
  • Как по номеру пфр найти адрес

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии