Как найти угол сдвига фаз между токами

Сдвиг фаз между током и напряжением в цепи переменного тока

Содержание

  • 1 Определения и основные формулы
  • 2 ПТ и активная нагрузка
  • 3 Конденсатор в цепи ПТ
  • 4 Индуктивность в цепи ПТ
  • 5 Видео по теме

При транспортировке электрической энергии от мест её генерации (тепловые, атомные и гидроэлектростанции) до конечных потребителей необходимо неоднократно варьировать величину напряжения (понижать или повышать). С наибольшей эффективностью эти преобразования удаётся сделать, когда в линиях электропередачи используется переменное напряжение. При этом электрический ток, возникающий в результате действия переменного электрического поля, будет также переменным, изменяясь во времени периодически с такой же частотой. Если в сети присутствуют реактивные элементы (ёмкости, индуктивности), то возникает сдвиг фаз между переменным током и напряжением.

Определения и основные формулы

Переменным принято называть ток, изменяющийся с течением времени как по величине, так и по амплитуде. В английской технической литературе используется термин alternating current (AC). Он переводится как «чередующийся ток» или ток, изменяющий свою полярность.

Определение переменного электротока

Периодический переменный ток (ПТ) — это ток, который через идентичные интервалы времени принимает исходную величину, совершая таким образом циклический процесс, аналогичный гармоническому колебанию маятника. Гармонические колебания описываются с помощью синусоидальной функции:

Общая формула синусоидального тока

Величина, которая определяется как произведение ω на t и имеет размерность угла (в радианах угол 90 градусов соответствует π/2 радиан), называется фазой синусоидальной переменной. В данном случае тока. Формула справедлива для случая, когда измерение тока стартует с точки отсчёта t = 0. В общем случае рабочая формула выглядит так:

Рабочая формула синусоидального электротока

Используя специальный измерительный прибор — осциллограф, можно наблюдать синусоиду напряжения на экране и определять её параметры.

Особенности переменного напряжения

ПТ и активная нагрузка

Если к источнику переменного тока подключено обычное сопротивление (резистор), то согласно закону Ома ток на резисторе, равен:

Определение тока на резисторе

В приведенной выше формуле величина  I0 = U0 / R — амплитуда ПТ. Видно, что ток в цепи с активным сопротивлением изменяется с течением времени абсолютно синхронно с напряжением.

Графическое отображение напряжения и тока на участке с активным сопротивлением

Таким образом, на активной нагрузке угол сдвига фаз между током и напряжением равен нулю.

Конденсатор в цепи ПТ

Конструкция конденсатора препятствует протеканию постоянного тока, полностью его блокируя. Поочерёдно заряжаясь и разряжаясь конденсаторные пластины поддерживают ток в цепи, поскольку по определению ток I — это изменение заряда Q за единицу времени:

Формула электротока

Ниже представлена картинка, объясняющая подключение конденсатора С к источнику переменного напряжения U.

Емкость в цепи ПТ

Напряжение на конденсаторе в любой момент времени равно напряжению:

Напряжение на конденсаторе

Тогда заряд Q(t) на обкладках конденсатора определим, используя выражение:

Формула для определения электрозаряда

Пользуясь формулой для тока, получим первую производную от заряда по времени, которая равна ёмкостному току Ic(t):

Формула емкостного тока

Из графиков, представленных на картинке ниже, видно, что максимальная амплитуда тока наступает на четверть периода раньше, чем напряжения. Из этого следует, что фаза напряжения на π/2 радиан меньше фазы электротока. То есть, в цепи синусоидального тока существует отставание напряжения по фазе (фазовый сдвиг) на π/2.

Графики тока и напряжения для конденсатора

Данное явление может быть объяснено по-другому. Из курса тригонометрии известно, что:

Тригонометрическая функция

С помощью формул, приведенных выше, можно получить такое выражение:

Определение электротока на конденсаторе

Данное соотношение в явном виде показывает, что фазовый сдвиг равен π/2.

Индуктивность в цепи ПТ

Катушка индуктивности в цепях СПТ является реактивным элементом, поскольку ее активное сопротивление практически равно нулю. При подключении катушки также возникает фазовый сдвиг, но его причина несколько иная, чем в цепи с емкостью.

Индуктивность в цепи ПТ

При практически нулевом омическом сопротивлении не может возникнуть короткое замыкание (резкий рост тока), поскольку переменный характер напряжения включает иной механизм сопротивления. Согласно закону, открытому британским учёным Майклом Фарадеем, в катушке появляется переменное магнитное поле, которое создает магнитный поток F, инициирующий появление электродвижущей силы (ЭДС самоиндукции) на концах катушки индуктивности:

Определение ЭДС

В соответствии с законом Фарадея:

Выражение для ЭДС самоиндукции

Откуда следует, что:

Напряжение на индуктивности

Используя данную формулу, находим определение для тока на индуктивности:

Электроток на индуктивности

Как известно,

Тригонометрическое преобразование

Следовательно, в идеальном индуктивном элементе угол сдвига фаз между напряжением и током равен π/2, причём ток отстаёт по фазе от напряжения.

График напряжения и тока в катушке индуктивности

Из графика видно, что максимум силы тока достигается на четверть периода позже, чем максимум напряжения, что соответствует отставанию по фазе на π/2.

От угла сдвига фаз зависит, какова будет реактивная мощность и, следовательно, коэффициент мощности, который выражается через cosφ и является очень важной характеристикой для оценки эффективности работы электрооборудования. Его значение может находиться в диапазоне от нуля до единицы. Если cosφ = 0, это означает, что в электроцепи присутствуют лишь реактивные токи. На практике такая ситуация невозможна, но чтобы потери мощности, связанные с реактивными токами, были меньше, используют компенсационные устройства.

Принцип действия таких устройств основывается на свойстве конденсаторов и катушек сдвигать фазу в противоположных направлениях. Компенсаторы зачастую используют в производственных цехах, где работает большое количество электрооборудования. Это приводит к ощутимым потерям электроэнергии и ухудшению качества электротока. Устройство компенсации решает подобные проблемы. Им успешно силу тока изменяют, если что-то сдвигают. Обычно такое устройство состоит из блоков конденсаторов довольно большой емкости, которые помещаются в отдельных шкафах.

Видео по теме

Рассмотрим
цепь переменного тока, состоящую из
последовательно соединенных сопротивления
R,
индуктивности L,
электроемкости С
и генератора
ЗГ (Рис.5). Пусть ЭДС генератора изменяется
по закону:

Тогда
сила тока в цепи будет изменяться по
тому же закону, но со сдвигом фазы:

.

Сдвиг
фазы можно определить теоретически
методом векторных диаграмм.

Известно,
что падение напряжения на активном
сопротивлении
совпадает
по фазе с током, падение напряжения на
индуктивности,опережает
ток на π/2, а падение напряжения на емкости,
отстает от тока на π/2.

Рис.5
Рис.6

Векторная
диаграмма напряжений для схемы,
изображенной на Рис. 5, показана на Рис.
6. Из рисунка видно, что разность фаз
междуи(т.
е. между напряжением и током в цепи)
равна

(3).

Разность
фаз между током и напряжением в работе
создается с помощью фазовращающей
цепочки, которая состоит из последовательно
соединенных сопротивлений R
и емкости
С,
величины которых можно изменять в
процессе опыта (Рис. 5). В этом случае в
выражении (3) L=O
и для этой цели соотношение (3) упрощается,
и сдвиг фаз можно рассчитать по формуле:

(4),

где
v
частота сигнала, снимаемого с генератора.
Для экспериментального определения
сдвига фаз используется основная фигура
Лиссажу — эллипс, который получается в
результате сложения напряжений одинаковой
частоты с генератора и с омического
сопротивления (см. Рис. 5).

Рис.7

Пусть
на Х-вход осциллографа подано напряжение,
изменяющееся со временем по закону:

а
на Y-вход — напряжение той же частоты, но
сдвинуто по фазе на φ0:

На
экране осциллографа будет наблюдаться
траектория движения электронного луча
в виде наклонного эллипса (см. Рис.5).

При х=О, получим

,

откуда

(5).

Таким
образом, для определения разности фаз
между током и напряжением достаточно
измерить максимальное отклонение луча
по вертикальной оси Y0
определить координату точки пересечения
эллипса с вертикальной осью Y и
воспользоваться формулой (5).

5Б. Проведение измерений по определению сдвига фаз.

Чтобы
создать сдвиг фаз между напряжениями,
подаваемыми на различные пластины,
пользуются фазовращающий цепочкой,
схема которой представлена на рис.7. В
такой цепочке падение потенциала на
омическом сопротивлении совпадает по
фазе, а падение потенци­ала на всей
цепочке отстает по фазе относительно
тока. Величина сдвига фазы определяется
постоянной времени це­почки =RС.
Измерение величины сдви­га фазы
производится следующим образом.

Соберите
схему из звукового генератора, осциллографа
и фазовращающей цепочки согласно рис.
8. Частоту генератора сделайте равной
100 Гц,
а ручку «регул.
вых. сигн.»

поставь­те посередине. Переключатели
осциллографа должны нахо­диться в
положениях: «род
работы»
— на
«усил.»,
«род
синхро­низации»

— на «внешн.»,
«делитель»
1: К— 1: 100 или 1: 10.

Включите
генератор и осциллограф и, подобрав
разумную величину сигналов с помощью
ручек «синхронизация»
и «уси­ление
плавно»
,
получите четкий эллипс. Ручками «смещение

и «смещениеУ»
сместите
эллипс так, чтобы центр экрана совпадал
с пересечением осей эллипса. По сетке
шкалы экрана осциллографа замерьте
координату у
(при х
= 0) и ампли­туду У0
и рассчитайте сдвиг фазы 0
(см. рис. 7).

Рис.8.

Повторите
измерения для различных комбинаций R
и С,
в соответствии
со значениями, указанными на панели
фазовращающей цепочки.
Заполните табл. 2, затем выключите
генератор и осцилло­граф.

Необходимо
зарисовать в масштабе четыре положения
эллипса для рассмотренных комбинаций
RС.

Таблица №3.

С,Ф

R,Ом

Y

Y0

1

2

3

4

Соседние файлы в папке 19 27 72 74 75

  • #
  • #
  • #
  • #

Угол сдвига фаз между током и напряжением

Начальные фазы электромагнитных синусоидальных колебаний первичного и вторичного напряжения, с частотой одинаковой величины, могут существенно различаться на некоторый угол сдвига фаз (угол φ). Переменные величины могут неоднократно в течение определенного периода некоторого времени изменяются с определенной частотой. Если электрические процессы имеют неизменный характер, а сдвиг фаз равен нулю, это свидетельствует о синхронизме источников величин переменного напряжения, например, трансформаторов. Сдвиг фазы служит определяющим фактором коэффициента мощности в электрических сетях переменного тока.

Угол сдвига фаз находится при необходимости, тогда, если один из сигналов является опорным, а второй сигнал с фазой в самом начале совпадает с углом сдвига фаз.

Измерение угла сдвига фаз производится прибором, в котором присутствует нормированная погрешность.

Фазометр может производить измерение угла сдвига в границах от 0о до 360о в некоторых случаях от -180оС до +180оС, а диапазон измеряемых частот сигналов может колебаться от 20Гц до 20 ГГц. Измерение гарантируется в том случае если напряжение входного сигнала равно от 1 мВ до 100 В, если же напряжение входного сигнала превышает эти границы точность измерения не гарантируется.

Методы измерения угла сдвига фаз

Существует несколько способов измерения угла сдвига фаз, это:

  1. Использование двухлучевого или двухканального осциллографа.
  2. Компенсационный метод основан на сравнении измеряемого фазового сдвига, с фазовым сдвигом, который предоставляется образцовым фазовращателем.
  3. Суммарно-разностный метод, он заключается в использовании гармонических или сформированных прямоугольных сигналов.
  4. Преобразование сдвига фаз во временном интервале.

Как измеряется угол сдвига фаз осциллографом

Осциллографический способ можно отнести к самому простейшему с погрешностью в районе 5о. Определение сдвига осуществляется при помощи осциллограмм. Существует четыре осциллографических метода:

  1. Применение линейной развертки.
  2. Метод эллипса.
  3. Метод круговой развертки.
  4. Использование яркостных меток.

Определение угла сдвига фаз зависит от характера нагрузки. При определении фазного сдвига в первичной и вторичной цепях трансформатора, углы могут считаться равными и практически не отличаются друг от друга.

Угол сдвига фаз напряжений, измеряемый по эталонному источнику частоты и при использовании измерительного органа лает возможность обеспечить точность всех последующих измерений. Фазные напряжения и угол сдвига фаз зависят от нагрузки, так симметричная нагрузка обуславливает равенство фазного напряжения , токов нагрузки и угол фазного сдвига, также будет равна нагрузка по потребляемой мощности на всех фазах электроустановки.

Угол сдвига фаз между током и напряжением в несимметричных трехфазных цепях не равны друг другу. Для того чтобы вычислить угол сдвига фаз (угол φ) в цепь включают последовательно присоединенные сопротивления (резисторы), индуктивности и конденсаторы (емкости).

Рис. №1. Последовательное соединение сопротивления, индуктивности и емкости для вычисления угла сдвига фаз. В этом контуре протекает переменный ток, который способствует возникновению ЭДС.

Рис. №1. Последовательное соединение сопротивления, индуктивности и емкости для вычисления угла сдвига фаз. В этом контуре протекает переменный ток, который способствует возникновению ЭДС.

Рис. №2. Схема проведения опыта по определению сдвига фаз между током и напряжением. Слева показаны схемы подключения конденсаторов, катушек индуктивности и резисторов, справа показаны результаты опыта.

Рис. №2. Схема проведения опыта по определению сдвига фаз между током и напряжением. Слева показаны схемы подключения конденсаторов, катушек индуктивности и резисторов, справа показаны результаты опыта.

Из результатов опыта можно определить, что сдвиг фаз между напряжением и током служит при определении нагрузки и не может зависеть от переменных величины тока и напряжения в электрической сети.

Как вывод, можно сказать, что:

  1. Составляющие элементы комплексного сопротивления, такие как резистор и емкость, а также проводимость не будут взаимообратными величинами.
  2. Отсутствие одного из элементов делает резистивные и реактивные значения, которые входят в состав комплексного сопротивления и проводимости и делают их величинами взаимообратными.
  3. Реактивные величины в комплексном сопротивлении и проводимости используются с противоположным знаком.

Угол сдвига фаз между напряжением и током всегда выражается, как главный аргументированный фактор комплексного сопротивления φ.

Сдвиг фаз переменного тока и напряжения

Мощность постоянного тока, как мы уже знаем, равна про­изведению напряжения на силу тока. Но при постоянном токе направления тока и напряжения всегда совпадают. При пере­менном же токе совпадение направлений тока и напряжения имеет место только в случае отсутствия в цепи тока конденса­торов и катушек индуктивности.

Для этого случая формула мощности

Мощность при отсутсвии сдвига фаз

остается справедливой.

На рисунке 1 представлена кривая изменения мгновенных значений мощности для этого случая (направление тока и напряжения совпадают). Обратим внимание на то обстоятельство, что направления векторов напряжения и тока в этом случае совпадают, то есть фазы тока и напряжения всегда одинаковы.

Нулевой сдвиг фаз

Рисунок 1. Сдвиг фаз тока и напряжения. Сдвига фаз нет, мощность все время положительная.

При наличии в цепи переменного тока конденсатора или катушки индуктивности, фазы тока и напряжения совпадать не будут.

О причинах этого несовпадения читайте в моем учебники для емкостной цепи и для индуктивной цепи, а сейчас установим, как будет оно влиять на величину мощности переменного тока.

Представим себе, что при начале вращения радиусы-век­торы тока и напряжения имеют различные направления. Так как оба вектора вращаются с одинаковой скоростью, то угол между ними будет оставаться неизменным во все время их вращения. На рисунке 2 изображен случай отставания вектора тока Im от вектора напряжения Um на угол в 45°.

Сдвиг фаз равен 45 градусов

Рисунок 2. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 45, мощность в некоторые периоды времени становиться отрицательной.

Рассмот­рим, как будут изменяйся при этом ток и напряжение. Из по­строенных синусоид тока и напряжения видно, что когда напряжение проходит через ноль, ток имеет отрицательное значение.

Затем напряжение достигает своей наибольшей ве­личины и начинает уже убывать, а ток хотя и становится по­ложительным, но еще не достигает наибольшей величины и продолжает возрастать. Напряжение изменило свое направле­ние, а ток все еще течет в прежнем направлении и т. д. Фаза тока все время запаздывает по сравнению с фазой напряже­ния. Между фазами напряжения и тока существует постоян­ный сдвиг, называемый сдвигом фаз.

Действительно, если мы посмотрим на рисунок 2, то заме­тим, что синусоида тока сдвинута вправо относительно сину­соиды напряжения. Так как по горизонтальной оси мы откла­дываем градусы поворота, то и сдвиг фаз можно измерять в градусах. Нетрудно заметить, что сдвиг фаз в точности равен углу между радиусами-векторами тока и напряжения.

Вследствие отставания фазы тока от фазы напряжения его направление в некоторые моменты не будет совпадать с на­правлением напряжения. В эти моменты мощность тока будет отрицательной, так как произведение положительной величи­ны на отрицательную величину всегда будет отрицательным. Эта значит, что внешняя электрическая цепь в эти моменты становится не потребителем электрической энергии, а источни­ком ее. Некоторое количество энергии, поступившей в цепь во время части периода, когда мощность была положительной, возвращается источнику энергии в ту часть периода, когда мощность отрицательна.

Чем больше сдвиг фаз, тем продолжительнее становятся части периода, в течение которых мощность делается отрица­тельной, тем, следовательно, меньше будет средняя мощность тока.

При сдвиге фаз в 90° мощность в течение одной четверти периода будет положительной, а в течение другой четверти периода — отрицательной. Следовательно, средняя мощность тока будет равна нулю, и ток не будет производить никакой работы (рисунок 3).

Сдвиг фаз 90 градусов

Рисунок 3. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 90, мощность в течении одной четвери периода положительна, а в течении другой отрицательна. В среднем мощьноть равна нулю.

Теперь ясно, что мощность переменного тока при наличии сдвига фаз будет меньше произведения эффективных значений тока и напряжения, т. е. формулы

moschnost-formula-no

в этом случае будут неверны

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Фазовый сдвиг

При наличии в цепи индуктивного или емкостного сопротивлений
сдвиг по фазе между током и напряжением составляет +π/2.
Если цепь содержит еще и активное сопротивление (полностью устранить которое невозможно), то фазовый сдвиг лежит в пределах

[ frac{π}{2} > φ > -frac{π}{2} ]

Разность фаз φ между током и напряжением изображается на векторной диаграмме для этих величин.

На векторной диаграмме сопротивлений φ — это угол между активным и реактивным сопротивлениями или проводимостями.

Фазовый сдвиг при последовательном соединении

В случае последовательного соединения R,С и L из формулы реактивного сопротивления следует

Фазовый сдвиг - векторная диаграмма сопротивлений для последовательного соединения

Фазовый сдвиг — векторная диаграмма сопротивлений для последовательного соединения

[ tg(φ) = frac{ωL — frac{1}{ωC}}{R} ]

Фазовый сдвиг при параллельном соединении

В случае параллельного соединения R, С и L из формулы реактивного сопротивления следует

Фазовый сдвиг - векторная диаграмма сопротивлений для параллельного соединения

Фазовый сдвиг — векторная диаграмма сопротивлений для параллельного соединения

[ tg(φ) = R (ωC — frac{1}{ωL}) ]

Во многих случаях (например, при параллельном соединении большой емкости и большого активного сопротивления
или последовательном соединении большой индуктивности и очень малого активного сопротивления)
фазовый сдвиг оказывается близким к π/2 = 90°.
Из-за трудности определения φ в этих случаях пользуются углом потерь δ:

[ δ = 90° — φ ]

откуда

[ tg(δ) = frac{1}{tg(φ)} = ctg(φ) ]

Фазовый сдвиг

стр. 692

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как нашли друг друга двойки так
  • Как найти близнеца человека по фото
  • Как найти массу азота содержащегося в
  • Как составить видеоурок по русскому языку
  • Как правильно составить список гостей для ведущего

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии