Как найти угол между двумя параллельными плоскостями

Рассмотрим
две плоскости α1 и α2, заданные соответственно
уравнениями:

Под
углом между двумя плоскостями будем
понимать один из двугранных углов,
образованных этими плоскостями. Очевидно,
что угол между нормальными

Под
углом между двумя плоскостями будем
понимать один из двугранных углов,
образованных этими плоскостями. Очевидно,
что угол между нормальными векторами
п1 и п2 плоскостей α1 и α2 равен одному из
указанных смежных двугранных углов

двугранных
углов

или

Поэтому

Т.к.

и

, то

17.Условия параллельности и перпендикулярности плоскостей.

Условие
перпендикулярности плоскостей.

Ясно,
что две плоскости перпендикулярны тогда
и только тогда, когда их нормальные
векторы перпендикулярны, а следовательно
,
или

.

Таким
образом, .

Условие
параллельности двух плоскостей.

Две
плоскости α1 и α2 параллельны тогда и
только тогда, когда их нормальные векторы
п1 и п2 параллельны, а значит .

Итак,
две плоскости параллельны друг другу
тогда и только тогда, когда коэффициенты
при соответствующих координатах
пропорциональны:

или

18.Прямая в пространстве: общие, параметрические и канонические уравнения, их эквивалентность; уравнения прямой, проходящей через две данные точки.

ОБЩИЕ
УРАВНЕНИЯ ПРЯМОЙ, КАК ЛИНИИ ПЕРЕСЕЧЕНИЯ
ДВУХ ПЛОСКОСТЕЙ

Через
каждую прямую в пространстве проходит
бесчисленное множество плоскостей.
Любые две из них, пересекаясь, определяют
ее в пространстве. Следовательно,
уравнения любых двух таких плоскостей,
рассматриваемые совместно представляют
собой уравнения этой прямой.

Вообще
любые две не параллельные плоскости,
заданные общими уравнениями

определяют
прямую их пересечения. Эти уравнения
называются общими уравнениями прямой.

—Пусть
заданы две точки М1(х1, у1, z1)
и М2(х2, у2, z2),
через которые должна проходить прямая
линия. Примем за направляющий вектор
прямой вектор

.

Поэтому
уравнение (13.4) примет вид

Положение
прямой в пространстве вполне определяется
заданием какой-либо её фиксированной
точки М1 и S
вектора , параллельного этой прямой.

Вектор
S,
параллельный прямой, называется
направляющим вектором этой прямой.

Итак,
пусть прямая l проходит через точку
М1(x1, y1, z1), лежащую на прямой параллельно
вектору

.

Рассмотрим
произвольную точку М(x,y,z) на прямой. Из
рисунка видно, что

Векторы

и коллинеарны, поэтому найдётся такое
число t, что

,
где множитель t может принимать любое
числовое значение в зависимости от
положения точки M на прямой. Множитель
t называется параметром. Обозначив
радиус-векторы точек М1 и М соответственно
через

и

,
получаем . Это уравнение называется
векторным уравнением прямой. Оно
показывает, что каждому значению
параметра t соответствует радиус-вектор
некоторой точки М, лежащей на прямой.

Запишем
это уравнение в координатной форме.
Заметим, что ,

и

и


отсюда

Полученные
уравнения называются параметрическими
уравнениями прямой.

При
изменении параметра t изменяются
координаты x, y и z и точка М перемещается
по прямой.

КАНОНИЧЕСКИЕ
УРАВНЕНИЯ ПРЯМОЙ

Пусть
М1(x1, y1, z1) – точка, лежащая на прямой l, и

– её направляющий вектор. Вновь возьмём
на прямой произвольную точку М(x,y,z) и
рассмотрим вектор

.

Ясно,
что векторы

и S
коллинеарные, поэтому их соответствующие
координаты должны быть пропорциональны,
следовательно,



канонические
уравнения прямой.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

11
Авг 2013

Категория: Справочные материалы

Углы в пространстве

2013-08-11
2014-03-03

Угол между пересекающимися прямыми

Углом между пересекающимися прямыми, называется наименьший из   углов, образованных при пересечении этих прямых (если при пересечении образовались четыре равных угла, то прямые перпендикулярны).

ь

Угол между скрещивающимися прямыми

Углом между двумя скрещивающимися прямыми называется угол между двумя пересекающимися прямыми, соответственно параллельными данным скрещивающимся прямым.

(Одну из прямых можно  вполне и не переносить параллельно самой себе, а ограничиться только параллельным переносом одной из прямых до пересечения со второй).

угол между скрещивающимися прямыми

Угол между прямой и плоскостью

Угол между прямой и плоскостью – угол между прямой и ее проекцией на плоскость

угол между прямой и плоскостью

Угол между плоскостями

Угол между плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения.

Этот угол не зависит от выбора такой плоскости.

Угол между двумя параллельными плоскостями принимается равным нулю.

угол между плоскостями

Автор: egeMax |

Нет комментариев

§ 14.Двугранные углы. Угол между двумя плоскостями

14.1. Двугранный угол и его измерение

Рассмотрим два полупространства, образованные непараллельными плоскостями. Пересечение этих полупространств назовём двугранным углом.

Прямую, по которой пересекаются плоскости — границы полупространств, называют ребром двугранного угла, а полуплоскости этих плоскостей, образующие двугранный угол, — гранями двугранного угла.

Двугранный угол с гранями α, β и ребром a обозначают αaβ. Можно использовать и такие обозначения двугранного угла, как K(AB)T; α(AB)β (рис. 94, 95).

Рис. 94

Рис. 95

Рис. 96

Замечание. Иногда говорят, что двугранный угол αaβ образован двумя полуплоскостями α и β, имеющими общую граничную прямую a.

Фигуры, образованные двумя страницами одной книги, двумя соседними гранями куба, — модели двугранного угла.

Для измерения двугранного угла введём понятие его линейного угла. На ребре a двугранного угла αaβ отметим произвольную точку O и в гранях α и β проведём из точки O соответственно лучи OA и OB, перпендикулярные ребру a (рис. 96, а). Угол AOB, образованный этими лучами, называется линейным углом двугранного угла αaβ.

Так как OAa и OBa, то плоскость AOB перпендикулярна прямой a. Это означает, что линейный угол двугранного угла есть пересечение данного двугранного угла и плоскости, перпендикулярной его ребру.

Вследствие произвольного выбора точки O на ребре двугранного угла заключаем, что двугранный угол имеет бесконечное множество линейных углов. Докажем, что все они равны. Действительно, рассмотрим два линейных угла AOB и A1O1B1 двугранного угла αaβ (рис. 96, б). Лучи OA и O1A1 лежат в одной грани α и перпендикулярны прямой a — ребру двугранного угла, поэтому они сонаправлены. Аналогично получаем, что сонаправлены лучи OB и O1B1. Тогда AOB = A1O1B1 (как углы с сонаправленными сторонами).

Таким образом, нами доказана теорема.

Теорема 27. Величина линейного угла не зависит от выбора его вершины на ребре двугранного угла.

Иначе говоря, все линейные углы данного двугранного угла равны между собой.

Это позволяет ввести следующее определение.

Определение. Величиной двугранного угла называется величина его линейного угла.

Рис. 97

Величина двугранного угла, измеренная в градусах, принадлежит промежутку (0°; 180°).

На рисунке 97 изображён двугранный угол, градусная мера (величина) которого равна 30°. В этом случае также говорят, что двугранный угол равен тридцати градусам.

Двугранный угол является острым (рис. 98, а), прямым (рис. 98, б) или тупым (рис. 98, в), если его линейный угол соответственно острый, прямой или тупой.

Рис. 98

Заметим, что аналогично тому, как и на плоскости, в пространстве определяются смежные (рис. 99, а) и вертикальные (рис. 99, б) двугранные углы. При этом справедливы и аналогичные теоремы о величинах этих углов.

Попробуйте доказать самостоятельно следующие два утверждения, важные для решения задач.

На гранях двугранного угла величины α взяты точки A и B; A1 и B1 — проекции этих точек на ребро двугранного угла; AA1= a; BB1 = b; A1B1 = h. Тогда

AB = .

Рис. 99

Если внутри двугранного угла величины α взята точка на расстояниях a и b от граней двугранного угла, то её расстояние от ребра двугранного угла равно .

14.2. Угол между двумя плоскостями

Две пересекающиеся плоскости образуют четыре двугранных угла с общим ребром (рис. 100). Если величина одного из них равна ϕ, то величины трёх остальных равны соответственно 180° – ϕ, ϕ, 180° – ϕ (почему?). Наименьшая из этих величин принимается за величину угла между данными пересекающимися плоскостями.

Определение. Углом между двумя пересекающимися плоскостями называется наименьший из двугранных углов, образованных при их пересечении.

Угол между параллельными или совпадающими плоскостями полагается считать равным нулю.

Если величина угла между плоскостями α и β равна ϕ, то пишут: (α; β) = ϕ.

Рис. 100

Так как двугранный угол измеряется своим линейным углом, то из выше приведённого определения следует, что угол между пересекающимися плоскостями равен углу между пересекающимися прямыми, лежащими в этих плоскостях и перпендикулярными к линии их пересечения (см. рис. 100). Это означает, что величина угла между плоскостями принадлежит промежутку [0°; 90°].

Рис. 101

ЗАДаЧа. Отрезок DM длиной 3,2 перпендикулярен плоскости ромба ABCD (ADC — тупой). Диагонали ромба равны 12 и 16. Найти углы между плоскостями:

а) ABC и MBC; б) AMD и CMD.

Решение. а) Пусть DE — высота ромба ABCD (рис. 101). Тогда по теореме о трёх перпендикулярах MEBC и DEM = ϕ — линейный угол двугранного угла, образованного плоскостями ABC и MBC. Найдём величину этого угла.

По условию задачи DM (ABC), поэтому ⧌ MDE — прямоугольный, значит, tg ϕ = . Так как DE — высота ромба ABCD, то DE = , где S — площадь этого ромба. Сторона BC ромба является гипотенузой прямоугольного треугольника BOC, катеты OB и OC которого равны 6 и 8. Значит, BC =  =  = 10.

Учитывая, что S = ACBD = •12•16 = 96, находим: DE =  = 9,6. Тогда tg ϕ =  =  = , откуда ϕ = arctg .

б) Так как отрезок DM — перпендикуляр к плоскости ромба ABCD, то ADDM, CDDM, значит, ADC = ψ — линейный угол двугранного угла, образованного пересекающимися плоскостями ADM и CDM. Найдём этот угол.

В треугольнике ACD по теореме косинусов находим

cos ψ =  =  = – ,

откуда ψ = arccos .

Ответ: а) arctg ; б) arccos .

Угол между плоскостями

Содержание:

  • Углы между плоскостями — обозначение
  • Расположение плоскостей и формула вычисления угла между ними

    • Параллельность
    • Перпендикулярность
    • Угол между плоскостями
  • Примеры решения задач

Углы между плоскостями — обозначение

Определение

Углом между плоскостями именуется такой угол, который образовался между перпендикулярными прямыми, опущенными в пределах этих плоскостей к линии их пересечения.

Рассмотрим данное понятие наглядно с помощью картинки:

Угол между плоскастями

 

Допустим, α и β — пересекающиеся плоскости. Проведем к линии с перпендикуляр a, который принадлежит α. Далее проведем прямую b, лежащую в β и образующую с прямой c угол в 90°. Угол между α и β равен углу, который образовался между а и b, обозначенному на картинке как φ. В записи это выглядит следующим образом:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

∠(α, β)=∠(а, b)=φ

На схеме видно, что при пересечении α и β возникают четыре угла, но углом между плоскостями считается острый угол. В случае, когда плоскости при пересечении создают прямые углы, они считаются перпендикулярными друг другу.

Расположение плоскостей и формула вычисления угла между ними

Существует несколько вариаций взаимного расположения двух плоскостей.

Параллельность

Теорема

Две плоскости считаются параллельными в том случае, если у них отсутствуют общие точки.

Возьмем за условие, что плоскости α, расположенной в некоторой прямоугольной системе координат, соответствует общее уравнение: А1х+В1у+С1z+D1=0. А плоскость β определяется общим уравнением вида: А2х+В2у+С2z+D2=0.

Согласно теореме о параллельности плоскостей, чтобы α и β являлись параллельными, достаточно отсутствия решений системы линейных уравнений вида:

(left{begin{array}{l}A_1x+B_1y+C_1z+D_1=0\A_2x+B_2y+C_2z+D_2=0end{array}right.)

То есть приведенная выше система должна быть несовместной.

Доказательство

Допустим, указанные плоскости, соответствующие уравнениям А1х+В1у+С1z+D1=0 и А2х+В2у+С2z+D2=0 параллельны друг другу, следовательно, у них отсутствуют общие точки. Это значит, что нет ни одной точки в прямоугольной системе координат, находящейся в трехмерном пространстве, чьи координаты отвечали бы условиям обоих уравнений одновременно или:

(left{begin{array}{l}A_1x+B_1y+C_1z+D_1=0\A_2x+B_2y+C_2z+D_2=0end{array}right.)

не имеет решения.

В случае, если данная система уравнений не имеет решений, то в прямоугольной системе координат трехмерного пространства отсутствуют точки с координатами, одновременно отвечающими условиям обоих уравнений, входящих в рассматриваемую систему. Отсюда можно сделать вывод, что плоскости α и β с соответствующими им уравнениями А1х+В1у+С1z+D1=0 и А2х+В2у+С2z+D2=0 не обладают ни одной общей точкой, а значит, являются параллельными. Теорема доказана.

Перпендикулярность

Две плоскости перпендикулярны друг другу, в ситуации, когда они при взаимном пересечении образуют прямой угол, то есть угол в 90°.

Теорема

Если одна из двух плоскостей проходит через прямую, которая перпендикулярна другой плоскости, то такие плоскости являются перпендикулярными.

Доказательство

Пусть: AB∈α, AB⊥β, AB∩β=A.

Перпендикулярный угол между плоскостями

 

Необходимо доказать, что α⊥β.

  1. α∩β=AC, причем AB⊥AC по условию.
  2. Проведем прямую AD, принадлежащую плоскости β и перпендикулярную AC.
  3. ∠BAD=90°, поскольку AB⊥β. Следовательно, заданные плоскости перпендикулярны, что и требовалось доказать.

Следствие

Плоскость, перпендикулярная к прямой, по которой пересекаются две заданные плоскости, перпендикулярна к каждой из этих плоскостей.

Теорема

Явность перпендикулярных пересекающихся плоскостей достигается при необходимом и достаточном условии, что нормальные векторы данных плоскостей при пересечении образовали прямой угол.

Доказательство

Допустим, в трехмерном пространстве существует некоторая прямоугольная система координат. При наличии нормальных векторов заданных плоскостей α и β с координатами:

(overrightarrow{n_1}=(A_1,B_1,C_1),)

(overrightarrow{n_2}=(A_2,B_2,C_2),)

то необходимо и достаточно, чтобы эти векторы приняли вид:

(left(overrightarrow{n_1},overrightarrow{;n_2}right)=0Leftrightarrow A_1times A_2+B_1times B_2+C_1times C_2=0)

Отсюда следует, что:

(overrightarrow{n_1}=(A_1,B_1,C_1),)

(overrightarrow{n_2}=(A_2,B_2,C_2))

— нормальные векторы плоскостей α и β. Чтобы заданные плоскости были перпендикулярными, достаточно, чтобы скалярное произведение данных векторов ровнялось нулю, то есть принимало вид:

(left(overrightarrow{n_1},overrightarrow{;n_2}right)=0Leftrightarrow A_1times A_2+B_1times B_2+C_1times C_2=0)

Равенство соблюдено.

Угол между плоскостями

Для вычисления угла между двумя пересекающимися плоскостями используют метод координат. Суть данного способа заключается в нахождении косинуса угла, образованного при пересечении плоскостей.

Метод координат

 

Предположим, что плоскости P1 и P2 заданы следующими уравнениями:

(P_1:;A_1x+B_1y+C_1z+D_1=0,;{overline N}_1=left(A_1,B_1,C_1right);)

(P_2:;A_2x+B_2y+C_2z+D_2=0,;{overline N}_2=left(A_2,B_2,C_2right))

Найдем косинус угла между P1 и P2 по формуле:

(cosleft(overbrace{P_1,P_2}right)=frac{overline{N_1}timesoverline{N_2}}{left|overline{N_1}right|timesleft|overline{N_2}right|}frac{A_1times A_2+B_1times B_2+C_1times C_2}{sqrt{A_1^2+B_1^2+C_1^2}timessqrt{A_2^2+B_2^2+C_2^2}})

Запишем в ответе модуль косинуса угла, поскольку за величину угла между плоскостями принимают острый угол. 

Примеры решения задач

Задача №1

Плоскости заданы уравнениями:

(alpha:;x-y+1=0)

(beta:y-z+1=0)

Определить пересекаются ли α и β. В случае пересечения заданных плоскостей найти угол между ними.

Решение:

Найдем угол между заданными плоскостями:

(alpha:;x-y+1=0,Rightarrowoverline{N_1}=(1,-1,0);)

(beta:;y-z+1=0,Rightarrowoverline{N_2}=(0,1,-1))

Далее вычислим косинус угла между α и β:

(cosleft(overbrace{alpha,beta}right)=frac{overline{N_1}timesoverline{N_2}}{left|overline{N_1}right|timesleft|overline{N_2}right|}=frac{1times0+left(-1right)times1+0timesleft(-1right)}{sqrt{1^2+left(-1right)^2+0^2}timessqrt{0^2+1^2+left(-1right)^2}}=frac{-1}{sqrt4}=-frac12)

В ответе запишем модуль найденной величины.

Ответ: плоскости α и β пересекаются, а косинус угла между ними равен ½.

Задача №2

Плоскость α проходит через точку A(1,1,−1) и перпендикулярна к плоскостям, заданным уравнениями:

(beta:;2x-y+5z+3=0;)

(varphi:;x+3y-z-7=0)

Составьте уравнение плоскости α.

Решение:

Необходимым и достаточным условием перпендикулярности α к плоскостям β и φ является параллельность α к нормалям β и φ — N1 и N2, иными словами, α должна быть перпендикулярна к произведению векторов [N1,N2].

(x = {-b pm sqrt{b^2-4ac} over 2a}beta:;2x-y+5z+3=0,Rightarrow;overline{N_1}=left(2,-1,5right))

(varphi:;x+3y-z-73=0,Rightarrow;overline{N_2}=left(1,3,-1right))

(left[N_1,N_2right]=begin{vmatrix}i&j&k\2&-1&5\1&3&-1end{vmatrix}=ileft(1-15right)-jleft(-2-5right)+kleft(6+1right)=-14i+7j+7k)

Следующим шагом выпишем уравнение плоскости α, проходящей через точку A(1,1,−1) и перпендикулярную вектору [N1,N2]=(−14,7,7):

(-14left(x-1right)+7left(y-1right)+7left(z+1right)=left.0right|:7)

(-2left(x-1right)+y-1+z+1=0)

(−2x+y+z+2=0)

Ответ: (−2x+y+z+2=0.)

При решении стереометрических задач, где ключевым моментом является построение правильного чертежа, ученику необходимо иметь знания в области планиметрии и стереометрии.

При решении задач традиционным (геометрическим) методом у учеников возникают сложности в построении предполагаемого чертежа, дополнительных элементов, трудности в доказательных рассуждениях. Традиционный способ требует более точного построения и определения угла между плоскостями.

Использование «метода координат» при решении стереометрических задач на нахождение угла между двумя плоскостями

Как найти угол между плоскостями, примеры решений

Встречаются такие задачи, в которых сложно построить сечения (плоскости) и определить линию пересечения плоскостей и найти такие прямые в данных плоскостях, которые будут перпендикулярны этой линии. В таких случаях на помощь приходит «метод координат».

В рамках данной статьи рассмотрим решение задач «методом координат» на нахождение угла между плоскостями. Данный метод алгоритмизирован и не требует построения искомого угла между плоскостями.

Для решения стереометрических задач ученик должен иметь теоретическую базу. Определения, теоремы и т.д. можно изучить в учебнике по геометрии Атанасяна Л.С. для 10-11 классов и Погорелова А.В. для 10-11 классов [1; 2]. Вспомним по данной теме основное определение:

Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру.

Определение подсказывает традиционный метод нахождения угла между плоскостями. Для решения этим методом:

  • 1) необходимо увидеть или построить линию пересечения плоскостей;
  • 2) построить прямые в плоскостях, перпендикулярные этой линии.  Угол между этими прямыми будет искомым.

Но встречаются такие задачи, в которых сложно построить выше перечисленные элементы. «Метод координат» не требует построения угла между плоскостями и является универсальным методом, в котором заложен алгоритм нахождения данного угла.

Для этого необходимо составить уравнения плоскостей, для того чтобы найти их нормальные векторы. Далее находим косинус между этими векторами. Угол между этими векторами будет искомой величиной угла между плоскостями.

  • Пусть даны уравнения двух плоскостей

Как найти угол между плоскостями, примеры решений  и Как найти угол между плоскостями, примеры решений

Найдем нормальные векторы данных плоскостей:

Как найти угол между плоскостями, примеры решенийКак найти угол между плоскостями, примеры решений

При решении данных задач, необходимо знать основную формулу. Она определят угол между плоскостями, как угол между нормалями данных плоскостей.

Как найти угол между плоскостями, примеры решений

Источник: https://sibac.info/studconf/science/lvii/123130

Двугранный угол. Подробная теория с примерами

Важное замечание! Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Двугранный угол – это фигура, образованная двумя полуплоскостями, исходящими из одной прямой.

Вот так:

Как найти угол между плоскостями, примеры решений

  • При этом прямая   – это ребро двугранного угла, а полуплоскости   и   — стороны или грани двугранного угла.
  • Двугранный угол получает обозначение по своему ребру: «двугранный угол  ».
  • С понятием двугранного угла тесно связано понятия: угол между плоскостями.

Угол между плоскостями – наименьший из двугранных углов, образованных при пересечении плоскостей.

Как найти угол между плоскостями, примеры решений

Итак, внимание! Различие между двугранным углом и углом между плоскостями в том, что:

Двугранный угол может быть и острым, и тупым, а угол между плоскостями только острым! НЕ ПУТАЙ!

Как найти угол между плоскостями

Найти угол между плоскостями (можно двумя способами: геометрическим и алгебраическим).

При геометрическом способе нужно сначала построить угол двугранного угла, а потом искать этот линейный угол с помощью знаний из планиметрии.

Как найти угол между плоскостями, примеры решений

Алгебраический способ – это применение метода координат – там есть формула для нахождения угла между плоскостями.

Если нужно найти, скажем, двугранный угол при основании правильной , то проще использовать геометрический способ, а если линейный угол двугранного угла никак не хочет проходить ни через какие удобные точки, то можно использовать метод координат как палочку выручалочку.

Источник: https://youclever.org/book/dvugrannyj-ugol-2

Нахождение угла между плоскостями (двугранный угол)

Подготовка учащихся к сдаче ЕГЭ по математике, как правило, начинается с повторения основных формул, в том числе и тех, которые позволяют определить угол между плоскостями.

Несмотря на то, что этот раздел геометрии достаточно подробно освещается в рамках школьной программы, многие выпускники нуждаются в повторении базового материала.

Понимая, как найти угол между плоскостями, старшеклассники смогут оперативно вычислить правильный ответ в ходе решения задачи и рассчитывать на получение достойных баллов по итогам сдачи единого государственного экзамена.

Основные нюансы

Чтобы вопрос, как найти двугранный угол, не вызывал затруднений, рекомендуем следовать алгоритму решения, который поможет справиться с заданиями ЕГЭ. Вначале необходимо определить прямую, по которой пересекаются плоскости.

Затем на этой прямой нужно выбрать точку и провести к ней два перпендикуляра. Следующий шаг — нахождение тригонометрической функции двугранного угла, который образован перпендикулярами. Делать это удобнее всего при помощи получившегося треугольника, частью которого является угол. Ответом будет значение угла или его тригонометрической функции.

Подготовка к экзаменационному испытанию вместе со «Школково» — залог вашего успеха

В процессе занятий накануне сдачи ЕГЭ многие школьники сталкиваются с проблемой поиска определений и формул, которые позволяют вычислить угол между 2 плоскостями.

Школьный учебник не всегда есть под рукой именно тогда, когда это необходимо.

А чтобы найти нужные формулы и примеры их правильного применения, в том числе и для нахождения угла между плоскостями в Интернете в режиме онлайн, порой требуется потратить немало времени.

Математический портал «Школково» предлагает новый подход к подготовке к госэкзамену. Занятия на нашем сайте помогут ученикам определить наиболее сложные для себя разделы и восполнить пробелы в знаниях.

Мы подготовили и понятно изложили весь необходимый материал. Базовые определения и формулы представлены в разделе «Теоретическая справка».

Для того чтобы лучше усвоить материал, предлагаем также попрактиковаться в выполнении соответствующих упражнений. Большая подборка задач различной степени сложности, например, на нахождение угла между прямой и плоскостью, представлена в разделе «Каталог». Все задания содержат подробный алгоритм нахождения правильного ответа. Перечень упражнений на сайте постоянно дополняется и обновляется.

Практикуясь в решении задач, в которых требуется найти угол между двумя плоскостями, учащиеся имеют возможность в онлайн-режиме сохранить любое задание в «Избранное». Благодаря этому они смогут вернуться к нему необходимое количество раз и обсудить ход его решения со школьным учителем или репетитором.

Источник: https://shkolkovo.net/catalog/geometriya_v_prostranstve_stereometriya/nahozhdenie_ugla_mezhdu_ploskostyami_dvugrannyj_ugol

Угол между двумя пересекающимися плоскостями: определение, примеры нахождения, как найти угол между плоскостями

Статья рассказывает о нахождении угла между плоскостями. После приведения определения зададим графическую иллюстрацию, рассмотрим подробный способ нахождения методом координат. Получим формулу для пересекающихся плоскостей, в которую входят координаты нормальных векторов.

Угол между плоскостями – определение

В материале будут использованы данные и понятия, которые ранее были изучены в статьях про плоскость и прямую в пространстве. Для начала необходимо перейти к рассуждениям, позволяющим иметь определенный подход к определению угла между двумя пересекающимися плоскостями.

Заданы две пересекающиеся плоскости γ1 и γ2. Их пересечение примет обозначение c. Построение плоскости χ связано с пересечением этих плоскостей. Плоскость χ проходит через точку М  в качестве прямой c.

Будет производиться пересечение плоскостей γ1 и γ2 с помощью плоскости χ. Принимаем обозначения прямой, пересекающей γ1 и χ за прямую a, а пересекающую γ2 и χ за прямую b.

Получаем, что пересечение прямых a и b дает точку M. Расположение точки M не влияет на угол между пересекающимися прямыми a и b, а точка M располагается на прямой c, через которую проходит плоскость χ.

Необходимо построить плоскость χ1 с перпендикулярностью к прямой c и отличную от плоскости χ. Пересечение плоскостей γ1 и γ2 с помощью χ1 примет обозначение прямых а1 и b1.

Видно, что при построении χ и χ1 прямые a и b перпендикулярны прямой c, тогда и а1, b1 располагаются перпендикулярно прямой c. Нахождение прямых a и а1 в плоскости γ1 с перпендикулярностью к прямой c, тогда их можно считать параллельными.

Таки же образом расположение b и b1  в плоскости γ2 с перпендикулярностью прямой c говорит об их параллельности. Значит, необходимо сделать параллельный перенос плоскости χ1 на χ, где получим две совпадающие прямые a и а1, b и b1.

Получаем, что угол между пересекающимися прямыми a и b1 равен углу пересекающихся прямых a и b. Рассмотрим не рисунке, приведенном ниже.

Данное суждение доказывается тем, что между пересекающимися прямыми a и b имеется угол, который не зависит от расположения точки M, то есть точки пересечения. Эти прямые располагаются в плоскостях γ1 и γ2. Фактически, получившийся угол можно считать углом между двумя пересекающимися плоскостями.

Перейдем к определению угла между имеющимися пересекающимися плоскостями γ1 и γ2.

Углом между двумя пересекающимися плоскостями γ1 и γ2 называют угол, образовавшийся путем пересечения прямых a и b, где плоскости γ1 и γ2 имеют пересечение с плоскостью χ, перпендикулярной прямой c. Рассмотрим рисунок, приведенный ниже.

Определение может быть подано в другой форме. При пересечении плоскостей γ1 и γ2, где c – прямая, на которой они пересеклись, отметить точку M, через которую провести прямые a и b, перпендикулярные  прямой c и лежащие  в плоскостях γ1 и γ2, тогда угол между прямыми a и b будет являться углом между плоскостями. Практически это применимо для построения угла между плоскостями.

При пересечении образуется угол, который по значению меньше 90 градусов, то есть градусная мера угла действительна на промежутке такого вида (0, 90]. Одновременно данные плоскости называют перпендикулярнымив случае, если при пересечении образуется прямой угол. Угол между параллельными плоскостями считается равным нулю.

Нахождение угла между двумя пересекающимися плоскостями

Обычный способ для нахождения угла между пересекающимися плоскостями – это выполнение дополнительных построений. Это способствует определять его с точностью, причем делать это можно с помощью признаков равенства или подобия треугольника, синусов, косинусов угла.

Рассмотрим решение задач на примере из задач ЕГЭ  блока C2.

Пример 1

Задан прямоугольный параллелепипед АВСDA1B1C1D1, где сторона АВ=2, AD=3, АА1=7, точка E разделяет сторону АА1 в отношении 4:3. Найти угол между плоскостями АВС и ВED1.

Решение

Для наглядности необходимо выполнить чертеж. Получим, что наглядное представление необходимо для того, чтобы было удобней работать с углом между плоскостями.

Производим определение прямой линии, по которой происходит пересечение плоскостей АВС и ВED1. Точка B является общей точкой. Следует найти еще одну общую точку пересечения.  Рассмотрим прямые DA и D1E, которые располагаются в одной плоскости ADD1. Их расположение не говорит о параллельности, значит, они имеют общую точку пересечения.

Однако, прямая DA расположена в плоскости АВС, а D1E  в BED1. Отсюда получаем, что прямые DA и D1E имеют  общую точку пересечения, которая является общей и для плоскостей АВС и BED1. Обозначает точку пересечения прямых DA и D1Eбуквой F. Отсюда получаем, что BF является прямой, по которой пересекаются плоскости АВС и ВED1.

Для получения ответа необходимо произвести построение  прямых, расположенных в плоскостях АВС и ВED1  с прохождением через точку, находящуюся на прямой BF и перпендикулярной ей. Тогда получившийся угол между этими прямыми считается искомым углом между плоскостями АВС и ВED1.

Отсюда видно, что точка A – проекция точки E на плоскость АВС. Необходимо провести прямую, пересекающую под прямым углом прямую BF в точке М. Видно, что прямая АМ – проекция прямой ЕМ на плоскость АВС, исходя из теоремы о тех перпендикулярах AM⊥BF. Рассмотрим рисунок, изображенный ниже.

∠AME — это искомый угол, образованный плоскостями АВС и ВED1. Из получившегося треугольника АЕМ можем найти синус, косинус или тангенс угла, после чего и сам угол, только при известных двух сторонах его.

По условию имеем, что длина АЕ находится таким образом: прямая АА1 разделена точкой E в отношении 4:3, то означает полную длину прямой – 7 частей, тогда АЕ= 4 частям. Находим АМ.

Необходимо рассмотреть прямоугольный треугольник АВF. Имеем прямой угол A с высотой АМ. Из условия АВ=2, тогда можем найти длину AF по подобию треугольников DD1F и AEF. Получаем, что AEDD1=AFDF⇔AEDD1=AFDA+AF⇒47=AF3+AF⇔AF=4

Необходимо найти длину стороны BF  из треугольника ABF, используя теорему Пифагора. Получаем, что BF =AB2+AF2=22+42=25. Длина стороны АМ находится через площадь треугольника ABF. Имеем, что площадь может равняться как SABC=12·AB·AF, так и SABC=12·BF·AM.

Получаем, что AM=AB·AFBF=2·425=455. Тогда можем найти значение тангенса угла треугольника АЕМ. Получим:

  • tg∠AME=AEAM=4455=5

Искомый угол, получаемый пересечением плоскостей АВС и BED1  равняется arctg5, тогда при упрощении получим arctg5=arcsin 306=arccos66.

Ответ: arctg5=arcsin 306=arccos66.

Некоторые случаи нахождения угла между пересекающимися прямыми задаются при помощи координатной плоскости Охуz и методом координат. Рассмотрим подробней.

Если дана задача, где необходимо найти угол между пересекающимися плоскостями γ1 и γ2, искомый угол обозначим за α.

Тогда заданная система координат показывает, что имеем координаты нормальных векторов пересекающихся плоскостей γ1 и γ2. Тогда обозначим, что n1→=n1x, n1y, n1z является нормальным вектором плоскости γ1, а n2→=(n2x, n2y, n2z) — для плоскости γ2. Рассмотрим подробное нахождение угла, расположенного между этими плоскостями по координатам векторов.

Необходимо обозначить прямую, по которой происходит пересечение плоскостей γ1 и γ2 буквой c. На прямой с имеем точку M, через которую проводим плоскость χ, перпендикулярную c. Плоскость χ по прямым a и b производит пересечение плоскостей γ1 и γ2 в точке M.

из определения следует, что угол между пересекающимися плоскостями γ1 и γ2 равен углу пересекающихся прямых a и b, принадлежащих этим плоскостям соответственно.

В плоскости χ откладываем от точки M нормальные векторы  и обозначаем их n1→ и n2→. Вектор n1→ располагается на прямой, перпендикулярной прямой a, а вектор n2→ на прямой, перпендикулярной прямой b. Отсюда получаем, что заданная плоскость χ имеет нормальный вектор прямой a, равный n1→ и для прямой b, равный n2→. Рассмотрим рисунок, приведенный ниже.

Отсюда получаем формулу, по которой можем вычислить синус угла пересекающихся прямых при помощи координат векторов.

Получили, что косинусом угла между прямыми a и b то же, что и косинус между пересекающимися плоскостями γ1 и γ2 выводится из формулы cos α=cosn1→, n2→^=n1x·n2x+n1y·n2y+n1z·n2zn1x2+n1y2+n1z2·n2x2+n2y2+n2z2, где имеем, что n1→=(n1x, n1y, n1z) и n2→=(n2x, n2y, n2z) являются координатами векторов представленных плоскостей. Вычисление угла между пересекающимися прямыми производится по формуле:

α=arccosn1x·n2x+n1y·n2y+n1z·n2zn1x2+n1y2+n1z2·n2x2+n2y2+n2z2

Источник: https://Zaochnik.com/spravochnik/matematika/prjamaja-ploskost/ugol-mezhdu-dvumja-peresekajuschimisja-ploskostjam/

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти всех пингвинов на вайм ворлд
  • Как составить лист оглавление
  • Как правильно составить шахматы на доске
  • Есть удк как найти статью
  • Как найти объем фигуры в кубических сантиметрах

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии