Как найти углы закручивания

Внутренний крутящий момент в сечении вала Мк   (может быть обозначен буквой Т, Мz  вычисляется с помощью метода сечений, при этом моменты учитываются по одну сторону от сечения.

2014-09-04 18-44-48 Скриншот экрана

где Мi – внешний активный или реактивный крутящий момент; правило знаков для внутренних крутящих моментов устанавливается произвольно.

2014-09-04 19-36-59 Скриншот экрана

Для вала с круглым (в т.ч. в виде кольца) поперечным сечением касательные напряжения определяются по формуле:

2014-09-04 19-02-22 Скриншот экрана

где  2014-09-04 19-03-54 Скриншот экрана — это полярные моменты инерции для сплошного и кольцевого сечений соответственно, ρкоордината произвольной точки сечения, D, d – наружний и внутренний диаметры сечения.

2014-09-04 19-05-50 Скриншот экрана

Максимальные касательные напряжения действуют в точках поверхностного слоя при ρ=ρmax

2014-09-04 19-07-08 Скриншот экрана

Условие прочности по допускаемым напряжениям

2014-09-04 19-09-35 Скриншот экрана

где — 2014-09-04 19-10-35 Скриншот экрана это допускаемое касательное напряжение.

Угол закручивания (рад) на силовом участке вала при постоянных значениях крутящего момента и поперечного момента инерции для данного участка вычисляется следующим образом

2014-09-04 19-11-48 Скриншот экрана

где G – модуль сдвига

Относительный угол закручивания (рад/м) для силового участка

2014-09-04 19-12-48 Скриншот экрана

Условие жесткости при кручении вала с круглым поперечным сечением записывается в виде

2014-09-04 19-13-41 Скриншот экрана

где 2014-09-04 19-15-25 Скриншот экрана  допускаемый относительный угол закручивания.

Для вала с прямоугольным поперечным сечением эпюры касательных напряжений имеют вид.

2014-09-04 19-17-57 Скриншот экрана

В характерных точках сечения

2014-09-04 19-19-25 Скриншот экрана

угол закручивания на силовом  участке вала

2014-09-04 19-20-23 Скриншот экрана

где α, η, βкоэффициенты, зависящие от отношения a/b (или h/b  — отношение большей стороны прямоугольника к меньшей)

2014-09-04 19-22-04 Скриншот экрана

Если вал с эллиптической формой поперечного сечения и полуосями a и b, то его характерные эпюры касательных напряжений будут выглядеть следующим образом.

2014-09-04 19-24-39 Скриншот экрана

Касательные напряжения в характерных точках сечения

2014-09-04 19-25-38 Скриншот экрана

Угол закручивания на силовом участке вала

2014-09-04 19-26-23 Скриншот экрана

Кручение бруса тонкостенного замкнутого круглого сечения

Тонкостенное круглое сечение характеризуется средним радиусом Rср и толщиной стенки трубы δ:2014-09-05 21-31-38 Скриншот экрана

Считается, что касательные напряжения по толщине стенки распределяются равномерно и равны:

2014-09-05 21-32-36 Скриншот экрана

Угол закручивания

2014-09-05 21-33-49 Скриншот экрана

Кручение пустотелых валов круглого сечения

Трубчатое сечение бруса в условиях кручения оказывается наиболее рациональным, так как материал из центральной зоны сечения, слабо напряженной, удален в область наибольших касательных напряжений. Вследствие этого прочностные свойства материала используются значительно полнее, чем в брусьях сплошного круглого сечения, и при всех прочих равных условиях применение трубчатого сечения вместо сплошного позволяет экономить материал.

2014-09-05 21-14-48 Скриншот экрана

Теория расчета бруса сплошного круглого сечения полностью применима и к пустотелым валам. Изменяются лишь геометрические характеристики сечения:

2014-09-05 21-15-38 Скриншот экрана

Кручение бруса прямоугольного сечения

Опыт показывает, что при кручении брусьев некруглого поперечного сечения сами сечения не остаются плоскими, то есть происходит депланация поперечных сечений. Исследовать напряженное и деформированное состояние таких брусьев при кручении методами сопротивления материалов не представляется возможным, так как в основе их лежит гипотеза плоских сечений (гипотеза Бернулли).

Задача о кручении бруса некруглого, в частности, прямоугольного сечения решена с помощью метода теории упругости, и на основе этого решения предложены простые расчетные формулы, имеющие ту же структуру, что и формулы для бруса круглого сечения, а именно:

2014-09-05 21-25-28 Скриншот экрана

Здесь: Wк=α∙hb2момент сопротивления при кручении,

            Iк=β∙hb3 – момент инерции при кручении.

В этих формулах: b – меньшая из сторон прямоугольника,

h – большая сторона,

α, β – коэффициенты, значения которых приводятся в таблице в зависимости от отношения сторон h/b (эта таблица содержится в рубрике «Кручение» или в любом учебнике сопротивления материалов).

Распределение касательных напряжений по прямоугольному сечению тоже отличается от распределения в круглом сечении:

2014-09-05 21-29-03 Скриншот экрана

Значения коэффициента γ<1 берутся из той же таблицы, что и значения α и β.

В этой статье начнем говорить о кручении. Это одна из базисных тем в сопромате, как и растяжение-сжатие. Знания этой темы помогут тебе при изучении более сложных тем курса «сопротивление материалов».

Кручение – это такой вид деформации, при котором в сечениях стержня возникают крутящие моменты (T).

На кручение, как правило, работают детали, которые называются валами. Детали, которые широко используются в машиностроении.

Что такое крутящий момент?

Крутящий момент – это внутренний силовой фактор, возникающий в сечениях стержней испытывающих деформацию кручения.

На практике же стержни не работают исключительно на кручение, они могут и растягиваться, и изгибаться. Но это уже более продвинутые темы – сложное сопротивление. В этом же разделе будем рассматривать чистое кручение.

В чем измеряется крутящий момент и как обозначается?

Крутящие моменты обозначаются буквой – T (сокращённое с английского: Torque – крутящий момент), однако, часто в другой литературе ты можешь встретить обозначение — Мкр. Ты можешь использовать любое обозначение, какое больше нравиться, либо которое использует твой преподаватель.

В задачах тебе будут даны крутящие моменты, скорее всего, в Н·м либо кН·м.

Построение эпюры крутящих моментов

В этой статье расскажу, как строить эпюры при кручении: крутящих моментов, максимальных касательных напряжений и углов закручивания (углов поворотов).

На самом деле, многие рассматриваемые здесь принципы сильно похожи на те, что мы изучали ранее в уроке про построение эпюр при растяжении (сжатии). Здесь фактически будем делать всё то же самое, только оперировать другими обозначениями и названиями. После изучения того урока, с кручением у тебя точно не возникнет никаких трудностей.

В качестве примера, возьмём следующую расчётную схему:

Расчётная схема стержня, работающего на кручение

Будем считать, что стержень изготовлен из стали (G = 8 · 1010 Па), а диаметры ступеней равны: d1=150 мм, d2=200 мм, d3=300 мм.

Под действием внешних моментов (M), их еще часто называют вращающими или скручивающими моментами, в поперечных сечениях стержня возникают внутренние моменты – крутящие (T).

Схема, показывающая крутящие моменты при рассечении стержня

Правило знаков для крутящих моментов

Чтобы построить эпюру крутящих моментов, необходимо задаться каким-то правилом знаков для крутящих моментов. В этой статье я буду использовать следующее правило:

  • Если внешний момент (M), в плоскости сечения, поворачивает ПРОТИВ часовой стрелки, то крутящий момент (T) – положительный.
Схема, показывающая положительное направление крутящего момента
  • Если внешний момент (M), в плоскости сечения, поворачивает ПО часовой стрелке, то крутящий момент (T) – отрицательный.
Схема, показывающая отрицательное направление крутящего момента

Можно учитывать знак крутящего момента ровно наоборот. Главное, придерживаться этого правила при расчёте всех участков и ориентироваться по полученным эпюрам: в какую сторону у тебя будут направлены внешние моменты, внутренние – крутящие моменты, куда будут поворачиваться сечения. Как видишь, знаки здесь нам нужны, чтобы задать определённые правила игры, а правило знаков – условное и не имеет физического смысла.

Расчёт крутящих моментов

Что же, давай, наконец, приступим к расчёту крутящих моментов. Пронумеруем расчётные участки:

Нумерация участков на расчётной схеме

Используя правило знаков, описанное выше, рассчитаем крутящие моменты на каждом участке:

Расчёт крутящих моментов на участках

По полученным значениям построим эпюру касательных напряжений:

Эпюра крутящих моментов

Построение эпюры касательных напряжений при кручении

Касательные напряжения по высоте круглого сечения, будут распределены следующим образом:

Схема распределения касательных напряжений

Как видишь, касательные напряжения будут максимальны на поверхности стержня, они нас и будут интересовать больше всего, т. к. по ним выполняются прочностные расчёты, для них и будем строить эпюру – максимальных касательных напряжений.

Расчёт максимальных касательных напряжений

Максимальные касательные напряжения в поперечном сечении, можно определить по формуле:

Формула для нахождения максимальных касательных напряжений

где Wp — полярный момент сопротивлния, T — крутящий момент.

Полярный момент сопротивления для круглого сечения определяется по формуле:

Формула для расчёта полярного момента сопротивления для круглого сечения

Поэтому формулу для нахождения максимальных касательных напряжений для круглого поперечного сечения, можно записать в следующем виде:

Видоизменяя формула для нахождения максимальных касательных напряжений для круглого сечения

По условию задачи диаметры участков известны. Осталось вычислить максимальные касательные напряжения на каждом участке:

Вычисление максимальных касательных напряжений на участках

По полученным значениям построим эпюру касательных напряжений:

Эпюра максимальных касательных напряжений

Построение эпюры углов закручивания (поворотов)

Под действием внешних – скручивающих моментов, поперечные сечения стержня будут поворачиваться на определенный угол (φ). В этом разделе будем учиться определять эти углы закручивания (поворотов) поперечных сечений и строить эпюру.

Обозначим точки в характерных сечениях стержня:

Обозначение характерных точек на расчётной схеме стержня

Расчёт начинаем от жёсткой заделки и сразу можем записать, что в точке A, угол поворота равен нулю, т. к. здесь заделка ограничивает любые повороты сечения:

Формула отражающая, что угол поворота в заделке равен нулю

Чтобы рассчитать поворот сечения B, нужно учесть поворот предыдущего сечения:

Формула показывающая, что необходимо учитывать угол поворота предыдущего сечения

А также, угол закручивания участка между расчётными сечениями:

Формула для нахождения угла поворота сечения B

Угол закручивания участка можно посчитать по формуле:

Формула для нахождения угла закручивания участка

где l – длина участка; Ip – полярный момент инерции; G – модуль сдвига.

G – модуль сдвига (модуль упругости 2 рода) – определяется при испытании образцов на кручение, тем самым зависит от материала образца.

Модуль сдвига (G) известен, по условию задачи.

Формула для определения полярного момента инерции для круглого сечения следующая:

Формула для нахождения полярного момента сопротивления

Зная диаметры, сразу вычислим полярные моменты инерции для каждого участка:

Расчёт полярных моментов сопротивления на каждом участке

Определим угол закручивания сечения B, с учётом вышеуказанных формул:

Расчёт угла поворота сечения B

Также можно перевести это значение в привычные градусы:

Перевод угла поворота из радианов в градусы

Для двух других сечений расчёт производится аналогичным образом.

Угол поворота сечения С

Расчёт угла поворота сечения C

Угол поворота сечения D

Расчёт угла поворота сечения D

По рассчитанным значениям, построим эпюру углов закручивания поперечных сечений:

Эпюра углов закручивания (поворотов) поперечных сечений

Таким образом, свободный торец стержня, повернётся на 0.58 градуса, относительно неподвижного сечения A.

Расчеты на прочность при кручении

При кручении расчёты на прочность в целом похожи на расчёты при растяжении. Только здесь вместо нормальных напряжений расчёт ведётся по касательным напряжениям.

На кручение, как правило, работают детали, которые называются валами. Их назначение – передача крутящего момента от одного элемента к другому. При этом вал по всей длине имеет либо круглое сечение, либо кольцевое.

Условие прочности

Условие прочности при кручении

За допустимое касательное напряжение [τ], часто в задачах по сопромату, принимают напряжение в два раза меньше, чем допустимое нормальное напряжение [σ]:

Формула для определения допустимых касательных напряжений

Максимальные касательные напряжения (τmax) в сечениях можно найти по формуле:

Формула для определения максимальных нормальных напряжений

где T – крутящий момент в сечении;

Wp – полярный момент сопротивления сечения.

Полярные моменты сопротивления можно посчитать этим формулам.

Для
круглого стержня диаметром d
касательные напряжения в произвольной
точке поперечного сечения, находящейся
на расстоянии ρ от центра сечения,
определяются формулой

, (3.4)

где

– полярный момент инерции круглого

сечения.

Максимальные
касательные напряжения в точках, наиболее
удаленных от центра сечения, имеют
значение

,
(3.5)

где
– полярный момент сопротивления круглого
сечения. При этом напряжения по сечению
изменяются по закону треугольника.

Полный
угол закручивания φ на участке стержня
длиной l
при постоянном крутящем моменте
определяется по формуле

, (3.6)

где
G
– модуль сдвига, МПа.

Если
стержень имеет несколько участков, в
пределах которых изменяется по тому
или иному закону, то полный угол
закручивания (угол взаимного поворота
концевых сечений стержня) определяется
из выражения

. (3.7)

Интегрирование
выполняется по длине каждого участка,
а суммирование – по всем участкам
стержня.

Для
валов, у которых нет неподвижных сечений,
для построения эпюры угловых перемещений
принимают какое-либо сечение за условно
неподвижное. Например, углы закручивания
удобно отсчитывать в обе стороны от
сечения, к которому подводится мощность.

3.3. Расчеты на прочность и жесткость

При
кручении размеры сечения для стержня
постоянного поперечного сечения
подбираются из условия прочности по
расчетной формуле

, (3.8)

где
maxTk
– наибольший крутящий момент по
абсолютному значению.

Если
дополнительно ставится условие жесткости
φmax
≤[ φ
] , то подобранное сечение проверяется
на жесткость согласно выражению

,

где
[φ] – допускаемое значение для угла
закручивания;

–расчетная длина,
для которой задан допускаемый угол
закручивания.

В
том случае, когда допускаемый угол
закручивания задан в градусах, при
подстановке в формулу (3.3) его следует
перевести в радианы.

3.4. Построение эпюр т и φ

Пример.
Из условия прочности и жесткости
определить диаметр вала при заданном
расположении зубчатых колес для съема
мощности N2,
N3,
N4.
Подводимая мощность – N1
(рис. 3.1) . принять допускаемое напряжение
равным [τ]
= 30 Н/мм², G
=0,8 105
Н/мм² при допускаемом угле закручивания
φ на 1 м длины вала – [φ] = 0,25 град/м; N1
= 90 кВт; N3
= 30 кВт; N4
= 20 кВт; n=250
об/мин. Построить эпюры крутящих моментов
Тк
и углов закручивания вала φ.

Решение:

Угловая
скорость вала согласно (3.3) равна

Вращающие
моменты:

Из
условия равновесия вала ∑
Ti
= 0 находим Т2:

Т2+Т1+Т3+Т4=0;

Т2=Т1Т3Т4=3460
–1150-770=1540 Н∙м

Мощность
N2
снимается с вала:

N2
= Т2
ω = 1540 26 = 40000 Вт = 40 кВт.

Строим
эпюру крутящих моментов – эТк

Сделаем
сечение I
– I
в любом месте первого участка и из
условия равновесия левой от сечения
части получим значение

Уравнение
равновесия Т2+
= 0,

откуда

= —T2= — 1540 Н∙м

Момент
считаем отрицательным в соответствии
с принятым правилом знаков. Сделав
сечение II
– II
на втором участке, из условия равновесия
левой части получим: Т2+Т1+=
0,

откуда

=Т1 Т2 = 3460 –
1540 = 1920 Н∙м

Аналогично
проведя сечение III
– III на третьем участке, составляя
уравнение равновесия для отсеченной
левой части, получим момент

Т2 +Т1
+Т3 +=
0


=Т1 Т2 Т3
= 3460 – 1540 – 1150 = 770 Н∙м

Таким
образом, крутящий момент в любом сечении
вала равен алгебраической сумме внешних
моментов, расположенных по одну сторону
от этого сечения. Величину крутящего
момента на различных участках вала
изображают графически, построив эпюры
крутящих моментов. Для этого от оси
абсцисс, располагаемой под схемой вала
(рис. 3.1) откладываем ординаты, изображающие
в выбранном масштабе величину крутящего
момента на каждом участке с учетом его
знака (положительные – вверх). Так как
величина Тк
в пределах участка не зависит от положения
сечения, эпюра Тк
имеет форму
трех прямоугольников (рис. 3.1). Отметим,
что в местах приложения внешних моментов
ординаты эпюры скачкообразно изменяются
на величину приложенного здесь внешнего
сосредоточенного момента.

Z

l0=
0,5 M
l1 =
2 M
l2
=1
M
l3
=1
M
l4
=0,5
M

Т2 1 Т1 2 Т3 3 Т4


1 2 3

1920

770

ЭТk
,Н·М

-1540

A B C D E

эφ,град

К 0,334 L
0,125 M
0,041 N

Рис. 3.1

Условие
прочности при кручении имеет вид

,

откуда

Принимаем
d=70
мм.

Вычисление
углов закручивания имеет серьезное
практическое значение: оно необходимо
для проверки жесткости вала. Практикой
выбраны допустимые пределы для угла
φ, которые нельзя превышать, чтобы не
допустить нарушения в работе машины.

Эти
пределы таковы: [φ] = 0,3° на метр длины
вала ; при переменных нагрузках [φ] =
0,25°; для ударных нагрузок [φ] = 0,15°.

Из
условия жесткости

,

В
качестве окончательного значения
принимаем d
= 90 мм.

Пользуясь
формулой (3.6) для определения деформаций,
определим угловые перемещения сечений
стержня φ
и построим эпюры этих перемещений.
Поскольку вал не имеет неподвижных
сечений (вал – вращающийся стержень),
то для построения эпюры угловых
перемещений примем какое либо сечение
за условно неподвижное, например, сечение
А
в точке приложения момента Т2.

Определим
поворот сечения В по отношения к сечению
А
– φва:

Примем
следующее правило знаков для углов
поворота сечений: углы φ – положительны,
когда сечение поворачивается (если
смотреть вдоль оси справа налево) против
часовой стрелки. В данном случае φва
будет отрицательным. В принятом масштабе
отложим ординату φва
(рисунок 3.1).

Полученную
точку К
соединяем с точкой А
, так как в пределах участка углы
изменяются по законам прямой линии (
формула 3.6), в которую абсцисса сечения
С
входит в первой степени.

Вычислим
теперь угол поворота сечения С
по отношению к сечению В.
Учитывая принятое правило знаков для
углов закручивания, получаем

Угол
поворота сечения С относительно сечения
А
равен

,

так как
,(отметим, что
суммарное значение угла φ может получиться
положительным, отрицательным и в частном
случае равным нулю). Полученную величину
в принятом масштабе откладываем вниз
от оси опоры, получим точку L
. соединяем точку L
с точкой К,
далее аналогично определяем угол
поворота сечения D
относительно С
:

Аналогично
выполненным ранее вычислениям угол
поворота сечения D
относительно А
равен

Отложив
эту величину в принятом масштабе вниз,
получим точку М.
Соединяя М
с L
, получим эпюру φ на участке DС
. На участке DE
скручивания не происходит, так как
крутящий момент на этом участке равен
нулю, поэтому там все сечения поворачиваются
на столько же, на сколько поворачивается
и сечение D.
Участок МN
эпюры φ здесь горизонтален.

Полный
угол закручивания между концевыми
сечениями равен алгебраической сумме
углов закручивания для всех участков:

Соседние файлы в папке ДМ 3

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Сопротивление материалов

Деформация кручения



Напряжения и деформации при кручении

Исследование отдельных участков и слоев цилиндрического бруса, нагруженного скручивающим (вращающим) моментом, дает основание полагать, что в поперечных сечениях этого бруса нормальные напряжения (направленные вдоль оси) отсутствуют, а возникают только касательные напряжения, модули которых расположены в плоскости исследуемого сечения.
Этот вывод опирается и на гипотезу о не надавливании волокон, предполагающую, что если брус представить в виде многочисленных цилиндрических продольных волокон, то при деформациях разного рода эти волокна не оказывают друг на друга силового воздействия (не давят друг на друга).
деформация кручения
Как показали многочисленные опыты и исследования, эта гипотеза справедлива в определенном интервале деформаций, и погрешностями в расчетах, связанными с ее применением, можно пренебречь.

На рис. 1 видно, что абсолютный сдвиг сечения волокна а равен дуге аа1, а сечения волокна b — дуге bb1. Этот сдвиг (т. е. длины дуг) можно определить, зная угол φ закручивания исследуемого сечения относительно центральной оси:
дуга аа1 = rφ; дуга bb1 = Rφ,
где: r — расстояние от волокна а до оси кручения, R — радиус сечения круглого бруса, φ — полный угол закручивания бруса.

Так как радиусы сечений при кручении бруса остаются прямыми (принятое предположение), то величина абсолютного сдвига сечения волокон прямо пропорциональна их расстоянию от оси кручения, т. е. чем дальше от оси расположено продольное волокно, тем сильнее сдвинется его сечение относительно центральной оси.

Относительный сдвиг сечения произвольного продольного волокна b может быть определен по формуле:
γр = rφ / l,
где φ / l = φ0 — относительный угол закручивания (для любого сечения круглого однородного бруса эта величина является постоянной). Тогда:
γр = φ0r.

Поскольку мы пришли к выводу, что при кручении в поперечных сечениях бруса возникает только деформация сдвига, то можно применить формулу, описывающую закон Гука при сдвиге:

τr = Gγр = Gφ0r.

Здесь τr — касательное напряжение в сечении волокна, G — коэффициент пропорциональности между относительным углом закручивания и величиной касательного напряжения, возникающего в сечении волокна, который называют модулем упругости второго рода.
Модуль упругости имеет такую же размерную единицу, как и напряжение (Па) и характеризует физические свойства материала бруса. Для разных материалов модуль упругости устанавливается опытно-экспериментальным путем и приводится в справочниках в виде таблиц, применяемых при расчетах.

На основании приведенной формулы Гука для сдвига при кручении можно сделать вывод, что для центрального волокна бруса (т. е. расположенного на оси закручивания в центре сечения) касательные напряжения равны нулю: если r = 0, то τ = 0.

Максимального значения касательные напряжения достигают в сечениях волокон, наиболее удаленных от оси закручивания бруса, т. е. на внешней поверхности бруса: если r = R, то τ = τmax.

Так как касательные напряжения в сечениях волокон бруса находятся в прямо пропорциональной зависимости от расстояния до оси кручения, то эпюра распределения напряжений вдоль радиуса сечения имеет вид треугольника (рис. 4).
Исходя из схемы распределения напряжений, можно сделать вывод, что в круглых валах наиболее напряженными являются внешние слои, а внутренние почти не испытывают нагрузки. По этой причине многие валы машин и механизмов изготавливаются трубчатой формы (пустотелыми), что позволяет сэкономить дорогостоящий металл при незначительной потере прочности конструкции.

Если брус имеет по всей длине одинаковый диаметр (все сечения одинаковы по размерам и форме), и к каждому сечению приложен одинаковый крутящий момент, то касательные напряжения в каждом продольном волокне этого бруса будут одинаковы по величине.

***



Определение угла закручивания и напряжений

Чтобы вывести формулы, определяющие угол закручивания и напряжения в поперечных сечениях бруса, рассечем его на расстоянии l1 от заделки (рис. 1), и рассмотрим полученное сечение (рис. 4 ).

Выделим в сечении бесконечно малую площадку dS на расстоянии r от оси кручения. Сила dQ, действующая на эту площадку, перпендикулярна радиусу r и может быть определена по формуле:

dQ = τrdS.

Интегрированием определим крутящий момент (момент внутренних сил), возникающих в этой площадке, относительно оси кручения бруса:

Мкр = s dQ r = sτr dS r = sG φ0 r dS = G φ0 sr2 dS = G φ0 Ir,

где Ir — полярный момент инерции сечения (для круглого бруса Ir = πD4 / 32 = 0,1D4).
Определение угла закручивания и напряжений при кручении

Из полученной зависимости найдем относительный угол закручивания : φ0 = Мкр / (GIr).

Полный угол закручивания сечения φ (рад) цилиндрического участка бруса длиной l может быть определен по формуле: φ = Мкрl / (GIr).

Произведение модуля упругости G на полярный момент инерции сечения Ir называют жесткостью сечения.

Итак, можно сделать вывод, что полный угол закручивания круглого цилиндра прямо пропорционален крутящему моменту, длине цилиндра и обратно пропорционален жесткости сечения при кручении. Следует оговориться, что эта зависимость справедлива лишь до определенного предела, когда нагрузка и деформация пропорциональны.

Если цилиндрический брус (вал) состоит из нескольких участков, имеющих разный диаметр сечений (ступенчатый вал) или изготовленных из разного материала (составной вал), то полный угол закручивания такого бруса может быть определен, как сумма углов закручивания каждого отдельного участка.

Выведем теперь формулу для определения напряжений, возникающих в сечениях цилиндрического бруса при кручении.

τr = Gφor = GMкрr / (GIr) = Мкрr / Ir.

Как мы уже определили ранее, при r = R касательные напряжения достигают максимального значения:

τmax = МкрR / Ir = Мкр / (Ir / R) = Мкр / Wr,

где Wr = Ir / R — момент сопротивления сечения кручению (или полярный момент сопротивления).
Момент сопротивления кручению равен отношению полярного момента инерции к радиусу сечения. Единица измерения момента сопротивления кручению — м3.

***

Моменты сопротивления кручению круглых валов

В технических расчетах наиболее часто приходится иметь дело с круглыми или трубчатыми брусьями (валами), поэтому определим величину момента сопротивления кручению для круглого вала и для вала, имеющего кольцевое сечение (труба).

Для круга диаметром D:

Wr = Ir / 0,5D = πD4 / (32×0,5) = πD3 / 16 или приближенно: Wr 0,2D3.

Для кольца имеющего наружный диаметр D и внутренний диаметр d:

Wr = Ir / 0,5D = π(D4 — d4) / (32×0,5D) = π(D4 — d4) / 16D или приближенно: Wr 0,2(D4 — d4) / D.

Из последней формулы видно, что если полярный момент инерции кольцевого сечения можно определить, как разность между осевыми моментами инерции большого и малого кругов, то момент сопротивления кручения кольцевого сечения подобным образом рассчитать нельзя.

Итак, для определения напряжений в сечениях круглого бруса следует использовать формулы:

для сплошного вала: τmax Мкр / 0,2D3
для трубчатого вала: τmax МкрD / (D3 — d3)

Угол закручивания цилиндрического вала: φ = Мкрl / (GIr).

Эти формулы применяют при решении задач и выполнении расчетов на прочность для скручиваемых валов.

***

Материалы раздела «Деформация кручения»:

  • Понятие о кручении цилиндрического бруса (вала)
  • Построение эпюр крутящих моментов
  • Деформации и напряжения, возникающие при кручении
  • Расчеты на прочность и жесткость при кручении
  • Расчет цилиндрических винтовых пружин

Формула Журавского при изгибе



   Кручением называется такой вид деформации, при котором в поперечном сечении стержня возникает лишь один силовой фактор — крутящий момент Мz. Крутящий момент по определению равен сумме моментов внутренних сил относительно продольной оси стержня Oz. Нормальные силы, параллельные оси Oz, вклада в крутящий момент не вносят. С силами, лежащими в плоскости поперечного сечения стержня (интенсивности этих сил — касательные напряжения и ) Мz связывает вытекающее из его определения уравнение равновесия статики (рис. 1)

   Условимся считать Mz положительным, если со стороны отброшенной части стержня видим его направленным против часовой стрелки (рис. 2). Это правило проиллюстрировано на рис. 1 и в указанном соотношении, где крутящий момент Мz принят положительным. Численно крутящий момент равен сумме моментов внешних сил, приложенных к отсеченной части стержня, относительно оси Ог.

Рис.1. Связь крутящего момента с касательными напряжениями

Рис.2. Иллюстрация положительного и отрицательного крутящего момента

   Рассмотрим кручение призматических стержней кругового поперечного сечения. Исследование деформаций упругого стержня с нанесенной на его поверхности ортогональной сеткой рисок (рис. 3) позволяет сформулировать следующие предпосылки теории кручения этого стержня:

  1. поперечные сечения остаются плоскими (выполняется гипотеза Бернулли);

  2. расстояния между поперечными сечениями не изменяются, следовательно ;

  3. контуры поперечных сечений и их радиусы не деформируются. Это означает, что поперечные сечения ведут себя как жесткие круговые пластинки, поворачивающиеся при деформировании относительно оси стержня Ог. Отсюда следует, что любые деформации в плоскости пластинки равны нулю, в том числе и ;

  4. материал стержня подчиняется закону Гука. Учитывая, что , из обобщенного закона Гука в форме получаем . Это означает, что в поперечных сечениях, стержня возникают лишь касательные напряжения , а вследствие закона парности касательных напряжений, равные им напряжения действуют и в сопряженных продольных сечениях. Следовательно напряженное состояние стержня — чистый сдвиг.

Рис.3. Иллюстрация кручения: а) исходное и б) деформированное состояния

   Выведем формулу для касательных напряжений при кручении призматического стержня кругового поперечного сечения. Как видно, поворот правого торцевого сечения относительно неподвижного левого на угол (назовем его углом закручивания стержня) вызывает поворот продольных волокон на угол (угол сдвига), поскольку на величину искажаются углы ортогональной сетки продольных и поперечных рисок модели.

   Двумя смежными сечениями вырежем элемент стержня длиной dz и, поскольку нас интересуют деформации элемента, левое сечение его будем считать неподвижным (рис. 5). При повороте правого сечения на угол в соответствии с гипотезой о недеформируемости радиусов, правый конец волокна АВ (отстоящий от оси элемента на величину полярного радиуса ) будет перемещаться по дуге BB1, вызывая поворот волокна на угол сдвига

   Обратим внимание на то, что в соответствии с рис. 5 и рис. 6, а сдвиг и связанное с ним касательное напряжение перпендикулярны радиусу . Определим , воспользовавшись законом Гука для чистого сдвига

(1)

Рис.5. Расчетная модель определения касательных напряжений

а) ортогональность и
Рис.6. Распределение касательных напряжений при кручении:

   Здесь — погонный угол закручивания стержня, который остается пока неизвестным. Для его нахождения обратимся к условию статики, записав его в более удобной для данного случая форме (рис. 6, a)

(2)

Подставляя (1) в (2) и учитывая, что

где Jp; полярный момент инерции поперечного сечения (для круга с диаметром d ), получаем

(3)

Рис.7. Распределение напряжений для кольцевого сечения

а) разрушение дерева, б) разрушение чугуна
Рис.8. Распределение исходных касательных и главных напряжений:

   Подставляя выражение (3) в (1), получаем формулу для касательных напряжений при кручении призматического стержня кругового поперечного сечения

(4)

   Как видно из (4), сдвиги и касательные напряжения пропорциональны расстояний от оси стержня. Обратим внимание на структурные аналогии формул для нормальных напряжений чистого изгиба и касательных напряжений кручения.

   Мерой деформации стержня при кручении является погонный угол закручивания стержня, определяемый по (3). Поскольку величина DJp стоит в знаменателе формулы и при заданной нагрузке (Mz через нее выражается) тем меньше, чем больше DJp, последнюю называют жесткостью поперечного сечения при кручении.

Пользуясь (3) для определения угла закручивания элемента длиной dz

найдем полный угол закручивания стержня длиной l

(5)

В случае, если по длине стержня Мz и DJp постоянны, получаем

когда эти величины кусочно-постоянны, то:

(6)

Отметим, что полученные формулы по структуре аналогичны формулам для деформаций при растяжении стержня.

Наибольшие касательные напряжения возникают у внешней поверхности стержня, т. е. при

где Wр — момент сопротивления при кручении или полярный момент сопротивления

.

   Полярный момент сопротивления, стоящий в знаменателе для максимальных касательных напряжений, очевидно, является геометрической характеристикой сечения, а условие прочности стержня при кручении принимает вид

(7)

где — допускаемое напряжение на кручение.

   Как показали эксперименты и точное решение этой задачи в теории упругости, все гипотезы, сформулированные ранее для стержня со сплошным круговым сечением, остаются справедливыми и для стержня кольцевого поперечного сечения (рис. 7). Поэтому все выведенные ранее формулы пригодны для расчета стержня кольцевого сечения с той лишь разницей, что полярный момент инерции определяется как разность моментов инерции кругов с диаметрами D и d

где , а момент сопротивления определяется по формуле

   Учитывая линейный характер изменения касательных напряжений по радиусу (рис. 7) и связанное с этим лучшее использование материала, кольцевое сечение следует признать наиболее рациональным при кручении стержня. Коэффициент использования материала тем выше, чем меньше относительная толщина трубы.

   Как отмечено ранее, напряженное состояние при кручении стержня — чистый сдвиг, являющийся частным случаем плоского напряженного состояния. На площадках, совпадающих с плоскостью поперечного сечения и на парных им площадках продольных сечений возникают экстремальные касательные напряжения max-min , а главные напряжения действуют на площадках, наклоненных.коси стержня под углами ; главное напряжение .

   Особенности напряженного состояния при кручении нашли отражение в характере разрушения стержней. Так, разрушение стержня из дерева, плохо работающего на скалывание вдоль волокон, происходит от продольных трещин (рис. 8, a). Разрушение стержня из хрупкого металла (например, чугуна) происходит по винтовой линии, наклоненной к образующим под углом 45o, т. е. по траектории главного напряжения (рис. 8,б).

РАСЧЕТ ВАЛОВ

   Рассмотрим расчет вала на прочность и жесткость. Пусть известна мощность W (кВт), передаваемая вращающимся с заданным числом оборотов в минуту (n) валом от источника мощности (например, двигателя) к ее потребителю (например, станку), а момент т, передаваемый валом, требуется найти, так как численно равный этому моменту крутящий момент необходим для расчета вала.

   Если число оборотов вала в минуту п и соответствующая угловая скорость -1) постоянны, а Ф — угол поворота вала в данный момент времени t, то работа вращательного движения А=тФ. Тогда передаваемая валом мощность будет равна

Отсюда

кНм,

где учтено, что .

   Если мощность подается на вал через ведущий шкив, а раздается потребителям через несколько ведомых шкивов, то соответственно определяются моменты на шкивах, а затем строится эпюра крутящих моментов. Расчет вала на прочность и жесткость ведется, очевидно, по max Mz.

   Определение диаметра вала из условия прочности. Условие прочности при кручении вала имеет вид (7), где допускаемые напряжения принимаются пониженными по сравнению с допускаемыми напряжениями обычного статического расчета в связи с необходимостью учета наличия концентраторов напряжений (например, шпоночных канавок), переменного характера нагрузки и наличия наряду с кручением и изгиба вала.

Требуемое значение Wp=dз/16 получаем из условия (7), принимая в нем знак равенства

,

откуда получаем формулу для диаметра вала кругового сечения

(8)

   Определение диаметра вала из условия жесткости. Условие жесткости состоит в наложении ограничения на погонный угол закручивания вала , так как недостаточно жесткие валы не обеспечивают устойчивой передачи мощности и подвержены сильным колебаниям:

(9)

Тогда, учитывая, что , для диаметра вала из условия жесткости имеем

(10)

Аналогично проводятся расчеты и для вала кольцевого поперечного сечения.

Дальше…

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти поверхность куба если известна диагональ
  • Как найти несклоняемое слово
  • Как составить бухгалтерский баланс по оборотно сальдовой ведомости пример для чайников
  • Как найти индуктивность первичной обмотки
  • Как найти сторону многоугольника если известен угол

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии