Переменный синусоидальный ток
Колебания маятника также
подчиняются закону синуса.
Если
записать проекцию траектории
движения математического
маятника на
движущуюся бумажную ленту —
получится синусоида.
Синусоидальным
током называется периодический переменный
ток, который с течением времени изменяется
по закону синуса.
Синусоидальный ток —
элементарный, то есть его невозможно
разложить на другие более простые
переменные токи.
Переменный
синусоидальный ток выражается формулой:
,
где
—
амплитуда
синусоидального тока;
—
некоторый угол,
называемый фазой
синусоидального тока.
Фаза синусоидального
тока изменяется
пропорционально времени .
Множитель ,
входящий в выражение фазы —
величина постоянная, называемая угловой
частотой переменного
тока.
Угловая
частота синусоидального
тока зависит от частоты этого
тока и определяется формулой:
,
где
—
угловая частота
синусоидального тока;
—
частота синусоидального
тока;
— период синусоидального
тока;
—
центральный
угол окружности,
выраженный в радианах.
Зависимость
синусоидального тока от времени
Зависимость
синусоидального тока от угла ωt
Периоду соответствует
угол ,
половине периода угол
и
так далее…
Исходя
из формулы ,
можно определить размерность угловой
частоты:
,
где
— время в секундах,
—
угол в радианах,
является безразмерной величиной.
Фаза синусоидального
тока измеряется радианами.
1
радиан = 57°17′, угол 90° = радиан,
угол 180° = радиан,
угол 270° = радиан,
угол 360° = радиан,
где радиан;
— число
«Пи», ° — угловой
градус и ′ — угловая
минута.
Формула описывает
случай, когда наблюдение за изменением
переменного синусоидального тока
начинается с момента времени при
.
Если не
равен нулю, тогда формула для определения
мгновенного значения переменного
синусоидального тока примет следующий
вид:
,
где
— фаза переменного
синусоидального тока;
— угол,
называемый начальной
фазой переменного синусоидального
тока.
Начальная
фаза переменного тока
Начальная
фаза переменного тока
Если
в формуле принять
,
то будем иметь
,
и
.
Начальная
фаза — это фаза синусоидального тока
в момент времени .
Начальная
фаза переменного синусоидального тока
может быть положительной или
отрицательной величиной.
При мгновенное
значение синусоидального тока в момент
времени положительно,
при —
отрицательно.
Если
начальная фаза ,
то ток определяется по формуле .
Мгновенное значение его в момент
времени равно
,
то есть равно положительной амплитуде
тока.
Если
начальная фаза ,
то ток определяется по формуле .
Мгновенное значение его в момент
времени равно
,
то есть равно отрицательной амплитуде
тока.
9. Идеальные элементы
электрической цепи синусоидального
тока
11.
Неразветвленная
цепь синусоидального тока. Резонанс
напряжений
Резонанс
напряжений —
резонанс, происходящий в
последовательном колебательном
контуре при
его подключении к источнику
напряжения, частота которого
совпадает с собственной
частотой контура.
Описание явления
Пусть
имеется колебательный контур с частотой
собственных колебаний f,
и пусть внутри него работает генератор
переменного тока такой же частоты f.
В
начальный момент конденсатор контура
разряжен, генератор не работает. После
включения напряжение на генераторе
начинает возрастать, заряжая конденсатор.
Катушка в первое мгновение не пропускает
ток из-за ЭДС самоиндукции. Напряжение
на генераторе достигает максимума,
заряжая до такого же напряжения
конденсатор.
Далее:
конденсатор начинает разряжаться на
катушку. Напряжение на нем падает с
такой же скоростью, с какой уменьшается
напряжение на генераторе.
Далее:
конденсатор разряжен до нуля, вся энергия
электрического поля, имевшаяся в
конденсаторе, перешла в энергию магнитного
поля катушки. На клеммах генератора в
этот момент напряжение нулевое.
Далее:
так как магнитное поле не может
существовать стационарно, оно начинает
уменьшаться, пересекая витки катушки
в обратном направлении. На выводах
катушки появляется ЭДС индукции, которое
начинает перезаряжать конденсатор. В
цепи колебательного контура течет ток,
только уже противоположно току заряда,
так как витки пересекаются полем в
обратном направлении. Обкладки
конденсатора перезаряжаются зарядами,
противоположными первоначальным.
Одновременно растет напряжение на
генераторе противоположного знака,
причем с той же скоростью, с какой катушка
заряжает конденсатор.
Далее:
катушка перезарядила конденсатор до
максимального напряжения. Напряжение
на генераторе к этому моменту тоже
достигло максимального.
Возникла
следующая ситуация. Конденсатор и
генератор соединены последовательно
и на обоих напряжение, равное напряжению
генератора. При последовательном
соединении источников питания их
напряжения складываются.
Следовательно,
в следующем полупериоде на катушку
пойдет удвоенное напряжение (и от
генератора, и от конденсатора), и колебания
в контуре будут происходить при удвоенном
напряжении на катушке.
В
контурах с низкой добротностью напряжение
на катушке будет ниже удвоенного, так
как часть энергии будет рассеиваться
(на излучение, на нагрев) и энергия
конденсатора не перейдет полностью в
энергию катушки). Соединены как бы
последовательно генератор и часть
конденсатора.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Переменный ток (англ. alternating current — AC) — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.
В быту для электроснабжения переменяется переменный, синусоидальный ток.
Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (Рисунок 1):
Максимальное значение функции называют амплитудой. Её обозначают с помощью заглавной (большой) буквы и строчной буквы m — максимальное значение. К примеру:
- амплитуду тока обозначают lm;
- амплитуду напряжения Um.
Период Т— это время, за которое совершается одно полное колебание.
Частота f равна числу колебаний в 1 секунду (единица частоты f — герц (Гц) или с-1)
f = 1/T
Угловая частота ω (омега) (единица угловой частоты — рад/с или с-1)
ω = 2πf = 2π/T
Аргумент синуса, т. е. (ωt + Ψ), называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени t.
Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой (ω) и начальной фазой Ψ (пси)
В странах СНГ и Западной Европе наибольшее распространение получили установки синусоидального тока частотой 50 Гц, принятой в энергетике за стандартную. В США стандартной является частота 60 Гц. Диапазон частот практически применяемых синусоидальных токов очень широк: от долей герца, например в геологоразведке, до миллиардов герц в радиотехнике.
Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью ламповых или полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j (или e(t) и j(t)).
Обратите внимание! При обозначении величин на схемах или в расчетах важен регистр букв, то есть заглавные буквы (E,I,U…) или строчные (e, i ,u…). Так как строчными буквами принято обозначать мгновенное значение, а заглавными могут обозначаться действующее значение величины (подробнее о действующем значении в следующей статье).
Период, частота, амплитуда и фаза переменного тока
Период и частота переменного тока
Время, в течение которого совершается одно полное изменение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания переменного тока (рисунок 1).
Рисунок 1. Период и амплитуда синусоидального колебания. Период — время одного колебания; Аплитуда — его наибольшее мгновенное значение.
Период выражают в секундах и обозначают буквой Т.
Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.
1 мс =0,001сек =10-3сек.
1 мкс=0,001 мс = 0,000001сек =10-6сек.
1000 мкс = 1 мс.
Число полных изменений ЭДС или число оборотов радиуса-вектора, то есть иначе говоря, число полных циклов колебаний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока.
Частота обозначается буквой f и выражается в периодах в секунду или в герцах.
Одна тысяча герц называется килогерцом (кГц), а миллион герц — мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.
1000 Гц = 103 Гц = 1 кГц;
1000 000 Гц = 106 Гц = 1000 кГц = 1 МГц;
1000 000 000 Гц = 109 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;
Чем быстрее происходит изменение ЭДС, то есть чем быстрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.
Математическая связь между периодом и частотой переменного тока и напряжения выражается формулами
Например, если частота тока равна 50 Гц, то период будет равен:
Т = 1/f = 1/50 = 0,02 сек.
И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:
f = 1/T=1/0,02 = 100/2 = 50 Гц
Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.
Частоты от 20 до 20 000 Гц называются звуковыми частотами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие высокие частоты называются радиочастотами или колебаниями высокой частоты.
Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.
Амплитуда переменного тока
Наибольшее значение, которого достигает ЭДС или сила тока за один период, называется амплитудой ЭДС или силы переменного тока. Легко заметить, что амплитуда в масштабе равна длине радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно буквами Im, Em и Um (рисунок 1).
Угловая (циклическая) частота переменного тока.
Скорость вращения радиуса-вектора, т. е. изменение величины угла поворота в течение одной секунды, называется угловой (циклической) частотой переменного тока и обозначается греческой буквой ? (омега). Угол поворота радиуса-вектора в любой данный момент относительно его начального положения измеряется обычно не в градусах, а в особых единицах — радианах.
Радианом называется угловая величина дуги окружности, длина которой равна радиусу этой окружности (рисунок 2). Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2.
Рисунок 2. Радиан.
Тогда,
1рад = 360°/2
Следовательно, конец радиуса-вектора в течение одного периода пробегают путь, равный 6,28 радиан (2). Так как в течение одной секунды радиус-вектор совершает число оборотов, равное частоте переменного тока f, то за одну секунду его конец пробегает путь, равный 6,28 * f радиан. Это выражение, характеризующее скорость вращения радиуса-вектора, и будет угловой частотой переменного тока — ?.
Итак,
?= 6,28*f = 2f
Фаза переменного тока.
Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока. Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза показывает, убывает ли ЭДС или возрастает.
Рисунок 3. Фаза переменного тока.
Полный оборот радиуса-вектора равен 360°. С началом нового оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следовательно, все фазы ЭДС будут повторяться в прежнем порядке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обоих этих случаях радиус-вектор занимает одинаковое положение, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Похожие материалы:
Добавить комментарий
Содержание:
Синусоидальные э.д.с. и ток:
Получение, передача и использование электрической энергии осуществляются в основном с помощью устройств и сооружений переменного тока. Для этого применяют генераторы, трансформаторы, линии передачи и распределительные сети переменного тока. Наиболее широко применяют приемники электрической энергии, работающие на переменном токе.
Переменным электрическим током называется электрический ток, изменяющийся с течением времени (см. рис. 2.1, кривые 2, 3).
Периодический электрический ток, являющийся синусоидальной функцией времени, называется синусоидальным электрическим током.
Такой ток в практике обычно имеют в виду, когда говорят о переменном токе. В некоторых случаях ток изменяется по периодическому несинусоидальному закону.
В линейных электрических цепях переменный синусоидальный ток возникает под действием э. д. с. такой же формы. Поэтому для изучения электрических устройств и цепей переменного тока необходимо прежде рассмотреть способы получения синусоидальной э. д. с. и основные понятия, относящиеся к величинам, которые изменяются по синусоидальному закону.
Получение синусоидальной э.д.с.
Для получения э. д. с. синусоидальной формы генератор переменного тока промышленного типа имеет определенные конструктивные особенности. Однако принципиально синусоидальную зависимость э. д. с. от времени можно получить, вращая с постоянной частотой в равномерном магнитном поле проводник в виде прямоугольной рамки (рис. 12.1).
Рис. 12.1. Прямоугольная рамка в магнитном поле
Вращение витка в равномерном магнитном поле
Согласно формуле (10.5), э. д. с. в рамке, имеющей два активных проводника длиной l,
При равномерном вращении рамки линейная скорость проводника не изменяется:
а угол между направлением скорости и направлением магнитного поля изменяется пропорционально времени:
Угол β определяет положение вращающейся рамки относительно плоскости, перпендикулярной направлению магнитной индукции. (Положение рамки в момент начала отсчета времени t = 0 характеризуется углом β = 0.) Поэтому э. д. с. в рамке является синусоидальной функцией времени
Наибольшей величины э. д. с. достигает при угле
В рассмотренном случае синусоидальное изменение э. д. с. достигается за счет непрерывного изменения угла, под которым проводники пересекают линии магнитной индукции. Однако такой способ получения э. д. с. в практике не применяется, так как трудно создать равномерное поле в достаточно большом объеме.
Генератор переменного тока
В электромашинных генераторах переменного тока промышленного типа синусоидальная э. д. с. получается при постоянном угле, но в неравномерном магнитном поле.
Магнитное поле генератора (радиальное) в воздушном зазоре между статором и ротором направлено по радиусам окружности ротора (рис. 12.2, а). Магнитная индукция вдоль воздушного зазора распределена по закону, близкому к синусоидальному. Такое распределение достигается соответствующей формой полюсных наконечников. Синусоидальный закон распределения магнитной индукции вдоль воздушного зазора показан на рис. 12.2, б в развернутом виде.
Рис. 12.2. Схема генератора переменного тока. Распределение магнитной индукции вдоль воздушного зазора
Рис. 12.3. Схема генератора переменного тока с двумя парами полюсов на роторе
Рис. 12.4. Схема генератора с тремя витками (обмотками)
В любой точке воздушного зазора, положение которой определяется углом β, отсчитанным от нейтральной плоскости (нейтрали) против движения часовой стрелки, магнитная индукция выражается уравнением
Нейтральная плоскость перпендикулярна оси полюсов и делит магнитную систему на симметричные части, из которых одна относится к северному полюсу, а другая — к южному.
Наибольшую величину магнитная индукция имеет под серединой полюсов, т. е. при углах и
На нейтрали (при β = 0 и β = 180°) магнитная индукция равна нулю (В = 0).
На рис. 12.3 показана конструктивная схема генератора переменного тока с двумя парами полюсов, расположенных на роторе, а проводники обмотки, где наводится э. д. с., помещены в пазах сердечника статора.
Отметим еще одну разновидность генераторов переменного тока — генератор с тремя обмотками (трехфазный генератор), которые на схеме рис. 12.4 представлены тремя витками на роторе (у турбогенераторов и гидрогенераторов эти обмотки находятся на статоре). Плоскости витков находятся под углом 120° друг к другу.
Э.Д.С. в обмотке генератора
При равномерном вращении ротора в его обмотке (на рис. 12.2, а — в витке) наводится э. д. с., определяемая формулой (10.4),
Подставляя выражение магнитной индукции (12.3), получим
При β = 90°, т. е. в положении проводника под серединой полюса, наводится наибольшая э. д. с.
Уравнение э. д. с. можно записать так:
Учитывая формулу (12.1), получим такую же зависимость э.д.с. от времени, как при вращении рамки (см. рис. 12.1), считая начальным положение витка (t = 0), когда его плоскость совпадает с нейтралью:
Таким образом, и в данном случае э. д. с. является синусоидальной функцией времени (рис. 12.5). Такой же результат получается, если вращать полюса, а проводники оставить неподвижными.
Рис. 12.5. График синусоидальной э. д. с.
В прямоугольной системе координат э. д. с. можно изобразить в функции угла или в функции времени t. Зависимость
и
можно изобразить одной кривой, но при разных масштабах по оси абсцисс, отличающихся в ω раз.
Если обмотку генератора замкнуть через сопротивление, то в образовавшейся цепи возникает синусоидальный ток, повторяющий по форме кривую э. д. с.
Полагая сопротивление цепи линейным, равным R, получим для тока такое выражение:
где — наибольшая величина тока.
Напряжение и ток синусоидальной формы можно получить при помощи генераторов, не имеющих вращающихся частей и магнитных полюсов, например ламповых генераторов.
Задача 12.1.
Э. д. с. электромашинного генератора выражается уравнением .
Определить число пар полюсов этого генератора, если известна частота вращения ротора n = 75 об/мин.
На какой угол в пространстве поворачивается ротор генератора за 1/4 периода?
Решение. Период э. д. с., наводимой в обмотке генератора (см. рис. 12.2), имеющего одну пару полюсов, равен времени полного оборота ротора. Угловую скорость вращения ротора можно определить отношением полного угла, соответствующего одному обороту ротора, к периоду:
Однако генератор может иметь не одну, а p пар полюсов (на рис. 12.3 p = 2). Полный цикл изменения э. д. с. в этом случае совершается при движении проводника мимо одной пары полюсов (как за полный оборот ротора в генераторе с p = 1), поэтому при одинаковой частоте вращения ротора период э.д. с. будет в p раз короче, а частота в р раз больше.
Уменьшение периода и соответствующее увеличение частоты при данном числе пар полюсов можно получить, увеличивая частоту вращения ротора.
Частота синусоидальной э. д.с. при р = 1 равна числу оборотов ротора в секунду, а при р > 1
где n — частота вращения ротора, об/мин.
Из уравнения э. д. с. известна угловая частота ω = 314 рад/с; при этом
При частоте вращения ротора n = 75 об/мин
При р = 1 за 1/4 периода ротор повернется на 1/4 окружности, т. е. в угловой мере на 90º. При р = 40 угол поворота ротора за 1/4 периода будет в р раз меньше:
Уравнения и графики синусоидальных величин
Анализ электрических цепей переменного тока невозможно проводить без выражения э. д. с. токов, напряжений их уравнениями. Для наглядности применяются графики этих величин в прямоугольной системе координат. Поэтому рассмотрим уравнения и графики синусоидальных величин более подробно.
Уравнения и графики
Уравнение (12.4) записано для случая, когда начало отсчета времени (t = 0) совпадает с моментом прохождения витка через нейтраль (на рис. 12.2, а положение 1, в котором плоскость витка совпадает с нейтралью).
На рис. 12.4 положение витков тоже соответствует началу отсчета времени (t = 0) и определяется для каждого из них углом, отсчитанным от нейтрали до плоскости витка: для первого витка этот угол для второго —
и третьего —
При вращении ротора э. д. с. будет наводиться во всех витках, но уравнения э.д.с. не будут одинаковыми. Действительно, при = 0 э. д. с. в витках:
Эта зависимость э. д. с. от начального положения витка учитывается введением в уравнение начального угла.
С учетом начального угла э. д. с. витка С выражается уравнением
э. д. с. витка B
Таким образом, в общем виде, уравнение э. д. с. должно быть записано так:
Из этого уравнения можно определить величину э. д. с. в любой момент при произвольном начальном положении витка.
На рис. 12.6 в соответствии с уравнением (12.6) построены графики э.д.с.трех витков, отличающихся в момент начала отсчета времени расположением относительно нейтральной плоскости (eA при eC при
eB при
).
Рис. 12.6. Графики э. д. с., сдвинутых по фазе
Характеристики синусоидальных величин
Уравнением и графиком задаются все характеристики синусоидально изменяющейся величины: амплитуда, угловая частота, начальная фаза, период, частота и для любого момента времени мгновенная величина.
Далее приведены определения этих характеристик, и они показаны на рис. 12.7 применительно к синусоидальной э. д. с. Определения распространяются на все величины, изменяющиеся по синусоидальному закону (ток, напряжение и др.).
Рис. 12.7. К вопросу о характеристиках периодической э. д. с.
Мгновенная величина (или мгновенное значение) э. д. с. е — величина э. д. с. в рассматриваемый момент времени. Мгновенная э. д. с. определяется уравнением (12.6) при подстановке в него времени t, прошедшего от начала отсчета до данного момента.
Период Т — наименьший интервал времени, по истечении которого мгновенные величины периодической э. д. с.. повторяются. Если аргумент синусоидальной функции выражается в углах, то период выражается постоянной величиной 2π.
Частота f — величина, обратная периоду:
т. е. частота равна числу периодов переменной э. д. с. в секунду. Частота выражается в герцах (Гц): 1 Гц = 1/с.
Амплитуда Еm — наибольшая величина, которую принимает э. д. с. в течение периода. Амплитуда является одной из мгновенных величин, которая соответствует аргументу равному
, где k — любое целое число или нуль.
Фаза (фазовый угол ) — аргумент синусоидальной э.д.с., отсчитываемый от ближайшей предшествующей точки перехода э. д. с. через нуль к положительному значению. Фаза в любой момент времени определяет стадию гармонического изменения синусоидальной э. д. с.
Начальная фаза ψ — фаза синусоидальной э.д.с. в начальный момент времени.
Две синусоидальные величины, имеющие разные начальные фазы, называются сдвинутыми по фазе.
Угловая частота ω — скорость изменения фазы. За время одного периода Т фазовый угол равномерно изменяется на 2π, поэтому
Задача 12.4.
Переменный электрический ток задан уравнением
Определить период, частоту этого тока и мгновенные величины его при t = 0; t1 = 0,152 с. Построить график тока.
Решение. Уравнение синусоидального тока в общем случае имеет вид
Сопоставляя это уравнение с заданным частным уравнением тока, устанавливаем, что амплитуда Im = 100 А, угловая частота ω = 628 рад/с, начальная фаза ψ = —60°. Период
Частота
Рис. 12.8. К задаче 12.4
Мгновенные величины тока найдем, подставив в уравнение тока заданные значения времени:
при t = 0
при t1 = 0,152 с
Синусоидальная величина через 360° повторяется, поэтому мгновенный ток при угле будет таким же, как и при угле
:
Для построения графика нужно определить ряд мгновенных токов, соответствующих различным моментам времени (рис. 12.8).
Векторные диаграммы
До сих пор величины, изменяющиеся по синусоидальному закону, задавали уравнениями и изображали графиками в прямоугольной системе координат. При расчете электрических цепей переменного тока пользуются весьма простым и наглядным способом графического изображения синусоидальных величин при помощи вращающихся векторов.
Обоснование векторной диаграммы
Предположим, что ток задан уравнением
Проведем две взаимно перпендикулярные оси и из точки пересечения осей проведем вектор Im, длина которого в определённом масштабе Mi выражает амплитуду тока Im:
Рис. 12.10. К вопросу о векторной диаграмме
Направление вектора выберем так, чтобы с положительным направлением горизонтальной оси вектор составлял угол, равный начальной фазе ψ (рис. 12.10).
Проекция этого вектора на вертикальную ось определяет мгновенный ток в начальный момент времени:
Представим себе, что вектор Im вращается против движения часовой стрелки с угловой скоростью, равной угловой частоте ω. Его положение в любой момент времени определяется углом
Тогда мгновенный ток для произвольного момента времени t можно определить проекцией вектора Im на вертикальную ось в этот момент времени.
Например, для t = t1
в общем случае
Получили такое же уравнение, каким был задан переменный ток, что свидетельствует о возможности изображения тока вращающимся вектором при нанесении его на чертеж: в начальном положении.
Построение векторной диаграммы
Вращая вектор Im‘ против движения часовой стрелки, в прямоугольной системе координат построим график изменения проекции его на вертикальную ось в пределах одного оборота (одного периода). Получим известный уже график синусоидальной функции, соответствующий заданному уравнению.
При построении векторов положительные углы отсчитывают от положительного направления горизонтальной оси против вращения часовой стрелки, а отрицательные — по ее движению.
В процессе расчета электрической цепи определяется ряд синусоидальных величин. Все их можно изобразить на одном чертеже при помощи вращающихся векторов, привязав к одной паре взаимно перпендикулярных осей.
Совокупность векторов, изображающих на одном чертеже несколько синусоидальных величин одинаковой частоты в начальный момент времени, называется векторной диаграммой. Например, напряжение и ток в электрической цепи выражаются уравнениями
Векторная диаграмма такой цепи изображена на рис. 12.11. Если выбрать масштабы напряжения и тока
то
Рис. 12.11. Векторная диаграмма тока и напряжения
Векторная диаграмма содержит векторы синусоидальных величин одинаковой частоты, поэтому они вращаются с одинаковой частотой и их взаимное расположение не меняется.
Начало отсчета времени выбирают произвольно, поэтому один из векторов диаграммы можно направить произвольно; остальные же нужно располагать с учетом сдвига фаз по отношению к первому или предыдущему вектору.
Сложение и вычитание векторов
Простота и наглядность векторных диаграмм — не единственное и не главное достоинство способа изображения синусоидальных величин. Требуется сложить, например, два тока, заданных уравнениями
Выражение суммы
оказывается громоздким, из него не видны амплитуда и начальная фаза результирующего тока.
Можно графически сложить два заданных тока, построив их в одной системе координат и для ряда аргументов, найдя сумму двух ординат. Через полученные точки проведем кривую суммы, увидим, что эта кривая тоже синусоида с таким же периодом, как и слагаемые. По кривой общего тока можно найти амплитуду и начальную фазу. Громоздкость и неудобство такого сложения очевидны.
Очень просто сложение и вычитание синусоидальных величин осуществляется по правилам сложения и вычитания векторов.
Рис. 12.12. Сложение векторов
Сложим два заданных тока i1 и i1 по известному правилу сложения векторов (рис. 12.12, а). Для этого изобразим токи в виде векторов из общего начала 0. Результирующий вектор найдем как диагональ параллелограмма, построенного на слагаемых векторах:
Сложение векторов, особенно трех и более, удобнее вести в таком порядке: один вектор остается на месте, другие переносятся параллельно самим себе так, чтобы начало последующего вектора совпало с концом предыдущего.
Вектор Im, проведенный из начала первого вектора в конец последнего, представляет собой сумму всех векторов (рис. 12.12, б).
Вычитание одного вектора из другого выполняют сложением прямого вектора — уменьшаемого и обратного — вычитаемого (рис. 12.13):
Рис. 12.13. Вычитание векторов
Рис. 12.14. Частные случаи сложения векторов
При сложении синусоидальных величин в отдельных случаях можно применить аналитическое решение: применительно к рис. 12.12, а — по теореме косинусов; к рис. 12.14, а — сложение модулей векторов; б — вычитание модулей векторов, в — по теореме Пифагора.
Задача 12.7. Два тока заданы уравнениями
Найти уравнения токов:
Решение. Решение задачи проще всего выполнять графически в векторной форме. Для этого изобразим векторы заданных токов. Масштаб тока выбираем так, чтобы наибольший вектор поместился на имеющемся листе бумаги, одновременно учитывая возможность отчетливого изображения наименьшего вектора.
При разборе решения рекомендуется провести построения по рис. 12.15 на листе миллиметровой бумаги в масштабе В этом масштабе длина векторов
Длину вектора суммы определяют графически (рис. 12.15, а):
Рис. 12.15. К задаче 12.7
Начальная фаза этого вектора по чертежу
Уравнение суммы токов
В таком же порядке найдены векторы разностей токов (рис. 12.15, б, в). Вычитаемые векторы взяты в противофазе с заданными.
После измерения длин векторов и начальных фаз напишем уравнения разностей токов:
Действующая и средняя величины переменного тока
О переменном токе все известно, если задано его уравнение или график. Однако в практике пользоваться уравнениями или графиками токов затруднительно.
Переменный ток обычно характеризуется его действующей величиной I. При изучении выпрямительных устройств и электрических машин пользуются средними величинами э. д. с., тока, напряжения.
Действующая величина переменного тока
При определении действующей величины переменного тока можно исходить из какого-либо его действия в электрической цепи (теплового, механического взаимодействия проводов с токами).
На рис. 12.18 изображены графики двух токов: постоянного 1 и переменного 2, причем величина постоянного тока равна амплитуде переменного.
Постоянный ток, равный амплитуде переменного, выделит больше тепла в одном и том же элементе цепи за однj и то же время, так как переменный ток в течение полупериода меньше постоянного, и лишь одно мгновение эти токи равны.
Действующая величина переменного тока I численно равна величине постоянного тока, который в одном и том же элементе цепи за время периода Т выделяет столько же тепла, сколько при тех же условиях выделяет переменный ток.
Действующая величина переменного тока I меньше амплитуды (прямая 3 на рис. 12.18).
Рис. 12.18. К определению действующей величины переменного тока
Определим количество тепла, выделяемого за период Т постоянным током, равным I, и переменным током (см. рис. 12.18) в элементе цепи с сопротивлением R:
Приравнивая найдем
Действующая величина периодического тока является его средней квадратичной за период.
Ее можно найти из уравнения (12.9), но для наглядности воспользуемся графическим решением поставленной задачи.
Среднеквадратичную величину переменного тока за период можно представить в виде квадратного корня из суммы очень большого числа ординат кривой i2(t), разделенной на число ординат n:
где в числителе подкоренного выражения представлена сумма квадратов ряда мгновенных токов в течение периода, n — число этих значений, стремящееся к ∞.
На рис. 12.19 показаны ряд положений вращающегося с угловой скоростью ω вектора тока Im и соответствующие им мгновенные токи i. Эти положения отмечены точками 0, 1, 2 и т. д. на окружности, которую описывает конец вектора Im.
Рассмотрим два положения вектора Im (отмечены точками 2 и 8), отстоящие по окружности на 90°, т. е. находящиеся соответственно в первой и второй четвертях окружности. Прямоугольные треугольники 6′-2-2′ и 6′-8-8′ равны, так как равны их стороны: 2-2′ = 6′-8′ и 2′-6′ = 8-8′. Из этих треугольников следует:
Рис. 12.19. К определению действующей и средней величины синусоидального тока
Каждому положению вектора Im в первой четверти соответствует другое его положение во второй, для которых можно написать аналогичное выражение. Такие рассуждения можно провести для другой полуокружности, т. е. распространить их на второй полупериод тока, причем квадраты отрицательных мгновенных токов будут положительны, поэтому
Подставляя это выражение в (12.10), получим
Таким образом, действующая величина синусоидального тока меньше его амплитуды в раза.
Понятие о действующей величине можно распространить на все синусоидальные функции и, следовательно, говорить о действующей величине напряжения, э. д. с.
Действующие величины тока, напряжения измеряются электроизмерительными приборами. Номинальные токи и напряжения электротехнических устройств выражаются действующими величинами. Введя понятие о действующей величине, в дальнейшем векторные диаграммы будем строить для действующих величин напряжений и токов.
Отношение амплитуды к действующей величине называется коэффициентом амплитуды Ка. Для синусоидальной функции этот коэффициент равен ; если кривая тока или напряжения имеет более острую форму, чем синусоида, то Ка >
, в противном случае Ка <
(при прямоугольной форме Ка = 1).
Средняя величина переменного тока
Средней величиной переменного тока (э. д. с., напряжения) называется среднее арифметическое из всех мгновенных величин за полупериод.
Средняя величина равна высоте прямоугольника с основанием π (в угловой мере), площадь которого равна площади S, ограниченной положительной полуволной тока и осью абсцисс (см. рис. 12.19),
Для определения площади S нужно сложить в пределах полупериода элементарные площади dS, одна из которых на рисунке показана при некотором угле ωt и мгновенной величине тока i.
При малом изменении угла значение тока можно считать постоянным, поэтому
Изменению угла на dωt соответствует поворот на такой же угол вектора Im, конец которого опишет дугу 2-3 длиной
поэтому
Длину дуги dl можно считать равной гипотенузе прямоугольного треугольника 2-3-3″. Этот треугольник имеет взаимно перпендикулярные стороны с треугольником 2-6′-2′, поэтому углы при вершинах 3 и 6′ равны ωt. Сторона 2-3″ треугольника 2-3-3″ равна проекции гипотенузы 2-3 на горизонтальную ось:
Такие же рассуждения можно привести для последующих и предыдущих изменений угла ωt на dωt. Следовательно, сумму S элементарных площадей dS, взятую за полупериод, можно приравнять проекции полуокружности на ее диаметр:
Таким образом,
Средняя величина синусоидального тока
Средняя величина синусоидальной функции за период равна нулю, так как площади положительной и отрицательной полуволн равны.
Отношение действующей величины к средней называется коэффициентом формы кривой Кф:
Для синусоиды
Найдем среднюю и действующую величины э. д. с., наводимой в прямоугольном витке (см. рис. 12.1) при вращении его в равномерном магнитном поле с постоянной угловой скоростью. Для этого в формуле (12.2) обозначим: — площадь витка;
— наибольшая величина магнитного потока, сцепленного с витком.
Амплитуда э. д. с. при наличии N витков
Средняя величина э. д. с.
Действующая величина э. д. с.
Задача 12.10.
Определить действующую величину э. д. с., наводимой в прямоугольной рамке, имеющей N = 10 витков, при вращении ее в равномерном магнитном поле В = 1,2 Тл с постоянной угловой скоростью ω = 314 рад/с (см. рис. 12.1). Размеры рамки: ширина D = 20 см, активная длина одной стороны l = 30 см.
Рис. 12.20. К задаче 12.10
Решение. Начальным положением рамки будем считать положение, когда плоскость рамки перпендикулярна направлению поля (β = 0). Магнитный поток, сцепленный с витками рамки, в этом положении наибольший:
По мере поворота рамки против движения часовой стрелки магнитный поток уменьшается и при β = 90° становится равным нулю.
Уравнение магнитного потока следующее:
где ωt = β — переменный угол, определяющий положение рамки относительно плоскости, перпендикулярной направлению магнитного поля.
Средняя з. д. с.
Действующая величина э. д. с.
- Электрические цепи с взаимной индуктивностью
- Резонанс в электрических цепях
- Соединение звездой и треугольником в трехфазных цепях
- Принцип действия асинхронного и синхронного двигателей
- Фильтры и топологические методы анализа линейных электрических цепей
- Электрическое поле и его расчёт
- Расчет неразветвленной однородной магнитной цепи
- Энергия магнитного поля
Теория / 4.2. Основные параметры синусоидального тока
Анализ электрических цепей, в которых действуют
сигналы любой формы, можно свести к анализу цепей с синусоидальными
воздействиями. Поэтому изначально рассмотрим все особенности расчета цепей,
относящиеся к синусоидальным токам и напряжениям, а затем обобщим их на цепи с
другими видами воздействия.
Рассмотрим основные понятия, характеризующие переменный синусоидальный ток.
Синусоидальный ток является периодическим. Пусть ток изменяется
по закону синусов
График этой функции показан на рис. 4.3.
Дадим определение основным параметрам
синусоидального тока.
Мгновенное значение – это значение тока в данный момент времени.
Мгновенное значение меняется от точки к точке и обозначается строчной буквой i. Например, в момент времени t1 мгновенное
значение будет i1, в
момент времени t2 мгновенное значение будет i2.
Мгновенные значения переменного тока в течение одной
половины периода положительны, а в другие полпериода отрицательны. Одно из двух
возможных направлений тока в проводнике принимается условно за положительное
направление, этому направлению
соответствуют положительные мгновенные значения. И наоборот, другому
направлению тока в проводнике будут соответствовать отрицательные мгновенные
значения.
Введение понятия положительных направлений токов, ЭДС
и напряжений необходимо, во-первых, для правильного составления уравнений
Кирхгофа при расчете электрических цепей, а во-вторых – для анализа магнитных
цепей, так как направление магнитных потоков зависит от направления токов в проводниках.
Амплитуда – наибольшее значение переменного
тока. Амплитуда – это мгновенное значение, которое достигается в моменты
времени, для которых угол
Амплитуда тока
обозначается прописной буквой с индексом
– Im. Аналогично обозначаются амплитуды
напряжений – Um и
ЭДС – Em.
Периодом Т называется наименьший промежуток времени, за который мгновенное
значение тока, пройдя полный цикл, достигает первоначального значения. Период
измеряется в секундах [c].
Частота переменного
тока (циклическая) – величина, обратная периоду
Так как время
Т измеряется в секундах, частота f измеряется в или герцах. На
практике, как правило, пользуются понятием частоты, а не периода. Международная
стандартная частота равна 50 Гц.
Только в США и Японии применяется ток с частотой 60 Гц. В некоторых случаях применяется оборудование, работающее на
нестандартных частотах. Например, в авиации с целью уменьшения веса
оборудования используют частоту 400 – 800 Гц. В радиотехнике и технике связи передача
информации осуществляется на частотах до нескольких тысяч мегагерц.
Фаза или фазовый
угол – это угловое значение аргумента синусоидальной функции
Начальная фаза – значение фазы синусоидального тока в начальный момент времени t = 0:
Угловая частота – скорость изменения фазового угла. За время, равное периоду,
фазовый угол равномерно изменяется на 2π. Поэтому угловую частоту можно
определить как
так как
то угловая частота связана с циклической соотношением: