Как найти третью космическую скорость

Если мы подбросим камень в воздух – он упадет на Землю. Если у самолета на высоте 10 километром отключаться двигатели – он тоже упадет на Землю. Но спутники и космические корабли, что мы запускаем в космос, не падают. Почему?

Все дело в том, с какой скоростью тот или иной объект удаляется от планеты. Хватит ли этому объекту энергии преодолеть притяжение планеты.

Оглавление

  • 1 Первая космическая скорость
    • 1.1 Расчет
  • 2 Вторая космическая скорость
    • 2.1 Расчет
  • 3
  • 4 Третья космическая скорость
    • 4.1 Расчет
  • 5 Четвертая космическая скорость
  • 6 Пятая космическая скорость
  • 7 Почему спутники не падают на Землю

Первая космическая скорость

Это та самая минимальная скорость для выхода корабля или спутника на круговую орбиту, равную радиуса планеты, без учета вращения планеты и сопротивления ее атмосферы.

Если скорость будет превышать первую, но не достигнет второй космической скорости, то траектория тела из круговой начнет переходить в эллиптическую.

Впервые такую скорость смог достичь первый искусственный спутник Земли «Спутник-1» СССР 4 октября 1957 года.

Расчет

Расчет первой космической скорости

Расчет первой космической скорости

Расчет первой космической скорости

Первая космичсекая скорость

Вторая космическая скорость

Это минимальная скорость, которую следует придать телу для того, чтобы оно покинуло замкнутую орбиту и смогло улететь от небесного тела за пределы его гравитационного поля.

Иными словами, для Земли, это та скорость, с которой должны двигаться космические аппараты (КА) для полетов к другим объектам Солнечной системы: Луны, Марса и т.д.

Движение тела на второй космической скорости происходит по параболической траектории.

Впервые такую скорость развил Советский космический аппарат Луна-1 2 января 1959 года, чтобы преодолеть расстояние от Земли до Луны и изучить наш естественный спутник.

Расчет

Расчет второй космической скорости

Расчет второй космической скорости

Вторая космическая скорость

Третья космическая скорость

Такую скорость необходимо придать телу, чтобы оно смогло покинуть Солнечную систему. Так как 99,8% массы Солнечной системы приходится на Солнце, то можно сказать, что КА надо преодолеть гравитационное притяжение Солнца.

Расчет

Расчет третьей космической скорости

Расчет третьей космической скоростиРасчет третьей космической скорости

Для Солнечной системы это величина равна 16,650 км/с.

Самое выгодное расположение космодрома для подобного запуска – максимально близко к экватору, так как на экваторе самая большая скорость собственного вращения Земли вокруг своей оси и направление движения в сторону вращения Земли и в сторону орбитального движения Земли по орбите.

КА «Новые горизонты» покинул атмосферу Земли со скоростью близкой к третьей космической – 16,26 км /с. Относительно Солнца он имел скорость 45 км/с. Такой скорости недостаточно, чтобы покинуть Солнечную систему. Но благодаря гравитационному маневру у Юпитера, «Новые горизонты» добавил еще 4 км/с, что позволило ему покинуть Солнечную системы, предварительно показав нам карликовую планету Плутон.

Четвертая космическая скорость

Комические скорости

Эта та скорость, которая позволит покинуть галактику в данной точке.

Четвертая космическая в основном не зависит от месторасположения Земли в Млечном пути. Она зависит от расположения и плотности звездного вещества в окрестностях Солнечной системы. А эти данные пока мало изучены.
Для нашей части галактики четвертая космическая скорость примерно равна 550 км/с.

Пятая космическая скорость

Эта скорость редко применима и является больше «фантазией», так как такую скорость необходимо развить для путешествия на другую планету в другую звездную систему, независимо от их взаимного расположения, с траекторией перпендикулярно плоскости эклиптики.

Для Земли эта скорость будет равна 43,6 км/с.

Почему спутники не падают на Землю

Спутник на орбите

Этот вопрос поднимался в самом начале статьи. Теперь давайте на него ответим.

На спутник на орбите действует сила тяжести со стороны Земли. И под действием этой силы спутнику логичнее упасть.
Но, он летит вокруг Земли с первой космической скоростью – 7,9 км/с. Вспомните, чем больше скорость – тем сложнее затормозить. Вот и здесь, спутник и хотел бы упасть, но он не может затормозить и просто пролетает мимо Земли по инерции, тем самым продолжая бесконечное падение.

То есть, спутники падают, но промахиваются и не попадают в Землю.

Еще больше космоса и интересных фактов в телеграмм-канале.

   Третья космическая скорость — минимальная скорость, которую необходимо придать находящемуся вблизи поверхности Земли телу, чтобы оно могло преодолеть гравитационное притяжение Земли и Солнца и покинуть пределы Солнечной системы.

где v3 — третья космическая скорость, а v1 и v2 — первая для Солнца и вторая для планеты космические скорости соответственно.

Полезная информация о третьей космической скорости:

   У поверхности Земли третья космическая скорость равна 16,7 км/с.

   При начальной скорости больше 7,9 км/с, но меньше 11,2 км/с космический аппарат движется вокруг Земли по криволинейной траектории — эллипсу. Чем больше начальная скорость, тем все более вытянут эллипс.

   При достижении некоторого значения скорости, называемого второй космической скоростью, эллипс превращается в параболу и космический корабль уходит от Земли безвозвратно. У поверхности Земли вторая космическая скорость равна 11,2 км/с. При скорости более второй космической тело движется по гиперболической траектории.

   При старте с Земли, наилучшим образом используя осевое вращение (≈0,5 км/с) и орбитальное движение планеты (≈29,8 км/с), космический аппарат может достичь третьей космической скорости уже при ~16,6 км/с относительно Земли. Для исключения влияния атмосферного сопротивления предполагается, что космический аппарат приобретает эту скорость за пределами атмосферы Земли. Наиболее энергетически выгодный старт для достижения третьей космической скорости должен осуществляться вблизи экватора, движение объекта должно быть сонаправлено осевому вращению Земли и орбитальному движению Земли вокруг Солнца. При этом скорость движения аппарата относительно Солнца составит 29,8 + 16,6 + 0,5 = 46,9 км/с.

   Траектория аппарата, достигшего третьей космической скорости, будет частью ветви параболы, а скорость относительно Солнца будет асимптотически стремиться к нулю.

   На 2012 год ещё ни один космический аппарат не покидал окрестностей Земли с третьей космической скоростью. Наибольшей скоростью покидания Земли обладал космический аппарат Новые горизонты — 16,21 км/с, но за счёт гравитационного маневра у Юпитера, он покинет Солнечную систему со скоростью около 30 км/с после окончания основной части своей миссии. Аналогичным образом ускорялись и другие космические аппараты, уже покинувшие Солнечную систему (Вояджер-1, Вояджер-2, Пионер-10 и Пионер-11). Все они покидали окрестности Земли со скоростями, существенно меньшими третьей космической.

Так же есть:

Первая космическая скорость: 

Вторая космическая скорость :   

Обозначения:

 — Первая космическая скорость

 — Вторая космическая скорость

 — Гравитационная постоянная

 — Масса Земли

 — Радиус Земли

 — Высота тела над поверхностью Земли

g — Ускорение свободного падения у поверхности Земли

Содержание

  1. Первая космическая скорость
  2. Вторая космическая скорость
  3. Третья космическая скорость
  4. Четвёртая и пятая космическая скорости

Любой предмет, будучи подброшенным вверх, рано или поздно оказывается на земной поверхности, будь то камень, лист бумаги или простое перышко. В то же время, спутник, запущенный в космос полвека назад, космическая станция или Луна продолжают вращаться по своим орбитам, словно на них вовсе не действует сила притяжения нашей планеты. Почему так происходит?

На нашей Земле всемирное тяготение воздействует на любое материальное тело. Тогда логично будет предположить, что есть некая сила, нейтрализующая действие гравитации. Эту силу принято называть центробежной.

Центробежную силу легко ощутить привязав на один конец нитки небольшой груз и раскрутив его по окружности. При этом чем больше скорость вращения тем сильнее натяжение нити, а чем медленнее вращаем мы груз тем больше вероятность, что он упадет вниз.

Траектория полета космических кораблей

Таким образом мы вплотную приблизились к понятию «космическая скорость». Простыми словами — это скорость, позволяющая любому объекту преодолеть тяготение небесного тела и их системы.  Космические скорости используются для характеристики типа движения космического аппарата в сфере действия небесных тел: Солнца, Земли и Луны, других планет и их естественных спутников, а также астероидов и комет.

Это также значит, что космическая скорость есть у каждого объекта, который движется по орбите. Размер и форма орбиты космического объекта зависят от величины и направления скорости, которую данный объект получил на момент выключения двигателей, и высоты, на которой произошло данное событие.

Космическая скорость (первая v1, вторая v2, третья v3 и четвёртая v4) — это минимальная скорость, при которой какое-либо тело в свободном движении сможет:

  • v1 — стать спутником небесного тела (то есть способность вращаться по орбите вокруг небесного тела и не падать на его поверхность);
  • v2 — преодолеть гравитационное притяжение небесного тела и начать двигаться по параболической орбите;
  • v3 — покинуть при запуске планету, преодолев притяжение Звезды;
  • v4 — при запуске из планетной системы объект покинул Галактику.

Космические скорости могут быть рассчитаны для любого удаления от центра Земли. Однако в космонавтике часто используются величины, рассчитанные конкретно для поверхности шаровой однородной модели Земли радиусом 6371 км.

Первая космическая скорость

Первая космическая скорость или Круговая скорость V1 — скорость, которую необходимо придать объекту без двигателя, пренебрегая сопротивлением атмосферы и вращением планеты, чтобы вывести его на круговую орбиту с радиусом, равным радиусу планеты.

Иными словами, первая космическая скорость — это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.

Формула

где   G — гравитационная постоянная (6,67259·10−11 м³·кг−1·с−2), — первая космическая скорость. Подставляя численные значения (для Земли M = 5,97·1024 кг, R = 6 378 км), найдем

7,9 км/с

Первую космическую скорость можно определить через ускорение свободного падения —

Вторая космическая скорость

Вторая космическая скорость (параболическая скорость, скорость убегания) — наименьшая скорость, которую необходимо придать объекту (например, космическому аппарату), масса которого пренебрежимо мала относительно массы небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела.

Предполагается, что после приобретения телом этой скорости оно не получает негравитационного ускорения (двигатель выключен, атмосфера отсутствует).

Вторая космическая скорость определяется радиусом и массой небесного тела, поэтому она своя для каждого небесного тела (для каждой планеты) и является его характеристикой:

  • для Земли вторая космическая скорость равна 11,2 км/с. Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца.
  • для Солнца вторая космическая скорость составляет 617,7 км/с.
  • для Луны скорость убегания равна 2,4 км/с, несмотря на то, что в действительности для удаления тела на бесконечность с поверхности Луны необходимо преодолеть притяжение Земли, Солнца и Галактики.

Параболической вторая космическая скорость называется потому, что тела, имеющие вторую космическую скорость, движутся по параболе.

Формула

Для получения формулы второй космической скорости удобно обратить задачу — спросить, какую скорость получит тело на поверхности планеты, если будет падать на неё из бесконечности. Очевидно, что это именно та скорость, которую надо придать телу на поверхности планеты, чтобы вывести его за пределы её гравитационного влияния .

Третья космическая скорость

Третья космическая скорость минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение Солнца и в результате уйти за пределы Солнечной системы.

Только на космических кораблях, которым доступны такие скорости, принципиально могут быть осуществлены пилотируемые межзвёздные перелёты к планетным системам других звёзд.

Взлетая с поверхности Земли и наилучшим образом используя орбитальное движение планеты космический аппарат может достичь третей космической скорости уже при 16,6 км/с относительно Земли, а при старте с Земли в самом неблагоприятном направлении его необходимо разогнать до 72,8 км/с.

Здесь для расчёта предполагается, что космический аппарат приобретает эту скорость сразу на поверхности Земли и после этого не получает негравитационного ускорения (двигатели выключены и сопротивление атмосферы отсутствует).  Если к тому же учесть притяжение других планет, которое может как ускорить, так и притормозить аппарат, то диапазон возможных значений 3-й космической скорости станет еще больше.

При наиболее энергетически выгодном старте скорость объекта должна быть сонаправлена скорости орбитального движения Земли вокруг Солнца. Орбита такого аппарата в Солнечной системе представляет собой параболу.

Четвёртая и пятая космическая скорости

Четвёртая космическая скорость — минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение галактики Млечный Путь. Она используется довольно редко.

Четвёртая космическая скорость не постоянна для всех точек Галактики, а зависит от расстояния до центральной массы.

Для нашей галактики таковой является объект Стрелец A*, сверхмассивная чёрная дыра.

По грубым предварительным расчётам в районе нашего Солнца четвёртая космическая скорость составляет около 550 км/с. Значение сильно зависит не только (и не столько) от расстояния до центра галактики, а от распределения масс вещества по Галактике, о которых пока нет точных данных, ввиду того что видимая материя составляет лишь малую часть общей гравитирующей массы, а все остальное — скрытая масса.

Ещё реже в некоторых источниках встречается понятие «пятая космическая скорость». Это скорость, позволяющая добраться до иной планеты звездной системы вне зависимости от разности плоскостей эклиптики планет. Например, для Солнечной системы и, конкретно, для Земли, чтобы орбита межпланетного перелета была перпендикулярной к земной орбите, нужна скорость запуска 43,6 километра в секунду.

Видео



Источники

    https://ru.wikipedia.org/wiki/Космическая_скорость

    https://mirznanii.com/a/9233/kosmicheskie-skorosti

    http://www.astronet.ru/db/msg/1162252

    https://fb.ru/article/54389/kosmicheskaya-skorost

Наша компания имеет богатый опыт сотрудничества и участия в тендерах с государственными и частными компаниями. Мы предлагаем большой набор готовых решений для образовательных учреждений, а также работаем по индивидуальным техническим заданиям.

Если вы являетесь участником или организатором тендера или госзакупки, заполните, пожалуйста, форму и опишите свой запрос. Наш специалист по работе с корпоративными заказчиками обязательно с вами свяжется. Вы также можете связаться с нами по телефону: +7 (812) 418-29-44 (доб. 117 или доб. 106).

Тре́тья косми́ческая ско́рость — минимальная скорость, которую необходимо сообщить находящемуся вблизи поверхности Земли телу, чтобы оно могло преодолеть гравитационное притяжение Земли и Солнца и покинуть пределы Солнечной системы[1][2].

При старте с Земли, наилучшим образом используя осевое вращение (0.5 км/с) и орбитальное движение планеты (29,8 км/с), космический аппарат может достичь третьей космической скорости уже при 16,6 км/с[2] относительно Земли. Для исключения влияния атмосферного сопротивления предполагается, что космический аппарат приобретает эту скорость за пределами атмосферы Земли. Наиболее энергетически выгодный старт для достижения третьей космической скорости должен осуществляться вблизи экватора, движение объекта должно быть сонаправлено осевому вращению Земли и орбитальному движению Земли вокруг Солнца. При этом скорость движения аппарата относительно Солнца составит 29.8 + 16.6 + 0.5 = 46.9 км/сек.

Траектория аппарата, достигшего третьей космической скорости, будет частью ветви параболы, а скорость относительно Солнца будет асимптотически стремиться к нулю.

На 2012 год ещё ни один космический аппарат не покидал окрестностей Земли с третьей космической скоростью. Наибольшей скоростью покидания Земли обладал КА Новые горизонты — 16.21 км/сек, но за счёт гравитационного маневра у Юпитера, он покинет Солнечную систему со скоростью около 13 км/сек после окончания основной части своей миссии. Аналогичным образом ускорялись и другие КА, уже покинувшие Солнечную систему (Вояджер-1 Вояджер-2, Пионер-10 и Пионер-11). Все они покидали окрестности Земли со скоростями, существенно меньшими третьей космической.

Вычисление

Для расчёта третьей космической скорости можно воспользоваться следующей формулой[3]:

v_3=sqrt{(sqrt{2}-1)^2 v_1^2+v_2^2},

где v3 — третья космическая скорость, а v1 и v2 — первая для Солнца и вторая для планеты космические скорости соответственно.

Примечания

  1. Космические скорости
  2. 1 2 Из Большой Советской Энциклопедии
  3. Галузо И. В. Астрономия : учеб. пособие для 11-го кл. общеобразоват. учреждений с рус. яз. обучения / И. В. Галузо, В. А. Голубев, А. А. Шимбалёв. — 2-е изд., пересмотр. — Минск: Нар. асвета, 2009. — С. 70. — ISBN 978-985-03-1083-5.

См. также

  • Космическая скорость
  • Первая космическая скорость
  • Вторая космическая скорость
  • Четвёртая космическая скорость
  • Звездолёт

Примечания

Ссылки

 Просмотр этого шаблона Небесная механика
Законы и задачи Законы Ньютона • Закон всемирного тяготения • Законы Кеплера • Задача двух тел • Задача трёх тел • Гравитационная задача N тел • Задача Бертрана • Уравнение Кеплера
Небесная сфера Система небесных координат: галактическая • горизонтальная • первая экваториальная • вторая экваториальная • эклиптическая • Международная небесная система координат • Сферическая система координат • Ось мира • Небесный экватор • Прямое восхождение • Склонение • Эклиптика • Равноденствие • Солнцестояние • Фундаментальная плоскость
Параметры орбит Кеплеровы элементы орбиты: эксцентриситет • большая полуось • средняя аномалия • долгота восходящего узла • аргумент перицентра • Апоцентр и перицентр • Орбитальная скорость • Узел орбиты • Эпоха
Движение
небесных тел
Движение Солнца и планет по небесной сфере • Эфемериды
Конфигурации планет: противостояние • квадратура • парад планет • Кульминация • Сидерический период • Орбитальный резонанс • Период вращения • Предварение равноденствий • Синодический период • Сближение
Затмение: солнечное затмение • лунное затмение • сарос • Метонов цикл • Покрытие • Прохождение • Либрация • Элонгация • Эффект Козаи • Эффект Ярковского • Эффект Джанибекова
Астродинамика
Космический полёт Космическая скорость: первая (круговая) • вторая (параболическая) • третья • четвёртая
Формула Циолковского • Гравитационный манёвр • Гомановская траектория • Метод оскулирующих элементов • Приливное ускорение • Изменение наклонения орбиты • Стыковка • Точки Лагранжа • Эффект «Пионера»
Орбиты КА Геостационарная орбита • Гелиоцентрическая орбита • Геосинхронная орбита • Геоцентрическая орбита • Геопереходная орбита • Низкая опорная орбита • Полярная орбита • Тундра-орбита • Солнечно-синхронная орбита • Молния-орбита • Оскулирующая орбита

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти skype на телефоне
  • Как в вк найти вкладку нравится
  • Как найти площадь куба если знаем диагональ
  • Перед платья тянет назад как исправить
  • Как составить карточку клиенту

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии