Деление отрезка в заданном соотношении: координаты точки
Когда существуют условия деления отрезка в определенном отношении, необходимо уметь определять координаты точки, служащей разделителем. Выведем формулу для нахождения этих координат, поставив задачу на плоскости.
Определение координат точки, делящей отрезок в заданном отношении, на плоскости
Исходные данные: задана прямоугольная система координат O x y и две лежащие на ней, несовпадающие точки с заданными координатами A ( x A , y A ) и B ( x B , y B ) . А также задана точка С , делящая отрезок А В в отношении λ (некоторое положительное действительное число). Необходимо определить координаты точки С : x C и y C .
Перед тем, как приступить к решению поставленной задачи, немного раскроем смысл заданного условия: «точка С , делящая отрезок А В в отношении λ ». Во-первых, это выражение свидетельствует о том, что точка С лежит на отрезке А В (т.е. между точками А и В ). Во-вторых, понятно, что согласно заданному условию отношение длин отрезков А С и С В равно λ . Т.е. верно равенство:
В этом случае точка А – начало отрезка, точка В – конец отрезка. Если бы было задано, что точка С делит в заданном отношении отрезок В А , тогда верным было бы равенство: .
Ну и совсем очевидный факт, что если λ = 1 , то точка С является серединой отрезка А В .
Решим поставленную задачу при помощи векторов. Отобразим произвольно в некой прямоугольной системе координат точки А , В и точку С на отрезке А В . Построим радиус-векторы указанных точек, а также векторы A C → и C B → . Согласно условиям задачи, точка С делит отрезок А В в отношении λ .
Координаты радиус-вектора точки равны координатам точки, тогда верны равенства: O A → = ( x A , y A ) и O B → = ( x B , y B ) .
Определим координаты вектора : они будут равны координатам точки С , которые и требуется найти по условию задачи.
Используя операцию сложения векторов, запишем равенства: O C → = O A → + A C → O B → = O C → + C B → ⇔ C B → = O B → — O C →
По условию задачи точка С делит отрезок А В в отношении λ , т.е. верно равенство A C = λ · C B .
Векторы A C → и C B → лежат на одной прямой и являются сонаправленными. λ > 0 по условию задачи, тогда, согласно операции умножения вектора на число, получим: A C → = λ · C B → .
Преобразуем выражение, подставив в него : C B → = O B → — O C → .
A C → = λ · ( O B → — O C → ) .
Равенство O C → = O A → + A C → перепишем как O C → = O A → + λ · ( O B → — O C → ) .
Используя свойства операций над векторами, из последнего равенства следует: O C → = 1 1 + λ · ( O A → + λ · O B → ) .
Теперь нам остается непосредственно вычислить координаты вектора O C → = 1 1 + λ · O A → + λ · O B → .
Выполним необходимые действия над векторами O A → и O B → .
O A → = ( x A , y A ) и O B → = ( x B , y B ) , тогда O A → + λ · O B → = ( x A + λ · x B , y A + λ · y B ) .
Таким образом, O C → = 1 1 + λ · ( O A → + λ · O B → ) = ( x A + λ · x B 1 + λ , y A + λ · y B 1 + λ ) .
Резюмируя: координаты точки С , делящей отрезок А В в заданном отношении λ определяются по формулам : x C = x A + λ · x B 1 + λ и y C = у A + λ · y B 1 + λ .
Определение координат точки, делящей отрезок в заданном отношении, в пространстве
Исходные данные: прямоугольная система координат O x y z , точки с заданными координатами A ( x A , y A , z A ) и B ( x B , y B , z B ) .
Точка С делит отрезок А В в отношении λ . Необходимо определить координаты точки С .
Используем ту же схему рассуждений, что и в случае выше на плоскости, придем к равенству:
O C → = 1 1 + λ · ( O A → + λ · O B → )
Векторы и являются радиус-векторами точек А и В , а значит:
O A → = ( x A , y A , z A ) и O B → = ( x B , y B , z B ) , следовательно
O C → = 1 1 + λ · ( O A → + λ · O B → ) = ( x A + λ · x B 1 + λ , y A + λ · y B 1 + λ , z A + λ · z B 1 + λ )
Таким образом, точка С , делящая отрезок А В в пространстве в заданном отношении λ , имеет координаты: ( x A + λ · x B 1 + λ , y A + λ · y B 1 + λ , z A + λ · z B 1 + λ )
Рассмотрим теорию на конкретных примерах.
Исходные данные: точка С делит отрезок А В в отношении пять к трем. Координаты точек А и В заданы A ( 11 , 1 , 0 ) , B ( — 9 , 2 , — 4 ) .
Решение
По условию задачи λ = 5 3 . Применим полученные выше формулы и получим:
x A + λ · x B 1 + λ = 11 + 5 3 · ( — 9 ) 1 + 5 3 = — 3 2
y A + λ · y B 1 + λ = 1 + 5 3 · 2 1 + 5 3 = 13 8
z A + λ · z B 1 + λ = 0 + 5 3 · ( — 4 ) 1 + 5 3 = — 5 2
Ответ: C ( — 3 2 , 13 8 , — 5 2 )
Исходные данные: необходимо определить координаты центра тяжести треугольника А В С .
Заданы координаты его вершин: A ( 2 , 3 , 1 ) , B ( 4 , 1 , — 2 ) , C ( — 5 , — 4 , 8 )
Решение
Известно, что центром тяжести любого треугольника является точка пересечения его медиан (пусть это будет точка М ). Каждая из медиан делится точкой М в отношении 2 к 1 , считая от вершины. Исходя из этого, найдем ответ на поставленный вопрос.
Допустим, что А D – медиана треугольника А В С . Точка М – точка пересечения медиан, имеет координаты M ( x M , y M , z M ) и является центром тяжести треугольника. М , как точка пересечения медиан, делит отрезок А D в отношении 2 к 1 , т.е. λ = 2 .
Найдем координаты точки D . Так как A D – медиана, то точка D – середина отрезка В С . Тогда, используя формулу нахождения координат середины отрезка, получим:
x D = x B + x C 2 = 4 + ( — 5 ) 2 = — 1 2 y D = y B + y C 2 = 1 + ( — 4 ) 2 = — 3 2 z D = z B + z C 2 = — 2 + 8 2 = 3
Вычислим координаты точки М :
x M = x A + λ · x D 1 + λ = 2 + 2 · ( — 1 2 ) 1 + 2 = 1 3
y M = y A + λ · y D 1 + λ = 3 + 2 · ( — 3 2 ) 1 + 2 = 0
z M = z A + λ · z D 1 + λ = 1 + 2 · 3 1 + 2 = 7 3
Как найти координаты точки?
О чем эта статья:
3 класс, 4 класс, 9 класс, 11 класс, ЕГЭ/ОГЭ
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Понятие системы координат
Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты вашей квартиры тоже можно записать числами — они помогут понять, где именно находится тот дом, где вы живете. С точками на плоскости та же история.
Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.
Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.
Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.
Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.
Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.
Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.
- Координатные оси — это прямые, образующие систему координат.
- Ось абсцисс Ox — горизонтальная ось.
- Ось ординат Oy — вертикальная ось.
- Координатная плоскость — плоскость, в которой находится система координат. Обозначается так: x0y.
- Единичный отрезок — величина, которая принимается за единицу при геометрических построениях. В декартовой системе координат единичный отрезок отмечается на каждой из осей. Длина отрезка показывает сколько раз единичный отрезок и его части укладываются в данном отрезке.
Оси координат делят плоскость на четыре угла — четыре координатные четверти.
У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:
- верхний правый угол — первая четверть I;
- верхний левый угол — вторая четверть II;
- нижний левый угол — третья четверть III;
- нижний правый угол — четвертая четверть IV;
- Если обе координаты положительны, то точка находится в первой четверти координатной плоскости.
- Если координата х отрицательная, а координата у положительная, то точка находится во второй четверти.
- Если обе координаты отрицательны, то число находится в третьей четверти.
- Если координата х положительная, а координата у отрицательная, то точка лежит в четвертой четверти.
Определение координат точки
Каждой точке координатной плоскости соответствуют две координаты.
Точка пересечения с осью Ох называется абсциссой точки А, а с осью Оу называется ординатой точки А.
Чтобы узнать координаты точки на плоскости, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра.
Координаты точки на плоскости записывают в скобках, первая по оси Ох, вторая по оси Оу.
Смотрим на график и фиксируем: A (1; 2) и B (2; 3).
Особые случаи расположения точек
В геометрии есть несколько особых случаев расположения точек. Лучше их запомнить, чтобы без запинки решать задачки. Вот они:
- Если точка лежит на оси Oy, то ее абсцисса равна 0. Например,
точка С (0, 2). - Если точка лежит на оси Ox, то ее ордината равна 0. Например,
точка F (3, 0). - Начало координат — точка O. Ее координаты равны нулю: O (0,0).
- Точки любой прямой, которая перпендикулярна оси абсцисс, имеют одинаковые абсциссы.
- Точки любой прямой, которая перпендикулярна оси ординат, имеют одинаковые ординаты.
- Если точка лежит на оси абсцисс, то ее координаты будут иметь вид: (x, 0).
- Если точка лежит на оси ординат, то ее координаты будут иметь вид: (0, y).
Способы нахождения точки по её координатам
Чтобы узнать, как найти точку в системе координат, можно использовать один из двух способов.
Способ первый. Как определить положение точки D по её координатам (-4, 2):
- Отметить на оси Ox, точку с координатой -4, и провести через нее прямую перпендикулярную оси Ox.
- Отметить на оси Oy, точку с координатой 2, и провести через нее прямую перпендикулярную оси Oy.
- Точка пересечения перпендикуляров и есть искомая точка D. Ее абсцисса равна -4, а ордината — 2.
Способ второй. Как определить положение точки D (-4, 2):
- Сместить прямую по оси Ox влево на 4 единицы, так как у нас
перед 4 стоит знак минус. - Подняться из этой точки параллельно оси Oy вверх на 2 единицы, так как у нас перед 2 стоит знак плюс.
Чтобы легко и быстро находить координаты точек или строить точки по координатам, скачайте готовую систему координат и храните ее в учебнике:
Векторы в пространстве и метод координат
Существует два способа решения задач по стереометрии
Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.
Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.
Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.
Система координат в пространстве
Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.
Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.
Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:
Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.
Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.
Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:
Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма
Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и
.
Произведение вектора на число:
Скалярное произведение векторов:
Косинус угла между векторами:
Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.
1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.
Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:
Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.
Прямые AE и BK — скрещиваются. Найдем угол между векторами и
. Для этого нужны их координаты.
Запишем координаты векторов:
и найдем косинус угла между векторами и
:
2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.
Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.
Координаты точек A, B и C найти легко:
Из прямоугольного треугольника AOS найдем
Координаты вершины пирамиды:
Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.
Найдем координаты векторов и
и угол между ними:
Покажем теперь, как вписать систему координат в треугольную призму:
3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1
Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.
Запишем координаты точек:
Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.
Найдем координаты векторов и
, а затем угол между ними:
Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.
Плоскость в пространстве задается уравнением:
Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.
Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.
Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.
Покажем, как это делается.
Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).
Уравнение плоскости выглядит так:
Подставим в него по очереди координаты точек M, N и K.
То есть A + C + D = 0.
Аналогично для точки K:
Получили систему из трех уравнений:
В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.
Пусть, например, D = −2. Тогда:
Выразим C и B через A и подставим в третье уравнение:
Решив систему, получим:
Уравнение плоскости MNK имеет вид:
Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:
Вектор — это нормаль к плоскости MNK.
Уравнение плоскости, проходящей через заданную точку имеет вид:
Угол между плоскостями равен углу между нормалями к этим плоскостям:
Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.
Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.
Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.
4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.
Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.
Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор перпендикулярен этой плоскости.
Итак, первый вектор нормали у нас уже есть:
Напишем уравнение плоскости AEF.
Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.
Пусть С = -1. Тогда A = B = 2.
Уравнение плоскости AEF:
Нормаль к плоскости AEF:
Найдем угол между плоскостями:
5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.
Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике»
Строим чертеж. Прямую четырехугольную призму можно по-другому назвать «параллелепипед».
Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?
«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.
Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор или, еще проще, вектор
.
Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:
Координаты вектора — тоже:
Находим угол между плоскостями, равный углу между нормалями к ним:
Зная косинус угла, находим его тангенс по формуле
Получим:
Ответ:
Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.
Пусть — вектор, лежащий на прямой m (или параллельный ей),
— нормаль к плоскости α.
Находим синус угла между прямой m и плоскостью α по формуле:
6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.
Как всегда, рисуем чертеж и выбираем систему координат
Находим координаты вектора .
Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор .
Найдем угол между прямой и плоскостью:
Ответ:
Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:
7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = , AD =
. Высота параллелепипеда AA1 =
. Найдите расстояние от точки A до плоскости A1DB.
Построим чертеж и выпишем координаты точек:
Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D
Решим эту систему. Выберем
Тогда
Уравнение плоскости A1DB имеет вид:
Дальше все просто. Находим расстояние от точки A до плоскости A1DB:
В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.
http://skysmart.ru/articles/mathematic/kak-najti-koordinaty-tochki
http://ege-study.ru/ru/ege/materialy/matematika/vektory-v-prostranstve-i-metod-koordinat/
Вывод формул для нахождения координат точки, делящей отрезок в данном отношении, на плоскости.
Начнем
с постановки задачи на плоскости.
Пусть
на плоскости введена прямоугольная
декартова система координат Oxy и
заданы координаты двух несовпадающих
точек и
.
Нам требуется найти координаты и
точки С,
которая делит отрезок АВ в
отношении ,
где —
некоторое положительное действительное
число.
Поясним
смысл фразы: «точка С делит
отрезок АВ в
отношении ».
Это выражение означает, что точка С лежит
на отрезке АВ (является
внутренней точкой отрезка АВ)
и отношение длин отрезков АС и СВ равно (то
есть, выполняется равенство ).
Обратите внимание, что в этом случае
точка А является
как бы началом отрезка, а точка В –
его концом. Если же сказано, что
точка С делит
отрезок ВА (а
не АВ)
в отношении ,
то будет выполняться равенство .
Очевидно, что при точка С является
серединой отрезка АВ.
Поставленная
задача может быть решена с помощью
векторов.
Изобразим
в прямоугольной декартовой системе
координат некоторый отрезок АВ,
точку С на
нем и построим радиус-векторы
точек А, В и С,
а также векторы и
.
Будем считать, что точка С делит
отрезок АВ в
отношении .
Мы
знаем, что координаты
радиус-вектора точки
равны соответствующим координатам этой
точки, поэтому, и
.
Найдем координаты вектора ,
которые будут равны искомым координатам
точки С,
делящей отрезок АВ в
заданном отношении .
В
силу операции
сложения векторов можно
записать равенства и
.
Их мы используем в следующем абзаце.
Так
как точка С делит
отрезок АВ в
соотношении ,
то ,
откуда .
Векторы и
лежат
на одной прямой и имеют одинаковое
направление, а выше мы отметили, что ,
поэтому, по определению
операции умножения вектора на числосправедливо равенство .
Подставив в него ,
имеем .
Тогда равенство можно
переписать как ,
откуда в силу свойств
операций над векторами получаем .
Осталось
вычислить координаты вектора ,
выполнив необходимые операции
над векторами и
в
координатах.
Так как и
,
то ,
следовательно, .
Таким
образом, на плоскости координаты
точки С,
которая делит отрезок АВ в
отношении ,
находятся по формулам и
.
15. Векторное произведение векторов.
Векторное
проведение векторов.
Определение:
Под векторным произведением двух
векторов и
понимается
вектор, для
которого:
-модуль
равен площади параллелограмма,
построенного на данных векторах, т.е. ,
где угол
между векторами и
-этот
вектор перпендикулярен перемножаемым
векторам, т.е.
-если
векторы неколлинеарны,
то они образуют правую тройку векторов.
Свойства
векторного произведения:
1.При
изменении порядка сомножителей векторное
произведение меняет свой знак на
обратный, сохраняя модуль, т.е.
2.Векторный
квадрат равен нуль-вектору, т.е.
3.Скалярный
множитель можно выносить за знак
векторного произведения, т.е.
4.Для
любых трех векторов справедливо
равенство
5.Необходимое
и достаточное условие коллинеарности
двух векторов и
:
Векторное
произведение в координатной форме.
Если
известны координаты векторов и
, то
их векторное произведение находится
по формуле:
.
Тогда
из определения векторного произведения
следует, что площадь параллелограмма,
построенного на векторах и
,
вычисляется по формуле:
Пример: Вычислить
площадь треугольника с
вершинами (1;-1;2),
(5;-6;2),
(1;3;-1).
Решение: .
,
,
тогда площадь треугольника АВС будет
вычисляться следующим образом:
,
Соседние файлы в предмете Алгебра и геометрия
- #
- #
- #
- #
Найдём координаты точки делящей отрезок в данном отношении.
Дано:
A (x1;y1), B(x2;y2),
C∈AB, AC:CB=m:n.
Доказать:
Доказательство:
1) При x2>x1; y2>y1.
Проведём через точки A, B и C прямые, параллельные осям Ox и Oy.
Рассмотрим образованные этими прямыми прямоугольные треугольники ACF и CBK.
∠ACF=∠CBK (как соответственные при CF∥BK и секущей AB).
Следовательно, треугольники ACF и CBK подобны (по острому углу).
Следовательно,
AF=x-x1; CK=x2-x; CF=y-y1; BK=y2-y.
Отсюда
Аналогично,
2) При x2=x1; y2>y1
Абсциссы точек A, B и C одинаковы: x2=x1=x. Формула
также выполняется:
Формула
вытекает непосредственно из условия AC:CB=m:n, так что
3) При других вариантах взаимного расположения x2 и x1, y2 и y1 доказательство аналогично.
Что и требовалось доказать.
При m=n получаем формулы координат середины отрезка.
1.5.6. Деление отрезка в данном отношении
Рассмотрим пару точек (плоскости или
пространства) и отрезок :
Что будем с ним делать? На это раз пилить. Точкой :
В данном примере точка делит отрезок
ТАКИМ образом, что отрезок
в два раза короче отрезка
. ЕЩЁ можно сказать, что точка
делит отрезок
в отношении
(«один к двум»), считая от вершины
.
На сухом математическом языке этот факт записывают пропорцией или чаще в виде привычной дроби:
. Отношение отрезков принято стандартно обозначать греческой буквой «лямбда», в данном
случае: .
Пропорцию можно составить и в другом порядке: –
сия запись означает, что отрезок в два раза
длиннее отрезка , но какого-то принципиального
значения для решения задач это не имеет. Можно так, а можно так.
Разумеется, отрезок легко разделить в каком-нибудь другом отношении, и в качестве закрепления понятия второй пример:
Здесь справедливо соотношение: . Если составить
пропорцию наоборот, тогда получаем: .
Формулы деления отрезка в данном отношении:
Если известны две точки плоскости , то
координаты точки , которая делит отрезок
в отношении
, выражаются формулами:
В пространственном случае и
добавляется дополнительная координата:
.
Откуда взялись данные формулы? В курсе аналитической геометрии эти формулы выводятся с помощью векторов (куда ж теперь
без них? =)).
Задача 11
Найти координаты точки , делящей отрезок
в отношении
, если известны точки
Решение: по умолчанию, отсчёт начинается от первого конца отрезка: . По формулам деления отрезка в данном отношении, найдём точку
:
Ответ:
Обратите внимание на технику вычислений: сначала нужно отдельно вычислить числитель и отдельно знаменатель. В результате
чего часто (но далеко не всегда) получается трёх- или четырёхэтажная дробь. После этого избавляемся от
многоэтажности дроби (см. Приложение Школьные материалы) и проводим окончательные
упрощения.
В задаче не требуется строить чертежа, но его полезно выполнить на черновике:
– чтобы убедиться в том, что соотношение действительно выполнено, то есть отрезок
в три раза короче отрезка
. Если длины не очевидны, то отрезки всегда можно тупо измерить обычной
линейкой.
Существует и второй способ решения: в нём отсчёт начинается с точки и справедливым является отношение:
(иными словами, отрезок
в три раза длиннее отрезка
). По формулам деления отрезка в данном отношении:
Ответ:
Заметьте, что в формулах необходимо переместить координаты точки на первое место, поскольку маленький триллер начинался именно с неё. Также видно, что
второй способ рациональнее ввиду более простых вычислений. Но всё-таки данную задачу чаще решают в «традиционном» порядке.
Так, если по условию дан отрезок , то
предполагается, что вы составите пропорцию ,
если дан отрезок , то «негласно» подразумевается
пропорция , и так далее.
Задача 12
а) Точка принадлежит отрезку
. Известно, что отрезок
в два раза длиннее отрезка
. Найти точку
,
если . Выполнить проверку.
б) Даны точки . Найти точку
, делящую отрезок
в отношении
.
Удачного распила!
1.5.7. Формулы координат середины отрезка
1.5.5. Как найти единичный вектор?
| Оглавление |
Автор: Aлeксaндр Eмeлин
У меня есть отрезок с известными координатами концов. На этом отрезке есть точка. Я знаю расстояние от начала отрезка до этой точки. Мне надо найти координаты этой точки. Как найти эти координаты?
Пример: Есть 2 точки А(3,3) и В(6,4). Длина отрезка примерно 3,16. И есть точка С(?,?) на отрезке. Как найти координаты, если от А до С =1,8 ???
Dmytro
6,7011 золотой знак20 серебряных знаков55 бронзовых знаков
задан 3 мар 2016 в 20:40
4
Имеется отрезок AB
с координатами A(Xa, Ya)
и B(Xb, Yb)
.
Требуется найти координаты точки C(Xc, Yc)
, лежащей на отрезке AB
на расстоянии Rac
от точки A
.
Rab = sqrt((Xb - Xa) ^ 2 + (Yb - Ya) ^ 2)
k = Rac / Rab
Xc = Xa + (Xb - Xa) * k
Yc = Ya + (Yb - Ya) * k
Обозначения:
f ^ n
— возведение f
в степень n
, в нашем случае (первом) f
будет Xb - Xa
и n
будет 2
.
sqrt(f)
— квадратный корень из f
, в нашем случае f
будет (Xb - Xa) ^ 2 + (Yb - Ya) ^ 2
.
f / n
— деление f
на n
, в нашем случае f
будет Rac
и n
будет Rab
.
f * n
— умножение f
на n
, в нашем случае (первом) f
будет Xb - Xa
и n
будет k
.
ответ дан 4 мар 2016 в 6:54
Konstantin LesKonstantin Les
1,5388 серебряных знаков12 бронзовых знаков
2
Алгоритм без кода (довольно элементарный):
Имеем:
Две точки A
, B
; len
— расстояние от точки А
до требуемой точки C
full_len = |B - A| // длина вектора, соединяющего две точки == длина отрезка
C = A + (B - A) * (len / full_len)
Сложение векторов и умножение на число — очевидные операции.
ответ дан 3 мар 2016 в 20:56
int3int3
2,4579 серебряных знаков19 бронзовых знаков
8
nodet — точка конец вектора, в твоем случае точка b
nodef — точка начало вектора, в твоем случае точка a
dx = nodet.x - nodef.x
dy = nodet.y - nodef.y
dz = nodet.z - nodef.z
r = math.sqrt(dx ** 2 + dy ** 2 + dz ** 2)
xx = dx * (step/r)
yy = dy * (step /r)
zz = dz * (step /r)
newnode = node(nodef.x + xx,nodef.y + yy,nodef.z + zz)
newnode — новая точка на заданом расстоянии
ответ дан 12 ноя 2019 в 16:31
qvuer7qvuer7
113 бронзовых знака