Как найти точку минимума гиперболы

Гиперболой
называется множество всех точек
плоскости, модуль разности расстояний
от каждой из которых до двух заданных
точек этой же плоскости, называемых
фокусами, есть величина постоянная,
меньшая, чем расстояние между фокусами.

К

аноническое уравнение гиперболы:

(9)

где


действительная полуось,


мнимая полуось гиперболы,


фокусное расстояние. Числа

,

,

связаны соотношением


.
(10)

Координаты
фокусов

,

.

Точки

и


называются
вершинами гиперболы, точка O
– центром
гиперболы.

Важными
характеристиками гиперболы являются:


эксцентриситет

(1<
<
)
(11)

если

~ 1, то ветви гиперболы широкие, почти
вертикальные,

если

~

,
то ветви гиперболы узкие, гипербола
приближается к оси Ox.


асимптоты

.
(12)

Прямоугольник


,
центр которого совпадает с точкой О,
а стороны равны и параллельны осям
гиперболы называется основным
прямоугольником гиперболы. Диагонали
основного прямоугольника лежат на
асимптотах.


директрисы
гиперболы

– прямые, параллельные мнимой оси
гиперболы и отстоящие от нее на расстоянии,
равном

.
Уравнения директрис:

,

.
(13)


фокальные
радиусы

определяются формулами:

для точек правой
ветви гиперболы:

,


;
(14)

для точек левой
ветви:


,


.
(15)

Рис. 5. Гипербола,
ее асимптоты и основной прямоугольник

Если

,
то гипербола (9) называется равносторонней
(равнобочной). Ее уравнение принимает
вид


.
(16)

Если
фокусы гиперболы лежат на оси

,
то уравнение гиперболы имеет вид:

(17)
эксцентриситет этой гиперболы равен

,
асимптоты определяются уравнениями

,
уравнения директрис

.
Гипербола (17) называется сопряженной
гиперболе (9).

Пример
3.1.

Дано
уравнение гиперболы

.
Найти:

  1. длины
    его полуосей;

  2. координаты
    фокусов;

  3. эксцентриситет
    гиперболы;

  4. уравнения
    асимптот и директрис;

  5. фокальные
    радиусы точки

  6. на
    гиперболе найти точку, для которой
    расстояние от левого фокуса в 3 раза
    больше, чем от правого.

Решение.

Разделив
обе части уравнения

на

,
приведем уравнение гиперболы к
каноническому виду:

Отсюда:

1)


,

,
т.е. действительная полуось

,
мнимая полуось

.

2)
Используя соотношение (10), находим

,
т.е.

.
Запишем фокусы гиперболы:

,

.

3)
По формуле (11) находим эксцентриситет
гиперболы

.

4)
Уравнения асимптот и директрис найдем
по формулам (12) и (13):

и

.

5)
точка

лежит
на правой ветви гиперболы

,
используем формулы (14):

,


.

6)
Найдем на гиперболе точку

такую, что

.
Используя формулы (14) и

,
получим:


;

Находим

и

.

Поскольку

лежит на гиперболе

,
то ординаты соответствующих точек
найдем из этого уравнения при найденных
значениях x:

и,
если

,
то

(это число не существует в нужном нам
смысле), а если

,
то

.

Итак,
получили две точки на гиперболе,
удовлетворяющие данным условиям:

и

.

Пример
3.2.

Составить
уравнение гиперболы, симметричной
относительно координатных осей, которая
проходит через точку

и ее асимптоты имеют уравнения

.

Решение.

Подставим
координаты точки

в уравнение (9):

.

Уравнения
асимптот гиперболы

,
поэтому

,
тогда

.
Получим систему двух уравнений:

Запишем
уравнение гиперболы:

Задачи для
самостоятельного решения:

1.
Дана гипербола

.
Найти: 1) полуоси

и

;
2) фокусы;

3)
эксцентриситет; 4) уравнения асимптот;
5) уравнения директрис.

2.
Дана гипербола

.
Найти: 1) полуоси

и

;
2) фокусы;

3)
эксцентриситет; 4) уравнения асимптот;
5) уравнения директрис.

3.
Составить уравнение гиперболы, фокусы
которой расположены на оси абсцисс
симметрично относительно начала
координат, зная, кроме того, что:

1)
ее оси

и

;

2)
расстояние между фокусами

и ось

;

3)
расстояние между фокусами

и эксцентриситет

;

4)
ось

и эксцентриситет

;

5)
уравнения асимптот

и расстояние между фокусами

;

6)
расстояние между директрисами равно

и расстояние между фокусами

;

7)
расстояние между директрисами равно

и ось

;

8)
расстояние между директрисами равно

и эксцентриситет

;

9)
уравнения асимптот

и расстояние между директрисами равно

;

10)
точки

и

гиперболы;

11)
точка

гиперболы и эксцентриситет

;

12)
точка

гиперболы и уравнения асимптот

;

13)
точка

гиперболы и уравнения директрис

;

14)
уравнения асимптот

и уравнения директрис

.

4.
Составить уравнение гиперболы, фокусы
которой расположены на оси ординат
симметрично относительно начала
координат, зная, кроме того, что:

1)
ее полуоси

и

(буквой

мы обозначаем полуось гиперболы,
расположенную на оси абсцисс);

2)
расстояние между фокусами

и эксцентриситет

;

3)
уравнения асимптот

и расстояние между вершинами равно 48;

4)
расстояние между директрисами равно

и эксцентриситет

;

5)
уравнения асимптот

и расстояние между директрисами равно

.

5.
Установить, какие линии определяются
следующими уравнениями:

1)

;
2)

;
3)

;
4)

.

Изобразить
эти линии на чертеже.

6.
Вычислить площадь треугольника,
образованного асимптотами гиперболы

и прямой

.

7.
Дана точка

на гиперболе

.
Составить уравнения прямых, на которых
лежат фокальные радиусы точки

.

8.
Убедившись, что точка

лежит на гиперболе

,
определить фокальные радиусы точки

.

9.
Эксцентриситет гиперболы

,
фокальный радиус ее точки

,
проведенный из некоторого фокуса, равен
16. Вычислить расстояние от точки

до односторонней с этим фокусом
директрисы.

10.
Эксцентриситет гиперболы

,
расстояние от точки

гиперболы до директрисы равно 4. Вычислить
расстояние от точки

до фокуса, одностороннего с этой
директрисой.

11.
Эксцентриситет
гиперболы

,
центр ее лежит в начале координат, один
из фокусов

.
Вычислить расстояние от точки

гиперболы с абсциссой, равной 13, до
директрисы, соответствующей заданному
фокусу.

12.
Эксцентриситет гиперболы

,
центр ее лежит в начале координат, одна
из директрис дана уравнением

.
Вычислить расстояние от точки

гиперболы с абсциссой, равной 10, до
фокуса, соответствующего заданной
директрисе.

13.
Определить точки гиперболы

,
расстояние от которых до правого фокуса
равно 4,5.

14.
Определить точки гиперболы

,
расстояние от которых до левого фокуса
равно 7.

15.
Составить уравнение гиперболы, если ее
эксцентриситет равен 2 и фокусы совпадают
с фокусами эллипса

.

16.
Составить уравнение гиперболы, фокусы
которой лежат в вершинах эллипса

,
а директрисы проходят через фокусы
этого эллипса.

17.
Найти уравнение гиперболы, вершины и
фокусы которой находятся в соответствующих
фокусах и вершинах эллипса

.

18.
Определить эксцентриситет равносторонней
гиперболы.

19.
Определить эксцентриситет гиперболы,
если отрезок между ее вершинами виден
из фокусов сопряженной гиперболы под
углом

.

20.
Прямая

касается гиперболы, фокусы которой
находятся в точках

и

.
Составить уравнение этой гиперболы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Что такое гипербола? Как построить гиперболу? (Для школьников (7-11 классов)).

Математическая гипербола.

Функция заданная формулой (y=frac{k}{x}), где к неравно 0. Число k называется коэффициентом обратной пропорциональности.
Определение гиперболы.
График функции (y=frac{k}{x}) называют гиперболой. Где х является независимой переменной, а у — зависимой.

Что нужно знать, чтобы построить гиперболу?
Теперь обсудим свойства гиперболы:

1. Ветви гиперболы. Если k>o, то ветви гиперболы находятся в 1 и 3 четверти. Если k<0, то ветви гиперболы находятся во 2 и 4 четверти.
гипербола, где k>0 ветви гиперболы находятся в 1 и 3 четверти. гипербола, где k>0 ветви гиперболы находятся в 1 и 3 четверти

гипербола, где k<0 ветви гиперболы находятся во 2 и 4 четверти гипербола, где k<0 ветви гиперболы находятся во 2 и 4 четверти

2.Асимптоты гиперболы. Чтобы найти асимптоты гиперболы необходимо,иногда, уравнение гиперболы упростить. Рассмотрим на примере:
Пример №1:
$$y=frac{1}{x}$$
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х не равен 0.
$$yneqcolor{red} {frac{1}{x}}+0$$
(frac{1}{x}) дробь отбрасываем, для того чтобы найти вторую асимптоту.
Остается простое число
y≠0 это вторая асимптота.
И так, асимптоты x≠0 и y≠0 в данном примере совпадают с осями координат OX и OY.
k=1, значит гипербола будет находится в первой и третьей четверти. k всегда находится в числители.
Построим примерный график гиперболы.
гипербола y=1/x

Пример №2:
$$y=frac{1}{x+2}-1$$
Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х+2 неравен 0.
х+2≠0
х≠-2 это первая асимптота

Находим вторую асимптоту.

$$y=color{red} {frac{1}{x+2}}-1$$

Дробь (color{red} {frac{1}{x+2}}) отбрасываем
Остается y≠ -1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-2 и y≠-1):
построим гиперболу

построить гиперболу

Пример №3:

$$begin{align*}
&y=frac{2+x}{1+x} \\
&y=frac{color{red} {1+1}+x}{1+x} \\
&y=frac{1}{1+x}+frac{1+x}{1+x}\\
&y=frac{1}{1+x}+1\\
&y=frac{1}{color{red} {1+x}}+1
end{align*}$$

Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому 1+х неравен 0.
1+х≠0
х≠-1 это первая асимптота.

Находим вторую асимптоту.

$$y=color{red}{frac{1}{1+x}}+1$$

(color{red}{frac{1}{1+x}}) Дробь убираем.

Остается y≠1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-1 и y≠1):
построить гиперболу

построить гиперболу

3. У гиперболы есть центр симметрии относительно начала координат. Рассмотрим на примере:

$$y=frac{1}{x}$$

Возьмем точку А(1;1) с координатами, которая находится на графике у=1/х. На этом же графике лежит точка B(-1;-1). Видно, что точка А симметрична точке В относительна начала координат.
гипербола 1/х

4. Оси симметрии гиперболы. У гиперболы две оси симметрии. Рассмотрим пример:

$$y=frac{1}{x}$$

Первой осью симметрии является прямая y=x. Посмотрим точки (0,5;2) и (2;0,5) и еще точки (-0,5;-2) и (-2;-0,5). Эти точки расположены по разные стороны данной прямой, но на равных расстояниях от нее, они симметричны относительно этой прямой.

Вторая ось симметрии это прямая y=-x.

оси симметрии гиперболы

5. Гипербола нечетная функция.

$$f(-x)=frac{1}{-x}=-frac{1}{x}=-f(x)$$

6. Область определения гиперболы и область значения гиперболы. Область определения смотрим по оси х. Область значения смотрим по оси у. Рассмотрим на примере:

$$y=frac{-1}{x-1}-1$$

а) Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому x-1 неравен 0.
x-1≠0
х≠1 это первая асимптота.

Находим вторую асимптоту.

$$y=color{red} {frac{-1}{x-1}}-1$$

Дробь (color{red} {frac{-1}{x-1}}) удаляем.

Остается y≠ -1 это вторая асимптота.

б) k=-1, значит ветви гиперболы будут находится во второй и четвертой четверти.

в) Возьмем несколько дополнительных точек и отметим их на графике.
х=0 y=0
x=-1 y=-0,5
x=2 y=-2
x=3 y=-1,5

г) Область определения смотрим по оси х. Графика гиперболы не существует по асимптоте х≠1, поэтому область определения будет находится
х ∈ (-∞;1)U(1;+∞).

д) Область значения смотрим по оси y. График гиперболы не существует по асимптоте y≠ -1, поэтому область значения будет находится
y ∈ (-∞;-1)U(-1;+∞).

е) функция возрастает на промежутке x ∈ (-∞;1)U(1;+∞).
график гиперболы

построить гиперболу

7. Убывание и возрастание функции гиперболы. Если k>0, функция убывающая. Если k<0 функция возрастающая.

8. Для более точного построения взять несколько дополнительных точек. Пример смотреть в пункте №6.

Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.
реклама

Свойства гиперболы

1) Область определения и область значений

По аналитическому заданию функции видно, что х ≠-a, поскольку знаменатель дроби не может ровняться нулю. Таким образом получим:

D(f)=(-∞;-а) U (-a;+∞)

Область значений

Е(f)=(-∞;+∞)

2) Нули функции

Если b=0, то график функции не пересекает ось ОХ;

Если b≠0, то гипербола имеет одну точку пересечения с ОХ:*

x=-(k+ab)/b

3) Промежутки знакопостоянства

Рассмотрим только 2 простых случая, остальные случаи вы можете рассмотреть аналитически самостоятельно по алгоритму из раздела Свойства функций -> Знакопостоянство

Случай 1: a=0, b=0, k>0

f(x)>0, при x ∈ (0; +∞)

f(x)<0, при x ∈ (-∞;0)

Случай 1: a=0, b=0, k<0

f(x)<0, при x ∈ (0; +∞)

f(x)>0, при x ∈ (-∞;0)

4) Промежутки монотонности

Аналогично с промежутками знакопостоянства рассмотрим только 2 случая

Случай 1: a=0, b=0, k>0

Функция убывает при

x ∈ (-∞;0) U (0; +∞)

Функция возрастает при

x ∈ (-∞;0) U (0; +∞)

5) Четность и нечетность

Функция является нечетной при a=0, b=0, то есть если имеет вид y=k/x

Гипербола:

Определение: Гиперболой называется геометрическое место точек абсолютное значение разности расстояний от которых до двух выделенных точек Гипербола - определение и вычисление с примерами решения

Получим каноническое уравнение гиперболы. Выберем декартову систему координат так, чтобы фокусы Гипербола - определение и вычисление с примерами решения

Гипербола - определение и вычисление с примерами решения

Рис. 31. Вывод уравнения гиперболы.

Расстояние между фокусами (фокусное расстояние) равно Гипербола - определение и вычисление с примерами решения Согласно определению, для гиперболы имеем Гипербола - определение и вычисление с примерами решения Из треугольников Гипербола - определение и вычисление с примерами решения по теореме Пифагора найдем Гипербола - определение и вычисление с примерами решениясоответственно.

Следовательно, согласно определению имеем

Гипербола - определение и вычисление с примерами решения

Возведем обе части равенства в квадрат, получим

Гипербола - определение и вычисление с примерами решения

Перенося квадратный корень в левую часть, а все остальное в правую часть равенства, находимГипербола - определение и вычисление с примерами решения Раскроем разность квадратов Гипербола - определение и вычисление с примерами решения Подставим найденное выражение в уравнение и сократим обе части равенства на 4, тогда оно перейдет в уравнение Гипербола - определение и вычисление с примерами решения Вновь возведем обе части равенства в квадрат Гипербола - определение и вычисление с примерами решения Раскрывая все скобки в правой части уравнения, получим Гипербола - определение и вычисление с примерами решения Соберем неизвестные в левой части, а все известные величины перенесем в правую часть уравнения, получим Гипербола - определение и вычисление с примерами решения Введем обозначение для разности, стоящей в скобках Гипербола - определение и вычисление с примерами решения Получим Гипербола - определение и вычисление с примерами решения Разделив все члены уравнения на величину Гипербола - определение и вычисление с примерами решения получаем каноническое уравнение гиперболы: Гипербола - определение и вычисление с примерами решения Для знака “+” фокусы гиперболы расположены на оси Ох, вдоль которой вытянута гипербола. Для знака фокусы гиперболы расположены на оси Оу, вдоль которой вытянута гипербола.

Проанализируем полученное уравнение. Если точка М(х;у) принадлежит гиперболе, то ей принадлежат и симметричные точки Гипербола - определение и вычисление с примерами решения и Гипербола - определение и вычисление с примерами решенияследовательно, гипербола симметрична относительно координатных осей, которые в данном случае будут называться осями симметрии гиперболы (Рис. 32). Найдем координаты точек пересечения гиперболы с координатными осями: Гипербола - определение и вычисление с примерами решения т.е. точками пересечения гиперболы с осью абсцисс будут точки Гипербола - определение и вычисление с примерами решения Гипербола - определение и вычисление с примерами решения т.е. гипербола не пересекает ось ординат.

Гипербола - определение и вычисление с примерами решения

Рис. 32. Асимптоты и параметры гиперболы Гипербола - определение и вычисление с примерами решения

Определение: Найденные точки Гипербола - определение и вычисление с примерами решения называются вершинами гиперболы.

Докажем, что при возрастании (убывании) переменной х гипербола неограниченно приближается к прямым Гипербола - определение и вычисление с примерами решения не пересекая эти прямые. Из уравнения гиперболы находим, что Гипербола - определение и вычисление с примерами решения При неограниченном росте (убывании) переменной х величина Гипербола - определение и вычисление с примерами решения следовательно, гипербола будет неограниченно приближаться к прямым Гипербола - определение и вычисление с примерами решения

Определение: Прямые, к которым неограниченно приближается график гиперболы называются асимптотами гиперболы.

В данном конкретном случае параметр а называется действительной, а параметр b — мнимой полуосями гиперболы.

Определение: Эксцентриситетом гиперболы называется отношение фокусного расстояния к действительной полуоси гиперболы Гипербола - определение и вычисление с примерами решения

Из определения эксцентриситета гиперболы следует, что он удовлетворяет неравенству Гипербола - определение и вычисление с примерами решения Кроме того, эта характеристика описывает форму гиперболы. Для демонстрации этого факта рассмотрим квадрат отношения мнимой полуоси гиперболы к действительной полуоси Гипербола - определение и вычисление с примерами решения Если эксцентриситет Гипербола - определение и вычисление с примерами решения и гипербола становится равнобочной. Если Гипербола - определение и вычисление с примерами решения и гипербола вырождается в два полубесконечных отрезкаГипербола - определение и вычисление с примерами решения

Пример:

Составить каноническое уравнение гиперболы, если мнимая полуось b = 5 и гипербола проходит через точку М(4; 5).

Решение:

Для решения задачи воспользуемся каноническим уравнением гиперболы, подставив в него все известные величины: Гипербола - определение и вычисление с примерами решения

Гипербола - определение и вычисление с примерами решения Следовательно, каноническое уравнение гиперболы имеет видГипербола - определение и вычисление с примерами решения

Пример:

Составить уравнение гиперболы, вершины которой находятся в фокусах, а фокусы — в вершинах эллипса Гипербола - определение и вычисление с примерами решения

Решение:

Для определения координат фокусов и вершин эллипса преобразуем его уравнение к каноническому виду. Эллипс: Гипербола - определение и вычисление с примерами решения илиГипербола - определение и вычисление с примерами решения Следовательно, большая полуось эллипса Гипербола - определение и вычисление с примерами решения а малая полуось Гипербола - определение и вычисление с примерами решения Итак, вершины эллипса расположены на оси Гипербола - определение и вычисление с примерами решения и Гипербола - определение и вычисление с примерами решения на оси Гипербола - определение и вычисление с примерами решения Так как Гипербола - определение и вычисление с примерами решения то эллипс вытянут вдоль оси абсцисс Ох. Определим расположение фокусов данного эллипса Гипербола - определение и вычисление с примерами решенияИтак, Гипербола - определение и вычисление с примерами решения Согласно условию задачи (см. Рис. 33): Гипербола - определение и вычисление с примерами решения Гипербола - определение и вычисление с примерами решения

Рис. 33. Параметры эллипса и гиперболы

Вычислим длину мнимой полуоси Гипербола - определение и вычисление с примерами решения Уравнение гиперболы имеет вид: Гипербола - определение и вычисление с примерами решения

Гипербола в высшей математике

Рассмотрим уравнение

Гипербола - определение и вычисление с примерами решения

Решая его относительно Гипербола - определение и вычисление с примерами решения, получим две явные функции

Гипербола - определение и вычисление с примерами решения

или одну двузначную функцию

Гипербола - определение и вычисление с примерами решения

Функция Гипербола - определение и вычисление с примерами решения имеет действительные значения только в том случае, если Гипербола - определение и вычисление с примерами решения. При Гипербола - определение и вычисление с примерами решения функция Гипербола - определение и вычисление с примерами решения действительных значений не имеет. Следовательно, если Гипербола - определение и вычисление с примерами решения, то точек с координатами, удовлетворяющими уравнению (3), не существует.

При Гипербола - определение и вычисление с примерами решения получаемГипербола - определение и вычисление с примерами решения.

При Гипербола - определение и вычисление с примерами решения каждому значению Гипербола - определение и вычисление с примерами решения соответствуют два значения Гипербола - определение и вычисление с примерами решения, поэтому кривая симметрична относительно оси Гипербола - определение и вычисление с примерами решения. Так же можно убедиться в симметрии относительно оси Гипербола - определение и вычисление с примерами решения. Поэтому в рассуждениях можно ограничиться рассмотрением только первой четверти. В этой четверти при увеличении х значение у будет также увеличиваться (рис. 36).

Гипербола - определение и вычисление с примерами решения

Кривая, все точки которой имеют координаты, удовлетворяющие уравнению (3), называется гиперболой.

Гипербола в силу симметрии имеет вид, указанный на рис. 37.

Гипербола - определение и вычисление с примерами решения

Точки пересечения гиперболы с осью Гипербола - определение и вычисление с примерами решения называются вершинами гиперболы; на рис. 37 они обозначены буквами Гипербола - определение и вычисление с примерами решения и Гипербола - определение и вычисление с примерами решения.

Часть гиперболы, расположенная в первой и четвертой четвертях, называется правой ветвью, а часть гиперболы, расположенная во второй и третьей четвертях, — левой ветвью.

Рассмотрим прямую, заданную уравнением Гипербола - определение и вычисление с примерами решения. Чтобы не смешивать ординату точки, расположенной на этой прямой, с ординатой точки, расположенной на гиперболе, будем обозначать ординату точки на прямой Гипербола - определение и вычисление с примерами решения, а ординату точки на гиперболе через Гипербола - определение и вычисление с примерами решения. Тогда Гипербола - определение и вычисление с примерами решения, Гипербола - определение и вычисление с примерами решения(рассматриваем только кусок правой ветви, расположенной в первой четверти). Найдем разность ординат точек, взятых на прямой и на гиперболе при одинаковых абсциссах:

Гипербола - определение и вычисление с примерами решения

Умножим и разделим правую часть наГипербола - определение и вычисление с примерами решения

Гипербола - определение и вычисление с примерами решения

или

Гипербола - определение и вычисление с примерами решения

Окончательно

Гипербола - определение и вычисление с примерами решения

Будем придавать Гипербола - определение и вычисление с примерами решения все большие и большие значения, тогда правая часть равенства Гипербола - определение и вычисление с примерами решения будет становиться все меньше и меньше, приближаясь к нулю. Следовательно, разность Гипербола - определение и вычисление с примерами решения будет приближаться к нулю, а это значит, что точки, расположенные на прямой и гиперболе, будут сближаться. Таким образом, можно сказать, что рассматриваемая часть правой ветви гиперболы по мере удаления от начала координат приближается к прямой Гипербола - определение и вычисление с примерами решения.

Вследствие симметрии видно, что часть правой ветви, расположенная в четвертой четверти, будет приближаться к прямой, определяемой уравнением Гипербола - определение и вычисление с примерами решения. Также кусок левой ветви, расположенный во второй четверти, приближается к прямой Гипербола - определение и вычисление с примерами решения, а кусок левой ветви, расположенный в третьей четверти, — к прямой Гипербола - определение и вычисление с примерами решения.

Прямая, к которой неограниченно приближается гипербола при удалении от начала координат, называется асимптотой гиперболы.

Таким образом, гипербола имеет две асимптоты, определяемые уравнениями Гипербола - определение и вычисление с примерами решения (рис. 37).

  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар
  • Правильные многогранники в геометрии
  • Многогранники
  • Окружность
  • Эллипс

1. Гипербола

Гиперболой называется геометрическое место точек плоскости, для каждой из которых абсолютное значение разности расстояний до двух данных точек той же плоскости, называемых фокусами, есть величина постоянная, равная 2а (рис.1). Каноническое уравнение гиперболы имеет вид
kiip026
Координаты фокусов гиперболы: F(c;0) и F₁(-c;0). Расстояние между фокусами равно 2с.
Точки пересечения гиперболы с осью абсцисс А(а;0) и A₁(—а;0) называются действительными вершинами.
kiip030

Рис.2

Отрезок АА₁ = 2а называется действительной осью гиперболы. Точки В (0;b) и В₁(0;—b) называются мнимыми вершинами гиперболы, а отрезок ВВ₁ = 2b называется мнимой осью гиперболы.
Эксцентриситет гиперболы
kiip028
Расстояния r и r₁ точки М(x;у) гиперболы до ее фокусов называются фокальными радиусами этой точки и определяются формулами:
kiip032
если точка М лежит на правой ветви;
kiip034
если точка М лежит на левой ветви.
Две прямые PQ и P₁Q₁ параллельные мнимой оси гиперболы и
отстоящие от нее на расстоянии a/e, называются директрисами гиперболы. Их уравнения:
kiip036
или
kiip038
Отношение расстояний любой точки гиперболы до фокуса и соответствующей директрисы есть величина постоянная, равная эксцентриситету гиперболы
kiip040
Прямые RS и R₁S₁ определяемые уравнениями
kiip042
называются асимптотами гиперболы.
Уравнение гиперболы с осями, параллельными координатным осям, имеет вид:
kiip044
где x₀, у₀ — координаты центра гиперболы. Две гиперболы, выраженные уравнениями
kiip046
kiip048
называются сопряженными (рис.3). Они имеют общие асимптоты.
kiip052

Рис. 3.                                        Рис. 4.

Если оси гиперболы равны, т. е. a = b, то гипербола называется равнобочной или равносторонней (рис.4). Ее уравнение имеет вид
kiip050
ее асимптотами служат биссектрисы координатных углов. Если за оси координат принять асимптоты равносторонней гиперболы, то ее уравнение примет вид
kiip054

2. Парабола

Параболой называется геометрическое место точек плоскости, равноудаленных oт данной точки — фокуса и данной прямой — директрисы (рис.5).
Каноническое уравнение параболы имеет вид
kiip056
где Р — есть расстояние от фокуса до директрисы. Вершина параболы находится в начале координат, осью симметрии служит ось абсцисс.
Координаты фокуса F(p/2;0). Уравнение директрисы PQ параболы имеет вид
kiip056
Фокальный радиус точки М(х;у) параболы равен:
kiip060
Эксцентриситет параболы считается равным единице, е=1. Если осью симметрии параболы служит ось ординат (рис.6). то уравнение параболы имеет вид:
kiip062
kiip064
Рис. 3.                                        Рис. 4.
Уравнение директрисы в этом случае
kiip072
Уравнение параболы с осью симметрии, параллельной одной из координатных осей, имеет вид:
kiip066
или
kiip070
где (x₀; y₀) — координаты вершины параболы.

3. Уравнения эллипса, гиперболы и параболы в полярных координатах

Уравнения эллипса, гиперболы и параболы в полярных координатах имеют один и тот же вид:
kiip068
где е — эксцентриситет кривой.
Если е<1, то кривая, определяемая уравнением (27), есть эллипс; если е>1, то кривая — гипербола и если е=1, то кривая — парабола.
р — фокальный параметр для эллипса и гиперболы находится по формуле
kiip074
Для параболы р имеет то же значение, что и в уравнении

у² = 2рх.

При этом полюс расположен для эллипса в левом фокусе, для гиперболы — в правом фокусе.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти босса аждаха
  • Как найти чат в дискорде с телефона
  • Катет это в геометрии как найти
  • Как найти результирующую силу действующую на заряд
  • Как найти подобные одночлены

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии