Как найти тип нагрузки

АКТИВНАЯ, РЕАКТИВНАЯ И ПОЛНАЯ МОЩНОСТИ ЦЕПИ

Умножив стороны треугольников напряжений (см. векторные диаграммы рис. 2.9, б, 2.10, б, 2.11, б) на ток I, получим треугольники мощностей.

Стороны треугольников мощностей соответственно означают:

— Р = UrI = I 2 r — активная мощность цепи, Вт, кВт (рис 2.9, г, 2.10, г, 2.11,г и ж);

— QL = ULI = I 2 xL — реактивная индуктивная мощность цепи, обусловленная энергией магнитного поля, вар, квар (рис. 2.9, г);

— QС = UСI = I 2 хС — реактивная емкостная мощность цепи, обусловленная энергией электрического поля, вар, квар (рис. 2.10, г);

— Q = QL — QС = I 2 x — реактивная мощность цепи, вар, квар (рис 2.11, г и ж), это та мощность, которой приемник обменивается с сетью;

— S = UI = I 2 z — полная мощность цепи. В • А, кВ • А (рис. 2.9, г, 2.10, г, 2.11, г и ж);

— cos φ = r/z = P/S — коэффициент мощности цепи (рис. 2.9, г, 2.10, г, 2.11, г и ж).

Из треугольников мощностей можно установить следующие связи между Р, Q, S и cos φ:

За единицу активной мощности принят ватт (Вт) или киловатт (кВт), реактивной мощности — вольтампер реактивный (вар) или киловольтампер реактивный (квар), полной мощности — вольтампер (ВА) или киловольтампер (кВ • А).

Реактивные (индуктивная, емкостная) мощности, обусловленные соответственно энергией магнитного поля индуктивности и электрического поля емкости, не совершают никакой полезной paботы, однако они оказывают существенное влияние на режим работы электрической цепи. Циркулируя по проводам трансформаторов, генераторов, двигателей, линий передач, они нагревают их. Поэтому расчет проводов и других элементов устройств переменного тока производят, исходя из полной мощности S, которая учитывает активную и реактивную мощности.

Рис. 2.13. Схема включения приборов для измерения активной, реактивной и полной мощностей цепи, а также ее параметров

Коэффициент мощности имеет большое практическое значение: он показывает, какая часть полной мощности является активной мощностью. Полная мощность и коэффициент мощности наряду с другими параметрами являются расчетными величинами и в конечном счете определяют габаритные размеры трансформаторов, генераторов, двигателей и других электротехнических устройств.

Измерение активной, реактивной, полной мощностей и cos φ, а также параметров цепи, например r и L, можно произвести с помощью ваттметра, амперметра и вольтметра, включенных в цепь по схеме, изображенной на рис. 2.13.

Ваттметр измеряет активную мощность Р цепи. Полная мощность цепи равна произведению показаний вольтметра и амперметра.

Активное сопротивление находят из формулы:

Полное сопротивление цепи

Индуктивность L определяют из формулы

Пример 2.1. Приборы, включенные в цепь рис 2.13, показывают Р = 500 Вт, I = 5 А, U= 400 В.

Определить активное сопротивление r и индуктивность цепи L, если частота сети f = 50Гц.

Решение. Активное сопротивление цепи

r = P/I 2 = 500/5 2 = 20 Ом.

Индуктивное сопротивление цепи

Пример 2.2. Определить ток, полную, активную и реактивную мощности, а также напряжения на отдельных участках цепи, изображенной на рис. 2.11, а. если r = 40 Ом. L = 0,382 Гн, С = 35,5 мкФ, U = 220 В, частота сети f = 50 Гц.

Решение. Индуктивное сопротивление цепи

Емкостное сопротивление цепи

Полное сопротивление цепи

Ток в цепи:

I = U/z = 220/50 = 4,4 А.

Коэффициент мощности цепи:

Полная, активная и реактивная мощности:

S = UI = I 2 z = 220 • 4,4 = 4,42 • 50 = 970 В • А.

Р = S cos φ = I 2 r = 970 • 0,8 = 4,42 • 40 = 775 Вт;

Q = S sin φ = I 2 (xL — xС) = 970 • 0,56 = 4,42 (120 — 90) = 580 вар.

Напряжения на отдельных участках цепи:

Пример 2.3. Определить характер нагрузки, полную, активную и реактивную мощности цепи, в которой мгновенные значения напряжения и тока составляют:

Решение. Угол начальной фазы напряжения (ψ1 = 60°) больше, чем тока (ψ2 = 30°), поэтому напряжение опережает по фазе ток на угол φ = ψ1 — ψ2 = 60 — 30 = 30° и нагрузка имеет активно-индуктивный характер.

Полная мощность цепи:

Активная мощность цепи:

Р = S cos φ = 20 000 cos 30° = 20 000 ( /2) — 17 300 Вт

Реактивная мощность цепи:

Q = S sin φ = 20 000 sin 30° = 20000 • 0,5 = 10 000 вар.

Электрическая нагрузка.

Электрическая нагрузка — это нагрузка создаваемая в электрической сети включенными для работы в сети электроприемниками, она выражается в единицах тока или мощности. Присоединяются к электрическим сетям электроприемники в одиночку либо группами. Электроприемники могут входить в состав группы не только одинакового, а также различного назначения и режима работы. Зависит режим работы системы электроснабжения одинаковых приемников и их групп от режима работы или его сочетаний одиночных приемников либо их групп.

Характер нагрузки в сети может в процессе работы электроприемников оставаться неизменным, изменяться во всех или отдельных фазах, сопровождаться возникновением высших гармоник напряжения или тока. Ввиду этого электрическая нагрузка в сети бывает следующих типов:

— спокойная симметричная (преобладающее большинство трехфазных электроприемников);

К специфическим нагрузкам относятся резкопеременная, нелинейная и несимметричная нагрузка.

Резкими набросами и провалами тока или мощности характеризуется резкопеременная электрическая нагрузка. Неравномерная нагрузка фаз характерна для несимметричной нагрузки, вызывается она однофазными и трехфазными (реже) приемниками с неравномерной загрузкой фаз. В сети при несимметричной нагрузке возникают токи, которые имеют прямую, нулевую и обратную последовательности. Электроприемниками с нелинейной вольт-амперной характеристикой создается нелинейная нагрузка, при в сети ней появляются высшие гармоники напряжения или тока, происходит искажение синусоидальной формы напряжения или тока.

Созданию специфических нагрузок способствует работа электродуговых печей, полупроводниковых преобразовательных установок или сварочных установок. В основном эти установки принадлежат промышленным. Как известно, электрические сети промышленных предприятий связаны через трансформаторные подстанции с сетями сельскохозяйственного назначения, тогда можно считать, что на электросети сельскохозяйственного назначения оказывают влияние специфические электрические нагрузки промышленных предприятий.

Электроприемники сельскохозяйственного назначения по мощности подразделяются на три группы:

1. Большой мощности (больше 50 кВт)

2. Средней мощности (от 1 до 50 кВт)

3. Малой мощности (до 1 кВт)

Для работы некоторые электроприемники используют постоянный ток, а также токи повышенной частоты (до 400 Гц) или высокой (до 10 кГц).

Перерывы в электроснабжении могут допускать во время работы некоторые группы приемников, но существуют такие группы для которых перерыв в электроснабжении недопустим.

Электроприемники по надежности и бесперебойности электроснабжения разделены на 3 категории.

Первая категория включает электроприемники и комплексы электроприемников, при перерыве в электроснабжении которых может возникнуть опасность для жизни людей, расстройство технологического процесса, повреждение основного оборудования. Для этих приемников необходима возможность обеспечения электроэнергией не меньше, чем от двух независимых источников питания. На время автоматического восстановления электроснабжения от второго источника питания, допускается нарушение их электроснабжения.

Вторую категорию представляют электроприемники и комплексы электроприемников, при перерыве электроснабжения которых наблюдается массовый недовыпуск продукции, простои механизмов и рабочих.

От двух независимых источников питания необходимо обеспечивать электроснабжение приемников второй категории, допускается перерыв в электроснабжении только на время, необходимое для автоматического переключения на второй источник.

К третьей категории относятся электроприемники и комплексы электроприемников, которые не попадают по определение первых двух категорий. Их электроснабжение может осуществляться лишь от одного источника питания. На требующееся для проведения восстановительных работ время, но не больше суток допускается перерыв их электроснабжения.

Потреблением из сети не только активной, но также и реактивной мощности сопровождается работы подавляющего большинства электроприемников. Преобразуется активная мощность в механическую мощность на валу рабочей машины или теплоту, а на создание магнитных полей в электроприемниках расходуется реактивная мощность. Основными ее потребителями являются трансформаторы, асинхронные двигатели, индукционные печи, в которых отстает ток по фазе напряжения. Характеризуется потребление реактивной мощности коэффициентом мощности сosφ, представляющим отношение активной мощности Р к полной мощности S. Является удобным показателем коэффициент реактивной мощности tgφ, который выражает отношение реактивной мощности Q к активной Р (показывает, происходящее потребление реактивной мощности на единицу активной мощности).

Источниками реактивной мощности являются установки с опережающим током, они применяются для компенсации реактивной нагрузки с индуктивным характером цепи.

Электрическая нагрузка таким образом в электросети представляется активными и реактивными нагрузками.

При возникновении электрической нагрузки в распределительной сети, может возникать нагрев токоведущих частей (кабелей, проводов, обмоток трансформаторов и электродвигателей). Их чрезмерный нагрев приводит к преждевременному износу изоляции, поэтому не должна температура токоведущих частей превышать допустимые значения. Сечения кабелей и проводов необходимо выбирать по допустимому (расчетному) току нагрузки, для определения которого требуется определить расчетную мощность нагрузки.

При проектировании и эксплуатации СЭС за расчетную электрическую нагрузку принимается неизменная во времени нагрузка – Iрсч, вызывающая характеризующийся установившейся температурой максимальный нагрев токоведущих и с ними соседних частей. Допустимые значения нагрев превышать не должен. Для большинства кабелей и проводов установившееся тепловое состояние обычно наступает за 30 минут (около трех постоянных времени нагрева – 3Т, т. е. постоянная времени нагрева Т = 10 мин). В установках, имеющих номинальный ток нагрузки больше 1000 А, не менее 60 минут достигается установившаяся температура.

Параметры сети и характер нагрузки

Номинальным напряжением приемников электрической энергии называется напряжение, при котором они предназначены для нормальной работы.

Каждая электрическая сеть характеризуется номинальным напряжением приемников электрической энергии, в том числе и трансформаторов, которые от нее питаются. Отличие действительного напряжения на выводах приемника электрической энергии от номинального напряжения является одним из основных показателей качества электрической энергии. Напряжение у потребителя (подстанция, завод, трансформаторный пункт) или у отдельного приемника (электродвигатель, лампа накаливания) никогда не остается постоянным в течение суток. В процессе нормальной эксплуатации электрической сети наблюдаются плавные, закономерные отклонения напряжения от среднего уровня или резкие кратковременные колебания напряжения, вызванные внезапным изменением режимов работы приемников. Поддержать напряжение у потребителей неизменным и равным номинальному практически невозможно. Пределы допустимых отклонений напряжения, которые удобно выражать в процентах от номинального напряжения (δU), пользуясь формулой:

Очевидно, что отклонение напряжения положительно, когда напряжение у приемника U2 выше номинального Uн и отрицательно — в противоположном случае. Ответить на вопрос, какое из отклонений, положительное или отрицательное, лучше, в ряде случаев весьма трудно. Для этого каждый приемник рассматривают с точки зрения его назначения, места установки и режима работы, так как совсем не безразлично, применена ли лампа накаливания в светильнике наружного освещения или над рабочим местом в цехе. Во всех случаях следует руководствоваться нормами предельно допустимых отклонений напряжения у приемников.

Допустимые отклонения напряжения

Из таблицы видно, для одних и тех же приемников, например ламп накаливания, в условиях жилых помещений можно допустить отклонения в пределах ± 5%, так как это практически не отразится на жителях, в то время как снижение напряжения больше чем на 2,5 % у ламп рабочего освещения недопустимо из-за возможного брака. При снижении напряжения на 5 % номинального светового потока лампы накаливания снижается до 82,5 %, а люминесцентные лампы перестают работать устойчиво. При повышении напряжения, например, на 5 % срок службы лампы снижается до 350 часов вместо нормальных 1000 часов. Мощность нагревательных приборов, вращающий момент асинхронных двигателей и мощность конденсаторов изменяются пропорционально квадрату, то есть второй степени напряжения. Поэтому даже незначительные изменения напряжения резко ухудшают основные характеристики этих приемников.

Параметры электрической сети включают в себя параметры линейных элементов (индуктивные) сопротивления проводов и кабелей, и те же параметры трансформаторов. При решении вопросов, связанных с регулированием напряжения сети, составляется расчетная схема замещения, в простейшем случае представляющая собой последовательное соединение всех активных и индуктивных сопротивлений. для превращения схемы сети в схему замещения необходимо определить параметры линейных элементов, для чего необходимо знать протяженность линий, марку провода и его сечение, а также расстояние между проводами. К параметрам линейных элементов сети, оказывающим влияние на величину напряжения у приемников, относятся величины:

r0 — активное сопротивление на каждый километр, Ом;

x0 — индуктивное (реактивное) сопротивление на каждый километр линии, Ом.

Индуктивное сопротивление x0 для трехфазной линии тем больше, чем чем больше расстояние между проводами. Это объясняется тем, что соединение провода своим магнитным потоком уменьшают ЭДС самоиндукции в проводах и тем в большей степени, чем они ближе друг к другу. Для кабельных линий или проводов, расположенных в одной трубе, расстояние между отдельными жилами незначительно и поэтому x0, близко к 0,08 Ом/км. В линиях постоянного тока индуктивное сопротивление отсутствует, так как там нет переменного магнитного поля. Для заводских сетей, проложенных на изоляторах или роликах, при расстояниях между проводами 50-150 мм индуктивное сопротивление составляет примерно 0,3 Ом/км, а для воздушных сетей близко к 0,4 Ом/км.

Сопротивления линий могут быть легко получены по формулам:

Сопротивления линий

где l — протяженность линии, км.

В заводских сетях схема замещения силового трансформатора, связывающего сеть высокого и низкого напряжений, принимаются состоящей только из последовательно соединенных активного Rт и индуктивного Xт сопротивлений. Для определения этих параметров необходимо воспользоваться следующими данными заводского паспорта трансформатора или по данным ГОСТ: номинальная мощность трансформатора Sн, кВА; номинальное линейной напряжение обмотки низшего или высшего напряжения Uн, кВ; потери в обмотках или потери короткого замыкания ΔPкз, кВт; напряжение короткого замыкания, uк, %.

Для расчета используются формулы:

Активное и индуктивное сопротивления

Электроснабжение промышленных предприятий осуществляется, как правило, по распределительной воздушной или кабельной сети 6, 10 или 35 кВ. Распределительная сеть высокого напряжения через трансформаторы связана с сетью низкого напряжения. параметры сети высокого, низкого напряжений и самого трансформатора можно только тогда связывать электрической схемой замещения, когда все они предварительно будут рассчитаны или, как говорят, приведены к одному напряжению, принятому за базисное. Пересчет сопротивлений на «базисное» напряжение и получение «приведенных» сопротивлений производится по формулам:

Приведенные сопротивления

где R’, X’ — приведенные величины активного и реактивного сопротивлений; U’ — базисное, обычно высшее напряжение трансформатора; Uн — номинальное напряжение того участка сети, на котором находится пересчитываемое сопротивление.

После приведения сопротивлений к одному напряжению сеть, имеющую одну ступень трансформации, можно рассматривать как сеть одного базисного напряжения. Схема замещения для сети с одной ступенью трансформации приведена на рисунке ниже.

Схема замещения для трансформатора

Приемники электрической энергии могут быть разделены на две группы.

К первой из них следует отнести приемники, в которых электрическая энергия целиком переходит в тепло, например лампы накаливания, дуговые печи, нагревательные приборы обычного типа.

Ко второй группе относятся приемники, действие которых невозможно без наличия переменного магнитного поля. К ним относятся все электродвигатели переменного тока, индукционные печи, трансформаторы и т.д. В этих приемниках энергии в течение четверти периода накапливается магнитное поле, в течение следующей четверти уходит из магнитного поля обратно к источнику. Эти чередующиеся перемещения энергии в линии вызывают протекание по линии дополнительного тока, называемого намагничивающим или реактивным Iр. Ток этот отстает по времени от напряжения на четверть периода (0,005 секунд). Для пояснения процессов, происходящих в цепях переменного тока, принято пользоваться тригонометрическим соотношением между сторонами прямоугольного треугольника ОАВ (рисунок ниже).

Разложение векторов

При этом ток I рассматривается как вектор, совпадающий с гипотенузой треугольника, а катеты рассматриваются как составляющие тока — активная Iа и реактивная Iр. Амперметр, включенный в рассечку линии, показывает величину тока I, проходящего по цепи, из которого только часть Iа обеспечивает развитие активной мощности. Реактивная слагающая тока Iр есть следствие процесса перетока энергии магнитного поля, которая загружает сеть, создавая в ней дополнительные потери энергии и напряжения. Чтобы судить об экономичности использования сети и оборудования по величине тока и напряжения при наличии реактивной составляющей тока, используется как называемый коэффициент мощности, который из векторной диаграммы определяется как:

cosф = P/ S или cosф = Iа / I.

Подобные соотношения справедливы и для мощности одной фазы трехфазной системы. Активная слагающая тока Iа = I·cosф входит в выражение активной мощности, определяя ее при заданном напряжении U:

Реактивная слагающая тока Iр = I· sinф входит в выражение реактивной мощности, определяя ее при заданном напряжении U:

Коэффициент мощности для осветительной или, как говорят, чисто активной нагрузки близок к единице. При выборе способа и средств регулирования напряжения на зажимах трехфазного приемника с симметричной нагрузкой фаз необходимо, кроме параметров питающей линии, установить характер самой нагрузки, то есть активную и реактивную составляющие тока (мощности). проще всего это можно осуществить с помощью имеющихся практически у каждого потребителя электросчетчиков «активной» и «реактивной» энергии.

Разбираемся с понятиями активной и реактивной нагрузки

Чтобы правильно рассчитать нагрузку потребителей по мощности необходимо знать: какие бывают приемники напряжения. Что такое активная, реактивная и линейная нагрузка? Треугольник мощностей. Что такое пусковой ток? Все это разберем по порядку.

К приемникам напряжения относятся все устройства, которые подключаются к источникам напряжения. К ним относятся: электровентилятор, электроплита, стиральная машина, компьютер, телевизор, электродвигатель, бытовой электроинструмент и другие электропотребители.

В цепях переменного тока нагрузки разделяются на активные, реактивные и нелинейные. В цепях постоянного тока деления на типы нагрузок нет.

Активная нагрузка

К устройствам с активной нагрузкой причисляются нагревательные приборы (утюги, электроплиты, лампы накаливания, электрические чайники). Подобные приборы вырабатывают тепло и свет. Они не содержат индуктивности и емкости. Активная нагрузка преобразовывает электроэнергию в свет и тепло.

Реактивная нагрузка содержит емкость и индуктивность. Данные параметры имеют качество собирать энергию, а потом отдавать ее в сеть. Примером может служить электродвигатель, электрическая мясорубка, бытовой инструмент (пылесос, кухонный комбайн). То есть, все устройства, которые содержат электродвигатели.

Треугольник мощностей

Чтобы разобраться с реактивной нагрузкой рассмотрим треугольник мощностей.

где Р – активная мощность, которая измеряется в Ватах и используется для совершения полезной работы;

Q – реактивная, которая измеряется в Варах и используется для создания электромагнитного поля;

S – полная мощность используется для расчета электрических цепей.

Для расчета полной мощности применяем теорему Пифагора: S2=P2+Q2. Или с помощью формулы: S=U*I, где U – это показание напряжения на нагрузке, I — показание амперметра, которое включается последовательно с нагрузкой. В расчетах также используется коэффициент мощности – cosφ. На приборах, которые относятся к реактивной нагрузке, обычно указаны активная мощность и cosφ. С помощью этих параметров также можно получить полную мощность.

Иногда на приборах указывается полная мощность, а cosφ не указан. В этом случае применяется коэффициент 0,7.

Нелинейная нагрузка

Имеет особенность в том, что напряжение и ток не пропорциональны. К нелинейной нагрузке относятся телевизоры, музыкальные центры, настольные электронные часы, компьютеры и его компоненты. Сама нелинейность обусловлена тем, что данное электронное устройство использует импульсные блоки питания. Для подзарядки конденсатора, которые стоят в импульсном блоке питания, достаточно вершины синусоиды.

В остальное время энергию из сети конденсатор не потребляет. В этом случае ток имеет импульсное качество. К чему это все приводит? Это приводит к тому, что синусоида искажается. Но не все электронные устройства работают с искаженной синусоидой. Эта проблема решается за счет применения стабилизаторов двойного преобразования, где сетевое питание преобразуется в постоянное. Затем из постоянного преобразуется в переменное нужной формы и амплитуды.

Пусковой ток

При расчете необходимо учитывать и пусковые токи устройства. Например, сопротивление нити накаливания в лампочке в момент включения в 10 раз меньше, чем в рабочем режиме. Следовательно, пусковой ток этой лампочки в 10 раз больше. Через некоторое время она начнет потреблять ту мощность, которая записана в данных этой лампочки. Поэтому, при включении она перегорает за счет больших пусковых токов.

В радиоэлектронной аппаратуре пока не зарядится конденсатор в блоке питания, также образуется пусковой ток.

В электродвигателях тоже образуется пусковой ток, пока двигатель не наберет номинальные обороты.

В нагревательных приборах пусковой ток образуется, пока спираль не нагреется до дежурной температуры.

Чтобы правильно рассчитать нагрузку потребителей по мощности необходимо знать: какие бывают приемники напряжения. Что такое активная, реактивная и линейная нагрузка? Треугольник мощностей. Что такое пусковой ток? Все это разберем по порядку.

К приемникам напряжения относятся все устройства, которые подключаются к источникам напряжения. К ним относятся: электровентилятор, электроплита, стиральная машина, компьютер, телевизор, электродвигатель, бытовой электроинструмент и другие электропотребители.

В цепях переменного тока нагрузки разделяются на активные, реактивные и нелинейные. В цепях постоянного тока деления на типы нагрузок нет.

Активная нагрузка

К устройствам с активной нагрузкой причисляются нагревательные приборы (утюги, электроплиты, лампы накаливания, электрические чайники). Подобные приборы вырабатывают тепло и свет. Они не содержат индуктивности и емкости. Активная нагрузка преобразовывает электроэнергию в свет и тепло.

Реактивная нагрузка содержит емкость и индуктивность. Данные параметры имеют качество собирать энергию, а потом отдавать ее в сеть. Примером может служить электродвигатель, электрическая мясорубка, бытовой инструмент (пылесос, кухонный комбайн). То есть, все устройства, которые содержат электродвигатели.

Определение

Нагрузка электрической цепи определяет, какой ток через неё проходит. Если ток постоянный, то эквивалентом нагрузки в большинстве случаев можно определить резистор определённого сопротивления. Тогда мощность рассчитывают по одной из формул:

P=U*I

P=I2*R

P=U2/R

По этой же формуле определяется полная мощность в цепи переменного тока.

Нагрузку разделяют на два основных типа:

  • Активную – это резистивная нагрузка, типа – ТЭНов, ламп накаливания и подобного.
  • Реактивную – она бывает индуктивной (двигатели, катушки пускателей, соленоиды) и емкостной (конденсаторные установки и прочее).

Последняя бывает только при переменном токе, например, в цепи синусоидального тока, именно такой есть у вас в розетках. В чем разница между активной и реактивной энергией мы расскажем далее простым языком, чтобы информация стала понятной для начинающих электриков.

Треугольник мощностей

Чтобы разобраться с реактивной нагрузкой рассмотрим треугольник мощностей.

где Р – активная мощность, которая измеряется в Ватах и используется для совершения полезной работы;

Q – реактивная, которая измеряется в Варах и используется для создания электромагнитного поля;

S – полная мощность используется для расчета электрических цепей.

Для расчета полной мощности применяем теорему Пифагора: S2=P2+Q2. Или с помощью формулы: S=U*I, где U – это показание напряжения на нагрузке, I — показание амперметра, которое включается последовательно с нагрузкой. В расчетах также используется коэффициент мощности – cosφ. На приборах, которые относятся к реактивной нагрузке, обычно указаны активная мощность и cosφ. С помощью этих параметров также можно получить полную мощность.

Иногда на приборах указывается полная мощность, а cosφ не указан. В этом случае применяется коэффициент 0,7.

Активная и реактивная электрическая мощность

Общая зависимость электрической мощности от электрического тока и напряжения известна давно: это произведение. Помножим ток на напряжение – получим значение этой величины, потребляемой цепью из сети.

Но на деле все может оказаться не так просто. Потому что, просто умножив напряжение на ток, мы получим значение полной мощности. Казалось бы – это то, что нужно! Ведь обычно нас интересует именно полное значение любой величины.

Однако на электрическую мощность такое отношение распространять нельзя, так как электроэнергия и мощность, на основании которых изменяются показания нашего квартирного счетчика – не полные, а активные.

Активная мощность

– это та мощность, которая потребляется в тот момент, когда в сети в один и тот же момент есть и напряжение, и синхронный с ним электрический ток. На самом деле, в цепях постоянного тока за исключением переходных процессов при включении-выключении так оно и бывает.

Постоянно «жмет» напряжение, если цепь замкнута – постоянно «давит» некоторый ток. В итоге полная и активная мощность становятся равны, поскольку ток и напряжение действуют согласованно.

Иное дело – цепи переменного тока. Напряжение в них меняет свое направление пятьдесят раз в секунду, а ток… иногда приотстает, а иногда опережает напряжение. К примеру, если в цепи имеется «индуктивность», то есть, катушка из провода, имеющая множество витков, то ток на таком элементе цепи «отстанет» от напряжения.

Причина заключается в противо-ЭДС самоиндукции, сопротивляющейся изменению тока в катушке. Получается, что напряжение к индуктивности уже приложено, а ток еще никак не может возрасти из-за помех со стороны противо-ЭДС.

В среде учащихся многих электротехнических ВУЗов бытует такое художественное сравнение: «Для тока требуется время, чтобы он мог пробежать через каждый виток, а напряжение – вот оно, уже на концах катушки».

ЭДС противоиндукции вызывает падение напряжения и снижение тока в цепи. То есть, катушка является источником индуктивного сопротивления. Но оно отличается от активного сопротивления тем, что на нем не выделяется никакого тепла и вообще не потребляется никакой мощности в привычном понимании.

Происходит просто «пустопорожнее» переливание электроэнергии от источника к индуктивности. И энергия, перенаправляемая туда и обратно как мяч в настольном теннисе, никуда из сети не уходит. Это реактивная энергия и потребителю в быту за нее не приходится платить энергосбытовой компании.

Реактивная энергия

, производимая в сети в единицу времени, может считаться реактивной мощностью. Вычисляется она так же, как и активная – произведением реактивной составляющей тока на напряжение.

Реактивной же составляющей тока является та, которая не совпадает с напряжением по своей фазе. Величина «несовпадения» характеризуется углом сдвига фаз. В случае с чистой индуктивностью сдвиг фаз составляет максимум – 90°. Это означает, что когда напряжение достигает самого большого своего значения, ток только начинает расти.

А если в цепи расположен конденсатор (емкость), то напряжение, напротив, будет отставать от тока на 90 градусов по причине того, что для возникновения падения напряжения конденсатору требуется зарядить свои обкладки.

Точно так же источник и конденсатор в одной цепи будут обмениваться реактивной энергией, которая ни на что не будет тратиться.

В реальной цепи не бывает чисто активной или чисто реактивной нагрузки, поэтому полная мощность всегда состоит из активной и реактивной составляющей, а угол сдвига фаз находится в пределах между нулем и 90°.

Реактивная составляющая тока равна его произведению на синус угла сдвига фаз, а активная – произведению на косинус этого угла:

Q=I*sin⁡φ; P=I*cosφ

Полную мощность можно найти по теореме Пифагора:

S=√(P^2+Q^2);

При этом, реактивную мощность, в отличие от активной, нельзя исчислять в ваттах, потому что она неэффективна. Поэтому для реактивной мощности придумали особую единицу измерения – вольт-амперы реактивные (ВАРы). А полная измеряется в вольт-амперах, без уточнения характера нагрузки.

Нелинейная нагрузка

Имеет особенность в том, что напряжение и ток не пропорциональны. К нелинейной нагрузке относятся телевизоры, музыкальные центры, настольные электронные часы, компьютеры и его компоненты. Сама нелинейность обусловлена тем, что данное электронное устройство использует импульсные блоки питания. Для подзарядки конденсатора, которые стоят в импульсном блоке питания, достаточно вершины синусоиды.

В остальное время энергию из сети конденсатор не потребляет. В этом случае ток имеет импульсное качество. К чему это все приводит? Это приводит к тому, что синусоида искажается. Но не все электронные устройства работают с искаженной синусоидой. Эта проблема решается за счет применения стабилизаторов двойного преобразования, где сетевое питание преобразуется в постоянное. Затем из постоянного преобразуется в переменное нужной формы и амплитуды.

Расчёты

Для вычисления полной мощности используют формулу в комплексной форме. Например, для генератора расчет имеет вид:

А для потребителя:

Но применим знания на практике и разберемся как рассчитать потребляемую мощность. Как известно мы, обычные потребители, оплачиваем только за потребление активной составляющей электроэнергии:

P=S*cosФ

Здесь мы видим, новую величину cosФ. Это коэффициент мощности, где Ф – это угол между активной и полной составляющей из треугольника. Тогда:

cosФ=P/S

В свою очередь реактивная мощность рассчитывается по формуле:

Q = U*I*sinФ

Для закрепления информации, ознакомьтесь с видео лекцией:

Всё вышесказанное справедливо и для трёхфазной цепи, отличаться будут только формулы.

Пусковой ток

При расчете необходимо учитывать и пусковые токи устройства. Например, сопротивление нити накаливания в лампочке в момент включения в 10 раз меньше, чем в рабочем режиме. Следовательно, пусковой ток этой лампочки в 10 раз больше. Через некоторое время она начнет потреблять ту мощность, которая записана в данных этой лампочки. Поэтому, при включении она перегорает за счет больших пусковых токов.

В радиоэлектронной аппаратуре пока не зарядится конденсатор в блоке питания, также образуется пусковой ток.

В электродвигателях тоже образуется пусковой ток, пока двигатель не наберет номинальные обороты.

В нагревательных приборах пусковой ток образуется, пока спираль не нагреется до дежурной температуры.

Виды энергии

Ниже представлены основные виды нагрузок, которые используются в повседневной жизни. Они могут быть как в бытовых приборах, как и в различных двигателях или датчиках.

Активная

Для данной работы используется закон Ома, который выполняется в каждую секунду времени и схож с правилом для переменного тока. Такой тип применяется в лампах для освещения или в электроплитах.

Вам это будет интересно Описание установленной и расчетной мощности

Емкостная

Этот вид превращает в течении определенного времени энергию электрического тока в электрополе, а далее превращает ее в электрический ток. А также, здесь сила тока будет опережать напряжение.

В качестве примера может быть конденсатор. К сожалению, встретить полные реактивные нагрузки невозможно ни в одном приборе. Каждый вид не имеет коэффициент полезного действия 100%, потому что существуют потери энергии в воздухе и прочее. Потому чаще всего используется название активно-реактивной работы.

Индуктивная

Данный вид превращает энергию в магнитное поле, а далее меняет ее в электрический ток. Сила тока в этом случае будет отставать от напряжения. Для примера можно взять индуктивную катушку или датчик дросселя на автомобиле.

Примеры реальных расчетов

В качестве примера можно выбрать питающую подстанцию жилого района. Нагрузка подстанции является III категории, поэтому коэффициент загрузки допустимо выбирать из большего значения – 0.9-0.95.

Характер потребления тока бытового сектора зависит от времени суток и сезона, но с учетом высокого коэффициента загрузки допустимо учитывать среднее значение потребляемой мощности. Для повышения надежности работы в период максимального потребления рекомендуется использование маслонаполненных трансформаторов, которые отличаются большой перегрузочной способностью в течение длительного периода времени (30% перегрузки в течение 2-х часов).

Методика расчета мощностей трансформатора

При расчете силового трансформатора питающей подстанции учитывается среднесуточная нагрузка и длительность периода максимальной потребления. При этом должно учитываться соотношение:

Sном≥∑Pмакс

Режим пикового потребления также должен учитывать время воздействия, поскольку при кратковременных всплесках (до 1 часа), устройство будет работать в недогруженном режиме, что экономически не выгодно.

В таких случаях нужно брать в расчет перегрузочную способность конструкции, которая зависит от конструктивных особенностей, температуры окружающего воздуха и условий охлаждения. Это диктуется условиями допустимого нагрева составляющих элементов (обмоток, коммутирующих цепей).

Понятие коэффициента загрузки определяет отношение среднесуточного и максимального потребления электрической энергии. Коэффициент загрузки всегда меньше единицы. Его величина связана с требованиями к надежности электроснабжения. Чем меньше требуемая надежность, тем больше коэффициент может приближаться к единице.

Эскиз конструкции трансформатора

Конструкция мощного силового трансформатора состоит из нескольких частей:

  1. Остов.
  2. Выемная часть.

В состав выемной части входит, собственно сердечник и обмотки с активной частью, которая включает переключатели с приводами, вводы высокого и низкого напряжений, предохранительные устройства.

Остов – основная составляющая конструкции активной части. В состав остова входит магнитная система (сердечник) со всеми обмотками, а также конструктивные элементы для крепления и соединения обмоток и частей магнитной системы.

конструкция силового трансформатора

Перегрузки силовых трансформаторов

Перегрузки определяются преобразованием заданного графика нагрузки в эквивалентный в тепловом отношении (рис. 3.5). Допустимая нагрузка трансформатора зависит от начальной нагрузки, максимума нагрузки и его продолжительности и характеризуется коэффициентом превышения нагрузки:

Расчет активной мощности трансформатора

Допустимые систематические перегрузки трансформаторов определяются из графиков нагрузочной способности трансформаторов, задаваемых таблично или графически. Коэффициент перегрузки передается в зависимости от среднегодовой температуры воздуха /сп вида охлаждения и мощности трансформаторов, коэффициента начальной нагрузки кн н и продолжительности двухчасового эквивалентного максимума нагрузки tmах.

Для других значений tmax допустимый можно определить по кривым нагрузочной способности трансформатора.

Если максимум графика нагрузки в летнее время меньше номинальной мощности трансформатора, то в зимнее время допускается длительная 1%я перегрузка трансформатора на каждый процент недогрузки летом, но не более чем на 15 %. Суммарная систематическая перегрузка трансформатора не должна превышать 150 %. При отсутствии систематических перегрузок допускается длительная нагрузка трансформаторов током на 5 % выше номинального при условии, что напряжение каждой из обмоток не будет превышать номинальное.

На трансформаторах допускается повышение напряжения сверх номинального: длительно — на 5 % при нагрузке не выше номинальной и на 10% при нагрузке не выше 0,25 номинальной; кратковременно (до 6 ч в сутки) — на 10 % при нагрузке не выше номинальной.

Дополнительные перегрузки одной ветви за счет длительной недогрузки другой допускаются в соответствии с указаниями заводом — изготовителя. Так, трехфазные трансформаторы с расщепленной обмоткой 110 кВ мощностью 20, 40 и 63 М ВА допускают следующие относительные нагрузки: при нагрузке одной ветви обмотки 1,2; 1,07; 1,05 и 1,03 нагрузки другой ветви должны составлять соответственно 0; 0,7; 0,8 и 0,9.

Читать также: Защита ip20 для ванной комнаты

Для правильного выбора и проверки проводников (кабелей и шин), а также трансформаторов по экономической плотности тока и соответственно пропускной способности, расчета потерь и отклонений напряжений, выбора устройств компенсации и защиты необходимо знать электрические нагрузки проектируемого объекта.

Основой рационального решения вопросов электроснабжения современных предприятий и энергосистем является правильное определение электрических нагрузок. При завышении нагрузок – появляются излишние затраты, а также недоиспользование мощностей дорогостоящего оборудования. При занижении – может приводить к перегрузкам энергосистемы и недоотпускам продукции. Ни первый, ни второй вариант не являются приемлемыми. Данную задачу осложняет еще и то, что имеется довольно много факторов и зависимостей, трудно поддающихся учету при проектировании.

Режимы работы предприятий

Графики и режимы работы предприятий и энергосистем довольно не стабильны и изменяются во времени, как показано на рисунке ниже:

Где: 1 и 2 – это активная и реактивная мощности соответственно.

На изменение графиков нагрузки влияет также внедрение новых технологий и производственных процессов, увеличение вентиляции санитарно – технической, а также наращивание производственных мощностей. Также повышение использования оборудования за счет уплотнения рабочего времени, автоматизации процессов производства и так далее.

Довольно много существует различных методов проведения расчетов электрических нагрузок, обзор и анализ их мы не будем приводить в данной статье. Эти методики постоянно совершенствуются как практически, так и теоретически и базируются на обследованиях наиболее характерных предприятиях. Обследования – основа для практического внедрения методик.

Силовая

Это разновидность физической нагрузки, где упор делается на упражнения для прокачки мышц тела. Обычно термин силовой нагрузки используется в спорте для обозначения комплекса упражнений, цель которых – набрать мышечную массу тела.

Разделяют полную и неполную нагрузку. В первом случае тело работает во всю мощность, на грани возможного и непосильного. При неполной нагрузке мышцы работают в комфортном режиме, сохраняя тонус, но не прирастая.

Силовая нагрузка

Определение нагрузок

Для подсчета суммарных нагрузок и построения их графика необходимо определить нагрузки различных частей системы электроснабжения:

  • Мощные электроприемники (например, главные привода прокатных станов, электропечи, мощные электромашины) нужно изучать путем изучения технологического цикла, а также индивидуальных показателей режима работы. Построение графиков электрических нагрузок на основе технологических графиков работы цеха либо предприятия;
  • Определить суммарные резкопеременные нагрузки (например электропечи и т.д.) на основе графиков индивидуальных нагрузок с учетом фактора несовпадений индивидуальных графиков для снижения максимальной ударной нагрузки и для уменьшения колебания напряжения сети;
  • Определить нагрузку воздуходувных, насосных, компрессорных станций по удельному потреблению электрической энергии на единицу объема воздуха, воды и так далее;

Нагрузку электроприемников находящихся в резерве, сварочные ремонтные трансформаторы, пожарные насосы, а также электроприемников работающих в кратковременном режиме (как пример – задвижки, вентили, дренажные насосы и другие), при подсчете средних нагрузок, как правило, не учитывают. Питающие линии и силовые пункты должны рассчитываться с учетом влияния резервных электроприемников.

Видео о законах электротехники

Из следующего видео можно узнать, что такое электричество, мощность электрического тока. Даны примеры практического применения законов электротехники.

Электроэнергия давно используется человеком для удовлетворения своих потребностей, но она невидима, не воспринимается органами чувств, потому сложна для понимания. Мощность ток напряжение, все эти характеристики электроэнергии исследованы известными учеными, которые дали им определения и описали математическими методами взаимные связи между ними.

Мощность ток напряжение сопротивление

Так же следует помнить, на величину электрического сопротивления влияет несколько факторов:

  • строение вещества, определяющее наличие свободных электронов в проводнике и влияющее на удельное сопротивление
  • площадь поперечного сечения и длина токовода
  • температура

В приведенной таблице показаны общие соотношения для цепей постоянного и переменного тока, которые можно применять для анализа работы схем электроснабжения.

Виды электрических нагрузок

Для того, чтоб выполнить проект системы электроснабжения нужно определить следующие виды нагрузок:

  • Средние – мощность, потребленная за максимально загруженную смену. Также могут быть среднемесячные или среднегодовые. Средняя мощность, потребленная за год, нужна для определения годовых потерь электрической энергии, а средняя мощность за максимально загруженную смену – по ней определяют расчетный максимум;
  • Максимально – кратковременные (пиковые) – их определение нужно для проверки колебания напряжения в сетях, для определения параметров срабатывания токовой защиты, выбора плавких предохранителей, проверки электрических сетей по условиям самозапуска электрических машин;
  • Максимальные имеющие различную продолжительность (10, 30, 60 мин) – их используют чтоб произвести расчет электрической сети по нагреву, определения потерь мощности максимальных в сетях, выбор элементов сети по плотности тока (экономической), для определение отклонений напряжений и потерь.

В отдельных отраслях при проектировании систем электроснабжения могут вводить некоторые уточнения и допущения, которые базируются на довольно хорошем знании специфики технологического процесса данной отрасли, а также выявлении, более детальном для данной отрасли, расчетных коэффициентов, расходов энергии, числа часов использования максимума.

Расчет электрических мощностей промышленного транспорта, испытательных станций, лабораторных установок производят по другим методикам, которые учитывают специфику работы данных установок.

Какие типы электрических потребителей бывают? Активная и реактивная нагрузка, активно-индуктивная и активно-емкостная, в чем различия?

В повседневной жизни и общениях с клиентами интернет-магазина Электрокапризам-НЕТ! мы выясняем множество технических вопросов и максимально точно подбираем оборудование под инженерные задачи. Имея большой опыт работ и выбора технических решений специалистами компании НТС-ГРУПП (ТМ Электрокапризам-НЕТ!) была собрана масса полезной информации, которую мы попытались структурировать и в сжатом виде донести нашим клиентам путем публикации на сайте. Ниже приведена своеобразная классификация типа нагрузок с небольшими комментариями, а в следующей статье будут описаны особенности выбора мощности, запаса мощности и варианты использования источников бесперебойного питания, стабилизаторов напряжения и электрогенераторов в сетях с несбалансированным распределением потребителей, с различными видами активной и реактивной нагрузкок и др.

Применительно к выбору оборудования классифицируем типы нагрузок следующим образом

1. По типу электрического потребления нагрузки делятся на:

АКТИВНУЮ: — Активная (или еще известную, как резистивная) нагрузка. В этом случае закон Ома выполняется в каждый момент времени и аналогичен закону Ома для схем постоянного тока. В качестве примеров : электрическая лампочка накаливания, нагревательный элемент (ТЭН), электрическая плита, бойлер и т.п.

РЕАКТИВНУЮ, которая также разделяется на такие:

— Индуктивная нагрузка — нагрузка, через которую ток отстает от напряжения и нагрузка потребляет реактивную мощность. Примеры: асинхронные двигатели, электромагниты, катушки дросселей, трансформаторы, выпрямители, преобразователи построенные на тиристорах. Индуктивная (реактивная) нагрузка преобразует в течение одной половины полупериода энергию электрического тока в магнитное поле, а течении следующей половины преобразует энергию магнитного поля в электрический ток. При этом в индуктивной нагрузке кривая тока отстаёт от кривой напряжения на ту же половину полупериода. Примером для данного вида нагрузок может быть дроссель или катушка индуктивности.

— Ёмкостная (реактивная) нагрузка преобразует в течение одной половины полупериода энергию электрического тока в электрическое поле, а течении следующей половины преобразует энергию электрического поля в электрический ток. При этом в ёмкостной нагрузке кривая тока опережает кривую напряжения на ту же половину полупериода. Примером данного вида нагрузок может быть конденсатор.

На практике чистые реактивные нагрузки в электротехнике не встречаются. Вся электротехника работает с коэфициентом полезного действия ниже 100% вследствие рассеяния части энергии в виде тепловых потерь, потерь при излучении и др. побочных явлений. Таким образом в практической электротехнике применяется понятие активно-реактивной нагрузки. Активно-реактивная нагрузка также подразделяется на две: активно-индуктивная и активно-емкостная.

Активно-индуктивная нагрузка может рассматриваться как последовательное или параллельное соединение активного сопротивления и идеальной индуктивности. Примером таких нагрузок может быть обмоточный электромагнитный трансформатор, электродвигатель, электромагнитное пускорегулирующее устройство для люминесцентных ламп, катушка зажигания в автомобиле. Для этого вида нагрузок характерен бросок напряжения в момент размыкания электрической цепи.

Активно-ёмкостная нагрузка может рассматриваться как последовательное или параллельное соединение активного сопротивления и идеальной ёмкости. Примером таких нагрузок может быть конденсатор, электронные блоки питания галогенных или люминесцентных ламп. Для этих нагрузок характерен бросок тока в момент замыкания электрической цепи, особенно если он произошёл в тот момент, когда напряжение в сети максимально, или близко к максимальному.

При протекании тока через активно-реактивную нагрузку часть тока будет протекать через прибор, не производя никакой полезной работы. При этом максимумы и минимумы тока и напряжения будут достигаться в разное время, а кривые изменения по времени тока и напряжения будут не совпадать – оставаясь, при этом, периодическими функциями. Происходит сдвиг тока и напряжения по фазе. Для обозначения зависимости такого сдвига применяется понятие Косинус угла между током и напряжением, и обозначается как cos(ϕ). Этот параметр является очень важным в электротехнике, которым не стоит пренебрегать при расчетах и выборе стабилизаторов напряжения, источников бесперебойного питания и электрогенераторов.

2. Фазность электропотребителей:

— однофазные –потребители рассчитанные на электропитание от 220/230В по схеме фаза-ноль-земля.

— трехфазные – потребители для которых необходимо подать напряжение 380В/400В в схеме с нейтралью и землей.

3. По способу распределения нагрузки (для трехфазных схем)

— Сбалансированные – сбалансированными считают такое распределение постребителей, когда на каждой фазе в трехфазной схеме мощности нагрузок распределены равномерно (с перекосом не более +/-20%). В качестве примера можно привести коттедж с трехфазным вводом электроснабжения, в котором при проектировании и монтаже электрических потребителей 15 кВт мощности равномерно распределили по 5 кВт на каждую фазу. Еще одним примером можно выделить промышленный цех, в котором преобладают трехфазные потребители и таким образом все три фазы будут нагружены равномерно.

— Несбалансированные – характеризуются как хаотично-нагруженные фазы, где нагруженность фаз может отличаться на 100% между собой. Примером может служить частный трехэтажный дом в котором на каждый этаж отводится одна фаза. Как показывает практика первый этаж дома (т.е. одна из фаз) обычно перегружена в силу того, что на первом этаже размещаются: кухня, бойлерная и комната отдыха, а на остальных этажах спальни с бытовой техникой. В итоге одна фаза может быть нагружена на 100%, а другие используются редко или не сильно нагружены.

Мощность ток напряжение, расчёты для однофазной сети 220 В

Сила тока I (в амперах, А) подсчитывается по формуле:

P – электрическая полная нагрузка (обязательно указывается в техническом паспорте устройства), Вт (ватт)

U – напряжение электрической сети, В (вольт)

Ниже в таблице представлены величины нагрузки типичных бытовых электроприборов и потребляемый ими ток (для напряжения 220 В).

Электроприбор Потребляемая мощность, Вт Сила тока, А
Стиральная машина 2000 – 2500 9,0 – 11,4
Джакузи 2000 – 2500 9,0 – 11,4
Электроподогрев пола 800 – 1400 3,6 – 6,4
Стационарная электрическая плита 4500 – 8500 20,5 – 38,6
СВЧ печь 900 – 1300 4,1 – 5,9
Посудомоечная машина 2000 — 2500 9,0 – 11,4
Морозильники, холодильники 140 — 300 0,6 – 1,4
Мясорубка с электроприводом 1100 — 1200 5,0 — 5,5
Электрочайник 1850 – 2000 8,4 – 9,0
Электрическая кофеварка 6з0 — 1200 3,0 – 5,5
Соковыжималка 240 — 360 1,1 – 1,6
Тостер 640 — 1100 2,9 — 5,0
Миксер 250 — 400 1,1 – 1,8
Фен 400 — 1600 1,8 – 7,3
Утюг 900 — 1700 4,1 – 7,7
Пылесос 680 — 1400 3,1 – 6,4
Вентилятор 250 — 400 1,0 – 1,8
Телевизор 125 — 180 0,6 – 0,8
Радиоаппаратура 70 — 100 0,3 – 0,5
Приборы освещения 20 — 100 0,1 – 0,4

Постоянные нагрузки

Нагрузки, действующие на конструкцию в течение всего времени эксплуатации конструкции, будь то одна секунда или одно тысячелетие.

Как правило к постоянным нагрузкам относится только нагрузка от собственного веса конструкции. Например, для ленточного фундамента постоянной нагрузкой будет собственный вес всех элементов здания, а для фермы перекрытия — собственный вес верхнего и нижнего пояса, стоек, раскосов и соединительных элементов. При этом для каменных или железобетонных элементов нагрузка от собственного веса может составлять больше половины от расчетной нагрузки, а при расчете фундамента и все 90%, а для металлических и деревянных конструкций покрытий и перекрытий нагрузка от собственного веса как правило не превышает 3-10%.

Выполнение расчета для определения усилий.

Усилия – это именно те данные, которые помогают инженеру понять, как же чувствует себя конструкция под воздействием всей совокупности нагрузок. Если нагрузки (внешние силы) – это то, что влияет на схему извне, то усилия – это то, что чувствует каждый элемент расчетной схемы непосредственно на своей шкуре. Человек стал вам на ногу – это нагрузка, приложенная к вашей ноге как к конструкции; вы почувствовали давление веса этого человека, оно вызывает в вас определенные напряжения, деформации – это усилие в вашей ноге.

Один очень опытный конструктор говорил мне, что при проверке решений других инженеров он представляет себя на месте конструкции. И иногда обнаруживает, что кто-то прицепил значительную нагрузку не на туловище, руки или ноги (в общем, не на выносливые элементы), а подвесил к уху или носу, а то и за волосы попытался зацепиться. Это шутки, но очень глубокие. Если научиться представлять работу конструкции: представлять в виде образов возникающие в ней усилия от всех нагрузок, представлять ее деформации от этих усилий, можно значительно облегчить себе жизнь, да и жизнь конструкции тоже.

Видов усилий не так уж и много, все они собраны в двух понятиях – силы и моменты. Усилие в виде силы всегда прямое, оно либо сжимает, либо растягивает, либо пытается перерезать. Усилие в виде момента пытается изогнуть или закрутить. Если взять стержень (балку, колонну), его «самочувствие» очень просто описать несколькими значениями:

  • продольной силой N, которая либо сжимает, либо растягивает вдоль оси;
  • поперечной силой Q, которая пытается срезать стержень поперек сечения (как мы ножом режем морковку) или хотя бы помочь потерять ему устойчивость;
  • изгибающим моментом M, который стремится согнуть стержень, искривить его;
  • крутящим моментом Т, который пытается скрутить стержень так, как мы выкручиваем мокрое полотенце.

Все это усилия, полученные в результате расчета конструкции (взяты в типовом примере Лиры).

Получается, что нагрузки – это исходные данные для расчета, а усилия – результат. Отчего же тогда возникает путаница в понятиях? Думаю потому, что найденные усилия – это результат не окончательный, а промежуточный. С учетом этих усилий идет дальнейшая проверка несущей способности сечения, рассчитывается и подбирается армирование. И в этом дальнейшем расчете усилия становятся уже на место исходных данных. И у нас вырисовывается следующий этап.

Временные нагрузки

Это все остальные нагрузки, действующие на конструкцию.

В свою очередь временные нагрузки принято разделять на длительные и кратковременные:

Длительные нагрузки

Нагрузки — время действия которых значительно больше времени, в течение которого в конструкции происходят деформации под действием этих нагрузок.

Дело в том, что любое тело, в том числе и человеческое, под действием нагрузок деформируется, т.е. изменяются геометрические параметры тела, такие как длина, ширина, высота, прямолинейность осей и др., а это может непосредственно влиять на работу рассматриваемого элемента. Например, когда при расчете на прочность (расчет по 1 группе предельных состояний) мы составляем уравнения равновесия для балки, рассматриваемой, как прямолинейный стержень, то влияние деформаций мы при этом не учитываем. Учет деформаций ведется при расчете по 2 группе предельных состояний. Так вот, деформация любого тела — процесс не мгновенный. Проще говоря, на то чтобы материал деформировался — нужно время и чем больше инерционная масса рассматриваемого элемента, тем больше времени на деформацию нужно. Например, для легкого материала, например корабельного паруса из мешковины, порыв ветра может рассматриваться как длительная нагрузка, а вот для каменной стены толщиной в 1 метр тот же порыв ветра может рассматриваться как кратковременная нагрузка. Поэтому деление на длительные и кратковременные нагрузки является достаточно условным и зависит от инерционной массы рассматриваемого материала. А кроме того при этом следует учитывать и другие факторы, влияющие на время развития деформаций. Например, время деформации проседающих или пучинистых грунтов может измеряться неделями и даже месяцами, потому нагрузка от снега, лежащего несколько дней на кровле здания, при расчете фундамента может рассматриваться как кратковременная. А вот при расчете кровельного покрытия эта же нагрузку следует рассматривать как длительную.

Кратковременные нагрузки

Нагрузки — время действия которых сопоставимо со временем, в течение которого конструкция деформируется под действием этих нагрузок.

Но в данном случае для описания кратковременной нагрузки только времени действия недостаточно, потому как, если вы аккуратно поставите на 1 секунду мешок с цементом на пол — это одна нагрузка, а если вы тот же мешок с цементом уроните на пол с высоты 1 метр, при этом время контакта мешка с полом будет составлять все ту же 1 секунду, но это будет уже совсем другая нагрузка.

Для более точного определения нагрузки дополнительно разделяются на статические и динамические.

Как рассчитать ток защитного автомата

Для группы розеток, предназначенных для питания бытовых электроприборов на кухне, необходимо подобрать защитный автоматический выключатель. Мощности приборов по паспортным данным составляют 2,0, 1,5 и 0,6 кВт.

Решение. В квартире используется однофазная переменная сеть 220 вольт. Общая мощность всех приборов, подключенных в работу одновременно, составит 2,0+1,5+0,6=4,1 кВт=4100 Вт.

По формуле I = P / U определим общий ток группы потребителей: 4100/220=18,64 А.

Ближайший по номиналу автоматический выключатель имеет величину срабатывания 20 ампер. Его и выбираем. Автомат меньшего значения на 16 А будет постоянно отключаться от перегрузки.

Ниже приводится таблица для скрытой проводки при однофазной схеме подключения квартиры для подбора провода при напряжении 220 В

Сечение жилы провода, мм 2 Диаметр жилы проводника, мм Медные жилы Алюминиевые жилы
Ток, А Мощность, Вт Ток, А Мощность, кВт
0,50 0,80 6 1300
0,75 0,98 10 2200
1,00 1,13 14 3100
1,50 1,38 15 3300 10 2200
2,00 1,60 19 4200 14 3100
2,50 1,78 21 4600 16 3500
4,00 2,26 27 5900 21 4600
6,00 2,76 34 7500 26 5700
10,00 3,57 50 11000 38 8400
16,00 4,51 80 17600 55 12100
25,00 5,64 100 22000 65 14300

Как видно из таблицы сечение жил зависит кроме нагрузки и от материала, из которого изготовлен провод.

Статические нагрузки

Условно говоря, это силы, приложенные с минимальным ускорением или с ускорением, стремящимся к нулю.

Таким образом действие инерционной силы при столь малых ускорениях стремится к нулю и расчет ведется только на действие силы от физической массы. Или так: При воздействии статических нагрузок происходит относительно медленное нарастание деформаций, и потому инерционными массами отдельных элементов конструкции, перемещающихся в процессе деформации, можно пренебречь, так как ускорения таких перемещений являются незначительными. В результате этого равновесие между внешними и внутренними силами в любой момент действия статической нагрузки остается как бы неизменным.

К статическим относятся постоянные и длительные нагрузки, иногда кратковременные нагрузки.

Расчёт сечения питающего кабеля и проводки

Для обеспечения безопасности при эксплуатации бытовых электроприборов необходимо верно вычислить сечение питающего кабеля и проводки. Поскольку ошибочно выбранное сечение жил кабеля способно привести к перегреву провода, плавление его изоляции и в итоге, возгоранию, из-за короткого замыкания.

Мощность ток напряжение, удобная шпаргалка

Основным параметром, по которому производят расчет сечения провода, является его продолжительная допустимая токовая нагрузка. Т.е, это такая номинальная величина тока, которую проводник способен через себя пропускать на протяжении длительного времени. Для определения величины номинального тока, необходимо знать приблизительную мощность всех подключаемых электроприборов и оборудования в квартире.

И так, что мы имеем:

  • От значения величины тока зависит выбор питающего кабеля (провода), по которому могут быть подключены приборы энергопотребления к сети
  • Зная напряжение электрической сети и полную нагрузку электроприборов, можно по формуле вычислить силу тока, который потребуется пропускать по проводнику(проводу, кабелю). По его величине выбирают площадь сечения жил.

Что такое активная и реактивная мощность, кто их придумал и какие формулы существуют для их расчета – все это несложные вопросы физики, если рассказать о них простыми словами. Поймут даже чайники.

Содержание

  1. Мощность в цепи переменного электрического тока
  2. Что такое активная мощность
  3. Что такое реактивная мощность
  4. Что такое полная мощность
  5. Смысл реактивной нагрузки
  6. Треугольник мощностей
  7. Формулы и единицы измерения
  8. Как найти активную, реактивную и полную мощность

Мощность в цепи переменного электрического тока

Многих пугает все разнообразие мощностей, которое описывается в задачниках по физике. Но все не так сложно, если ознакомиться с теорией, написанной простыми словами. Что такое активная и реактивная мощность, как они соотносятся между собой и что на самом деле означает выражение на полную мощность.

активная и реактивная мощность для чайников

Для начала стоит вспомнить, что же собственно подразумевается под мощностью в физике. Это соотношение передаваемой энергии от одной системы к другой в течение определенного времени передачи. Мощность обычно измеряют в Ваттах (сокращенно Вт/W), которые представляют собой 1 джоуль энергии, который передается другой системе за 1 секунду.

активная и реактивная мощность простымии словами

И лишь в астрофизике или теоретической физике могут применяться другие величины для мощности, но они уже не являются системными по умолчанию. В электричестве под этим понятием подразумевается именно передача электроэнергии. Далее речь пойдет о сетях переменного тока, которые используются в быту и производстве.

Если говорить о практическом значении физики, то, в первую очередь, интерес будет представлять активная мощность. Реактивная мощность интересует тех, кто собирается заниматься процессами ее компенсации.

На заметку! Следует отметить уникальность единицы измерения активной мощности, которая отличается среди всех остальных типов мощностей.

Мощность переменного тока может быть разделена на:

  • P — активную;
  • Q — реактивную;
  • S — полную.

мощность переменного тока

Что такое активная мощность

Активная мощность — это некая часть мощности, связанная непосредственно с трансформацией в какой-либо другой вид энергии. Она измеряется в таких единицах измерения, как ватты, сокращенно Вт. Когда речь заходит о формулах, в них активная мощность обозначается буквой Р. Она также связана с неким периодом частоты переменного типа тока. Логично, что этот тип мощности может описывать процессы лишь с участием переменного тока.

Бытовые электроприборы обладают различной мощностью. В чем измеряется их активная мощность, уже шла речь выше: в ваттах. Другая проблема, что производители бытовых приборов часто указывают лишь пиковую мощность, которую устройство готово демонстрировать лишь на протяжении ограниченного временного промежутка.

активная мощность

Одна из наименьших активных мощностей у зарядных устройств – всего около 2 Вт в час. Одна из наибольших у бытовых моек высокого давления – мощность доходит до 3500 Вт. Где-то посередине окажутся стиральные машины, водонагреватели и блендеры.

Интересно! Единица измерения активной мощности, ватты, названа в честь шотландского инженера и изобретателя Джеймса Уатта, жившего на рубеже XVIII – XIX веков.

Среди наименее известных изобретений механика значится машина для копирования скульптур и барельефов. А наиболее известна первая придуманная им единица для измерения мощности – это была лошадиная сила. Здесь речь шла не о движении, производимом в горизонтальной плоскости, а о способности лошадей поднимать людей или грузы в шахтах.

Что такое реактивная мощность

Реактивная мощность – это та часть мощности, которая вернется в сеть обратно. Более детально этот процесс можно описать так: это «вредоносный» процесс, который не полезен для всей системы, он характерен для устройств с нагрузкой индуктивного или емкостного типа.

реактивная мощность

Логично, что эта часть мощности никак не помогает полезным процессам, не является активной. Задача состоит в том, чтобы компенсировать реактивную мощность. Ее обозначают заглавной буквой Q, а единица измерения реактивной мощности: вольт-амперы, которые обозначаются как Вар.

Что такое полная мощность

Если кратко, то в бытовом аспекте многие путают активную и полную мощность, называя «полной» активную. На самом деле полная мощность – это сочетание активной и неполезной реактивной.

Так что в сети переменного тока считают вместе рассеиваемую и поглощаемую мощность, и получают общее значение. Мощность в этом случае обозначается буквой S. Для ее измерения также используются единицы Вар.

Смысл реактивной нагрузки

Что такое реактивная мощность в рамках производства – это потеря средств. Как только она становится повышенной, предприятие может начать тратить на электроэнергию больше, чем изначально рассчитывалось.

Полная мощность должна включать как можно меньше работы для двигателей вхолостую, нормальным считаются показатели от 60% и выше. Важно перенаправить все так, чтобы избежать чрезмерного перегрева проводников сети. Чаще всего это достигается тем, что устанавливается устройство под названием конденсаторный блок.

реактивная мощность в рамках производства

Что такое реактивная мощность – мощность, которая появляется в тех сетях, в которых присутствуют реактивные элементы. Энергия накапливается в цепи, после чего она возвращается обратно.

Таким образом, устройства нагреваются при работе, что можно заметить по длительной работе даже такого маломощного предмета ежедневного быта, как зарядное устройство для смартфона.

Для электроприбора есть нормальный коэффициент реактивной мощности. Обычно он составляет от 0,9 до 0,5. Производители указывают его в инструкции по эксплуатации или в паспорте устройства.

Смысл реактивной нагрузки состоит в том, что она создает сдвиг по времени между напряжением и фазами тока. Расчеты и применение формул для вычисления реактивной мощности позволяют не только достигать высокой производительности устройств при меньших затратах на электроэнергию, но и помогают избегать аварийных ситуаций.

суть реактивной нагрузки

Часто возникает вопрос, как правильно определять коэффициент реактивной мощности в случае с бытовыми электросетями перед домашним счетчиком.

Для этого используется формула:

tgφ = Q/P = Eq/Еw

В данном случае Еw – это активная мощность, а вот Eq – это уже реактивная.

Треугольник мощностей

Формула расчета полной, активной и реактивной мощностей достаточно понятно может описывать взаимоотношения этих трех аспектов. Но яснее их взаимоотношения можно выразить на плоскости в виде треугольника мощностей. Так как все они тригонометрически соотносятся. Угол, который возникает между полной и активной мощностями называется фазовым углом и ясно показан на рисунке.

Треугольник мощностей

Формулы и единицы измерения

Единица измерения реактивной мощности такая же, как у полной – вольт-амперы, Вар, а для расчета активной используется единица в виде Вт.

еденицы измерения мощности

Что такое активная и реактивная мощность в совокупности – так называемая полная мощность. Она рассчитывается по следующей простой формуле:

√ (Активная мощность2 + Реактивная мощность2)

То есть требуется найти квадратный корень из суммы квадрата активной и квадрата реактивной мощностей.

Как найти реактивную мощность:

√ (Полная мощность2 – Активная мощность2)

То есть квадратный корень из вычитания квадрата активной мощности из квадрата полной мощности. Когда речь заходит о вычислении активной мощности, то применяется, соответственно, формула:

√ (Полная мощность2 – Реактивная мощность2)

Квадрат из вычитания квадрата реактивной мощности из квадрата полной мощности.

формулы расчета мощностей

Также могут понадобиться другие формулы для точных вычислений в некоторых случаях. Для однофазных цепей может применяться своя формула:

P = V I cosθ

А в трехфазных цепях уже будет действовать следующий вариант:

P = √3 VL IL cosθ

Важно! Во всех случаях необходимо внимательно следить за единицами измерений. Киловатты необходимо еще до вычисления по формулам переводить в ватты. Киловольтамперы, соответственно, переводят в вольтамперы.

Как найти активную, реактивную и полную мощность

Коэффициент реактивной мощности позволяет оптимизировать работу и избежать нагрева устройства. Профессионалы обычно используют большее количество параметров в расчетах, чтобы компенсировать негативные моменты реактивной мощности. Но для решения рядовых задач по физике вполне применима приведенная выше формула.

мощности разных типов

Полная мощность, активная и реактивная мощность для чайников может быть представлена несколькими формулами. Важно лишь помнить о ситуационных единицах измерения, об актуальных обозначениях и о треугольнике мощностей, чтобы справиться с расчетами.

Баланс мощностей цепи переменного тока│Активная, реактивная и полная мощностиБаланс мощностей цепи переменного тока│Активная, реактивная и полная мощности

Помогла ли вам статья?

( 2 оценки, среднее 5 из 5 )

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Нашла информацию в интернете как ее скачать
  • Как найти способ попасть в сокровищницу
  • Как найти морфологические признаки глагола
  • Как найти всю переписку в друг вокруг
  • Как найти списочную численность работников формула

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии