Артем Оганов — кристаллограф-теоретик, создатель ряда новых материалов, а главное, методов, которые позволяют открывать новые материалы. Решил считавшуюся нерешаемой задачу предсказания кристаллической структуры вещества на основе его химического состава. Создал программу USPEX, способную предсказывать устойчивые химические соединения по набору исходных элементов. Один из самых цитируемых в мире ученых.
Я хорошо помню, как мне пришло в голову решение этой задачи. Мы с семьей садились в самолет. У меня четверо детей, и все они расположились у меня на голове и прочих частях тела и к тому же продолжали непрерывно двигаться. Опытные родители знают, что сопротивляться этому бессмысленно, а беспокоиться неразумно. Поэтому мой мозг перестал метаться, анализируя внешние сигналы, и застыл, сфокусировавшись в одной точке. Точка эта оказалась на спинке впередистоящего кресла. Там-то и начал проступать основной график будущей работы. Я вдруг увидел, что элементы таблицы Менделеева не размазаны равномерно в пространстве своих свойств, а, как звезды в Галактике, расположены более-менее на плоскости.
Эта проблема волновала меня последние 15 лет. В 1984 году британский физик Дэвид Петтифор опубликовал работу, в которой ввел понятие менделеевских чисел, — с их помощью он сгруппировал элементы в порядке изменения их химических свойств. В таблице Менделеева свойства элементов меняются скачками. Так, после самого химически активного неметалла фтора идет инертный неон, а сразу за ним — активнейший металл натрий. Можно ли найти вариант, при котором рядом бы стояли похожие по свойствам элементы?
Петтифор предложил решение — выстроил элементы в некоторой последовательности, приписав им некие числа Менделеева. Но как приписал, не объяснил. И тем более не объяснил, какой у них физический смысл. Эти числа не расчет, а произвол, хотя и основанный на наблюдениях за свойствами бинарных соединений — веществ, состоящих из двух разных атомов. Скажем, если NaCl и KCl похожи, то и натрий с калием должны стоять рядом. Все это время ученые модифицировали и улучшали менделеевские числа, но что это такое, так никто и не объяснил.
У химических элементов есть разные характеристики, которые влияют на их свойства. Прежде всего размер атома (его радиус), валентность, поляризуемость*, электроотрицательность**. Но валентность — параметр непостоянный, у разных элементов могут быть разные валентности, а мы неоднократно открывали химические соединения, которые с точки зрения привычных представлений о валентности не могли бы существовать. Но существуют. Поляризуемость очень сильно коррелирует с электроотрицательностью.
*Поляризуемость — способность атома или молекулы становиться электрически полярными во внешнем электромагнитном поле. Поляризуемость показывает, насколько легко может возникнуть заряженная частица (ион) или новая химическая связь.
**Электроотрицательность — способность атома оттягивать электроны других атомов в химических соединениях. Самая высокая степень электроотрицательности у галогенов и сильных окислителей (F, O, N, Cl), низкая — у активных металлов (Li, Na, K).
Получается, что для определения фундаментальных свойств атомов можно использовать только атомный радиус и электроотрицательность. И если по оси Х — радиус, а по оси Y — электроотрицательность, мы получаем плоскость, на которой сильно вытянутым облаком располагаются элементы. Внутри этого облака, воспользовавшись несложным математическим приемом, можно провести линию, вдоль которой элементы встанут в порядке максимально плавного изменения свойств.
Так мы открыли физический и химический смысл менделеевских чисел: это наилучшее представление всех химических свойств атома одним числом. Но мы предложили не только объяснение, но и улучшенную версию чисел Менделеева, в которой нет места субъективности — только расчеты на основе фундаментальных характеристик атомов. Мы назвали это «Универсальной последовательностью элементов», по-английски Universal Sequence Of Elements, сокращенно USE. И действительно, наша последовательность удобна в применении: она предсказывает свойства химических соединений лучше, чем петтифоровские менделеевские числа и их позднейшие модификации.
Если расположить элементы на осях, то на плоскости будут бинарные соединения — молекулы и кристаллы, состоящие из двух типов атомов. Мы обнаружили, что на этом поле — его можно назвать химическим пространством — возникают области соединений с близкими свойствами, например твердостью кристаллов, магнетизмом, энергией связи. Известно, например, что алмаз, состоящий только из углерода, — самый твердый из кристаллов. А как искать другие твердые вещества? По соседству с алмазом в его химическом пространстве.
Улучшенные менделеевские числа помогут находить новые соединения с полезными свойствами и смогут прояснить некоторые вопросы, связанные с привычной таблицей Менделеева. Например, уже сейчас можно ставить точку в споре, где должен находиться водород: над литием или над фтором. Согласно менделеевским числам, водород ближе к галогенам, чем к щелочным металлам.
Ссылка: Zahed Allahyari and Artem R. Oganov, Nonempirical Definition of the Mendeleev Numbers: Organizing the Chemical Space: J. Phys. Chem. C 2020, 124, 43, 23867-23878.
Универсальная последовательность элементов (USE)
Журнал «Кот Шрёдингера»
Как вычисляются числа Менделеева
Универсальная последовательность элементов определяется их проекцией на линию, обозначенную синим цветом. Журнал «Кот Шрёдингера»
Периодический закон был открыт Д.И. Менделеевым в 1868 году. Его современная формулировка: свойства химических элементов и образуемых ими
соединений (простых и сложных) находятся в периодической зависимости от величины заряда атомного ядра.
Периодический закон лежит в основе современного учения о строении вещества. Периодическая система Д.И. Менделеева является наглядным отражением
периодического закона.
В периодической таблице элементы расположены в порядке увеличения атомного заряда, группируются в «строки и столбцы» — периоды и группы.
Период — ряд горизонтально расположенных химических элементов. 1, 2 и 3 периоды называются малыми, они состоят из одного ряда элементов.
4, 5, 6 — называются большими периодами, они состоят из двух рядов химических элементов.
Группой называют вертикальный ряд химических элементов в периодической таблице. Элементы собраны в группы на основе степени окисления в
высшем оксиде. Каждая из восьми групп состоит из главной подгруппы (а) и побочной подгруппы (б).
Периодическая таблица Д.И. Менделеева содержит колоссальное число ответов на самые разные вопросы. При умелом ее использовании вы сможете
предполагать строение и свойства веществ, успешно писать химические реакции и решать задачи.
Радиус атома
Радиусом атома называют расстояние между атомным ядром и самой дальней электронной орбиталью. Это не четкая, а условная граница, которая
говорит о наиболее вероятном месте нахождения электрона.
В периоде радиус атома уменьшается с увеличением порядкового номера элементов («→» слева направо). Это связано с тем, что с увеличением номера группы
увеличивается число электронов на внешнем уровне. Запомните, что для элементов главных подгрупп номер группы равен числу электронов на внешнем уровне.
С увеличением числа электронов они становятся более скученными, так как притягиваются друг к другу сильнее: это и есть причина маленького радиуса атома.
Чем меньше электронов, тем больше у них свободы и больше радиус атома, поэтому радиус увеличивается в периоде «←» справа налево.
В группе радиус атома увеличивается с увеличением заряда атомных ядер — сверху вниз «↓». Чем больше период, тем больше электронных орбиталей вокруг атома,
соответственно, и больше его радиус.
С уменьшением заряда атома в группе радиус атома уменьшается — снизу вверх «↑». Это связано с уменьшением количества электронных орбиталей вокруг
атома. Для примера возьмем атомы бора и алюминия, элементов, расположенных в одной группе.
Период, группа и электронная конфигурация
Обратите внимание еще раз на важную деталь: элементы, находящиеся в одной группе (главной подгруппе!), имеют сходную конфигурацию внешнего уровня.
Так у бора на внешнем уровне расположены 3 электрона, у алюминия — тоже 3. Оба они в III группе.
Такая закономерность иногда может сильно облегчить жизнь, однако у элементов побочных подгрупп она отсутствует — там нужно считать электроны
«вручную», располагая их на электронных орбиталях.
Раз уж мы повели речь об электронных конфигурациях, давайте запишем их для бора и алюминия, чтобы лучше представлять их внешний уровень и увидеть
то самое «сходство»:
- B5 — 1s22s22p1
- Al13 — 1s22s22p63s23p1
Общую электронную конфигурацию для элементов III группы главной подгруппы можно записать ns2np1. Это будет работать для
бора, внешний уровень которого 2s22p1, алюминия — 3s23p1, галия — 4s24p1,
индия — 5s25p1 и таллия — 6s26p1. За «n» мы принимаем номер периода.
Правило составления электронной конфигурации, которое вы только что увидели, универсально. Если вы имеете дело с элементом главной подгруппы,
то увидев номер группы вы знаете, сколько электронов у него на внешнем уровне. Посмотрев на период, знаете номер его внешнего уровня.
Вам остается только распределить известное число электронов по s и p ячейкам, а затем подставить номер периода — и вот быстро получена
конфигурация внешнего уровня. Предлагаю посмотреть на примере ниже
Очень надеюсь, что теперь вы знаете: только глядя на положение элемента в периодической таблице, на группу и период, в которых он расположен,
вы уже можете составить конфигурацию его внешнего уровня. Безусловно, это для элементов главных подгрупп. Повторюсь: у побочных — только «вручную».
Длина связи
Длина связи — расстояние между атомами химически связанных элементов. Очевидно, что понятия длины связи и атомного радиуса взаимосвязаны напрямую.
Чем больше радиус атома, тем больше длина связи.
Убедимся в этом на наглядном примере, сравнив длину связей в четырех веществах: HF, HCl, HBr, HI.
Чем больше радиусы атомов, которые образуют химическую связь, тем больше между ними и длина связи. Радиус атома водорода неизменен во всех трех
веществах, а в ряду F → Cl → Br → I происходит увеличение радиуса атома. Наибольшим радиусом обладает йод, поэтому самая длинная связь в молекуле HI.
Металлические и неметаллические свойства
В периоде с увеличением заряда атома металлические свойства ослабевают, неметаллические — усиливаются (слева направо «→»). В группе с увеличением
заряда атома металлические свойства усиливаются, а неметаллические — ослабевают (сверху вниз «↓»).
Сравним металлические и неметаллические свойства Rb, Na, Al, S. Натрий, алюминий и сера находятся в одном периоде. Металлические свойства возрастают
S → Al → Na. Натрий и рубидий находятся в одной группе, металлические свойства возрастают Na → Rb.
Таким образом, самые сильные металлические свойства проявляет рубидий, но с другой стороны — у него самые слабые неметаллические свойства. Сера
обладает самыми слабыми металлическими свойствами, но, если посмотреть по-другому, сера — самый сильный неметалл.
Распределение металлов и неметаллов в периодической таблице также является наглядным отображением этого правила. Если провести условную
линию, проходящую от бора до астата, то справа окажутся неметаллы, а слева — металлы.
Основные и кислотные свойства
Основные свойства в периоде с увеличением заряда атома уменьшаются, кислотные — возрастают. В группе с увеличением заряда атома основные
свойства усиливаются, а кислотные — ослабевают.
Кислотные и основные свойства противопоставлены друг другу, как противопоставлены металлические и неметаллические. Где первые усиливаются,
вторые — убывают. Все аналогично, поэтому смело ассоциируйте одни с другими, так будет гораздо легче запомнить.
Замечу, что здесь есть одно важное исключение. Как и в общем случае: исключения только подтверждают правила. В ряду галогенводородных
кислот HF → HCl → HBr → HI происходит усиление кислотных свойств (а не ослабление, как должно быть по логике нашего правила).
Это можно объяснить в темах диссоциации и химических связей. Когда мы дойдем до соответствующей темы, я напомню про HF и водородные связи между
молекулами, которые делают эту кислоту самой слабой. Сейчас воспринимайте это как исключение: HF — самая слабая из этих кислот, а
HI — самая сильная.
Восстановительные и окислительные свойства
Восстановительные свойства в периоде с увеличением заряда атома ослабевают, окислительные — усиливаются. В группе с увеличением заряда
атома восстановительные свойства усиливаются, а окислительные — ослабевают.
Ассоциируйте восстановительные свойства с металлическими и основными, а окислительные — с неметаллическими и кислотными. Так гораздо проще
запомнить
Электроотрицательность (ЭО), энергия связи, ионизации и сродства к электрону
Электроотрицательность — способность атома, связанного с другими, приобретать отрицательный заряд (притягивать к себе электроны).
Мы уже касались ее в статье, посвященной степени окисления. Это важное свойство, ведь более ЭО-ый атом притягивает
к себе электроны и уходит в отрицательную степень окисления со знаком минус «-«.
Все перечисленные в подзаголовке свойства вместе с ЭО усиливаются в периоде с увеличением заряда атома, в группе с увеличением заряда атома
они ослабевают. Таким образом, самый электроотрицательный элемент расположен справа вверху таблицы Д.И. Менделеева — это фтор.
Для примера сравним ЭО-ость атомов Te, In, Al, P. Индий расположен в одной группе с алюминием, ЭО-ость In → Al возрастает (снизу вверх). Алюминий
расположен в одном периоде с серой, ЭО-ость возрастает Al → S (слева направо). Сравнивая серу и теллур, мы видим, что сера расположена в группе
выше теллура, значит и ее электроотрицательность тоже выше.
Энергия связи (а также ее прочность) возрастают с увеличением электроотрицательности атомов, образующих данную связь. Чем сильнее атом тянет на
себя электроны (чем больше он ЭО-ый), тем прочнее получается связь, которую он образует.
Понятию ЭО-ости «синонимичны» также понятия сродства к электрону — энергии, выделяющейся при присоединении электрона к атому, и энергии ионизации —
количеству энергии, которое необходимо для отщепления электрона от атома. И то, и другое возрастают с увеличением электроотрицательности.
Продемонстрирую на примере. Сравним энергию связи в трех молекулах: H2O, H2S, H2Se.
Высшие оксиды и летучие водородные соединения (ЛВС)
В периодической таблице Д.И. Менделеева ниже 7 периода находится строка, в которой для каждой группы указаны соответствующие высшие оксиды,
ниже строка с летучими водородными соединениями.
Для элементов главных подгрупп начиная с IV группы (в большинстве случае) максимальная степень окисления (СО) определяется по номеру группы. К примеру,
для серы (в VI группе) максимальная СО = +6, которую она проявляет в соединениях: H2SO4, SO3.
В таблице видно, что для VIa группы формула высшего оксида RO3, а, к примеру, для IIIa группы — R2O3. Напишем
высшие оксиды для веществ из VIa : SO3, SeO3, TeO3 и IIIa группы: B2O3, Al2O3,
Ga2O3.
На экзамене строка с готовыми «высшими» оксидами, как в таблице наверху, может отсутствовать. Считаю важным подготовить вас к этому. Предположим,
что эта строчка внезапно исчезла из таблицы, и вам нужно записать высшие оксиды для фосфора и углерода.
С летучими водородными соединениями (ЛВС) ситуация аналогичная: их может не быть в периодической таблице Д.И. Менделеева, которая попадется на экзамене.
Я расскажу вам, как легко их запомнить.
ЛВС характерны для IV, V, VI и VII группы. Элементы этих групп более электроотрицательны, чем водород, поэтому ходят в «-» отрицательную СО.
Минимальная степень окисления для элементов главных подгрупп, начиная с IV группы, может быть рассчитана так: номер группы — 8.
Например, для углерода минимальная СО = 4-8 = -4; для азота 5-8 = -3; для кислорода 6-8 = -2; для фтора 7-8 = -1. Для того, чтобы запомнить
ЛВС, вы должны ассоциировать IV, V, VI и VII группы с хорошо известными вам веществами: метаном, аммиаком, водой и фтороводородом.
Так как общее строение ЛВС в пределах одной группы сходно, то, вспомнив например H2O для кислорода в VI группе, вы легко
найдете формулы других ЛВС VI группы: серы — H2S, H2Se, H2Te, H2Po.
© Беллевич Юрий Сергеевич 2018-2023
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
Как определить свойства вещества
Химические свойства вещества — это способность изменять свой состав в ходе химических реакций. Реакция может протекать либо в виде саморазложения, либо при взаимодействии с другими веществами. Свойства вещества зависят не только от его состава, но и от структуры. Вот характерный пример: и этиловый спирт, и этиловый эфир имеют одинаковую эмпирическую формулу С2Н6О. Но химические свойства у них разные. Поскольку структурная формула спирта СН3–СН2-ОН, а эфира — СН3-О-СН3.
Инструкция
Есть два основных способа определения свойств: теоретический и практический. В первом случае представление о свойствах вещества делают, исходя из его эмпирической и структурной формулы.
Если это простое вещество, то есть состоящее из атомов только одного элемента, для ответа на этот вопрос достаточно посмотреть в таблицу Менделеева. Есть четкая закономерность: чем левее и ниже располагается элемент в таблице, тем сильнее у него выражены металлические свойства (достигая максимума у франция). Соответственно, чем правее и выше, тем сильнее неметаллические свойства (достигая максимума у фтора).
Если вещество относится к классу оксидов, его свойства зависят от того, с каким элементом соединен кислород. Бывают основные оксиды, образованные металлами. Соответственно, они проявляют свойства оснований: реагируют с кислотами, образуя соль и воду; с водородом, восстанавливаясь до металла. Если же основной оксид образован щелочным или щелочноземельным металлом, он вступает в реакцию с водой, образуя щелочь, или с кислотным оксидом, образуя соль. Например:СаО + Н2О = Са(ОН)2;К2О + СО2 = К2СО3.
Кислотные оксиды реагируют с водой, образуя кислоту. Например: SO2 + H2O = H2SO3. Также они реагируют с основаниями, образуя соль и воду:СО2 + 2NaOH = Na2CO3 + H2O.
Если же оксид образован амфотерным элементом (например, алюминием, германием и т.п.), он будет проявлять как основные, так и кислотные свойства.
В том случае, когда вещество более сложного строения, заключение о его свойствах делают, рассматривая целый ряд факторов. Прежде всего, исходя из наличия и количества функциональных групп, то есть тех участков молекулы, которая непосредственно образует химическую связь. Для оснований и спиртов, например, это гидроксил-группа – ОН, для альдегидов – СOH, для карбоновых кислот – СООН, для кетонов – СО и т.д.
Практический же способ, как легко понять из самого названия, заключается в проверке химических свойств вещества опытным путем. Его подвергают взаимодействию с определенными реагентами при различных условиях (температуре, давлении, в присутствии катализаторов и т.п.) и смотрят, какой будет результат.
Видео по теме
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Металлические свойства простых веществ
Металлические свойства — способность атомов отдавать электроны.
Именно наличием свободных электронов объясняются общие физические свойства металлов: высокая электропроводность и теплопроводность, характерный металлический блеск, ковкость.
Металлические свойства усиливаются в группах сверху вниз.
В каждой главной подгруппе наиболее выражены металлические свойства у элементов седьмого периода.
В периодах происходит ослабление металлических свойств.
В каждом периоде самые сильные металлические свойства у элементов
IA
группы, то есть у щелочных металлов.
В периодах металлические свойства ослабевают, а в группах — усиливаются.
Обрати внимание!
Самый сильный металл — франций.
Неметаллические свойства простых веществ
Неметаллические свойства противоположны металлическим.
Неметаллические свойства — способность атомов принимать электроны.
В группе сверху вниз неметаллические свойства ослабевают.
Самый сильный неметалл каждой группы располагается вверху (во втором периоде).
Неметаллические свойства в периодах усиливаются слева направо.
В каждом периоде наиболее выражены неметаллические свойства у элементов
VIIA
группы (у галогенов).
В периодах неметаллические свойства усиливаются, а в группах — ослабевают.
Обрати внимание!
Самый сильный неметалл — фтор.
Состав и свойства высших оксидов и гидроксидов. Водородные соединения
Общие формулы высших оксидов и водородных соединений
№ группы |
()IA() | ( )IIA( ) |
IIIA |
IVA |
VA |
VIA |
VIIA |
Формула высшего оксида |
R2O |
RO | R2O3 | RO2 | R2O5 | RO3 | R2O7 |
Формула летучего водородного соединения |
RH4 | RH3 | H2R | HR |
Основные свойства соединений определяются металлическими свойствами химических
элементов. Их изменение происходит так же.
Основные свойства соединений с ростом порядкового номера усиливаются в группах и ослабевают в периодах.
Кислотные свойства оксидов и гидроксидов определяются неметаллическими свойствами элементов.
Кислотные свойства соединений с ростом порядкового номера ослабевают в группах и усиливаются в периодах.
Закономерности изменения свойств простых веществ
и соединений
Свойства |
В периоде |
В группе |
Металлические свойства простых веществ |
ослабевают | усиливаются |
Основные свойства высших оксидов и гидроксидов |
ослабевают | усиливаются |
Неметаллические свойства простых веществ |
усиливаются | ослабевают |
Кислотные свойства высших оксидов и гидроксидов |
усиливаются | ослабевают |
Свойства соединения
Свойство 1.
Имитация выбора.
С
помощью оператора соединения найдём
A=a(r)
для отношения r(R).
Для этого определим отношение s(A)
с одним единственным кортежем t
таким, что t(A)
= a. Тогда
r
s = A=a(r).
Доказательство
r
s = {t
| tr
r, ts
s, tr
= t(R),
ts
= t(A)}
=
=
{t | tr
r,
tr = t(R), t(A)
= a} =
=
{t | t(A) = a } = A=a(r).
Свойство 2.
Обобщённая операция
выбора.
Введём
новое отношение
s(A) с k кортежами
t1, t2,…, tk,
где ti(A)
= ai и ai
dom(A), i =1, 2,…, k. Тогда
r
s = A=a1(r)
A=a2(r)
…
A=ak(r).
Свойство 3.
Коммутативность оператора
соединения.
Из
определения следует, что r
s = s
r.
Свойство 4.
Ассоциативность оператора
соединения.
Для
отношений q,
r, s
(q
r)
s = q
(r
s).
Следовательно, последовательность
соединений можно записывать без скобок.
Свойство 5. Многократные
соединения.
Пусть
r1(S1),
r2(S2),…,
rn(Sn)
– отношения, R =
S1S2…Sn.
Обозначим S
– последовательность схем S1,
S2,…,
Sn.
Пусть t1,
t2,…,
tn
– последовательность кортежей, ti
ri,
i = 1,
2,…, n.
Определение. Кортежи
t1,
t2,…,
tn
соединимы
на S, если существует кортеж t на R, что
ti
= t(Si)
для каждого i = 1, 2,…, n. Кортеж t называется
результатом соединения
кортежей t1,
t2,…,
tn
на S.
Пример
r3 (A C)
a1 |
c2 |
a2 |
c2 |
r1 (A B)
a1 |
b1 |
a1 |
b2 |
a2 |
b1 |
r2 (B C)
b1 |
c2 |
b2 |
c1 |
Кортежи
<a1
b1>,
<b1
c2>,
<a1
c2>
соединимы с результатом <a1
b1
c2>,
а кортежи <a2
b1>,
<b1
c2>,
<a2
c2>
– c результатом <a2
b1
c2>:
r1 r2
r3 =
(A B C)
-
a1
b1
c2
a2
b1
c2
Конец примера
Если
в определении принять n=2
и если кортежи t1
и t2
соединимы на S=S1,
S2
с результатом t,
то t1=t(S1),
t2=t(S2),
следовательно, tr(S1)
r(S2).
Обратно, если tr(S1)
r(S2),
то должны существовать t1
и t2
в r(S)
такие, что t1=t(S1),
t2=t(S2),
то есть они соединимы на S
с результатом t.
Следовательно, r(S1)
r(S2)
состоит из результатов соединений
соединимых на S
кортежей t1
и t2
.
Лемма.
Отношение r1
r2 …
rn
состоит из всех кортежей t, которые
являются результатом соединения
соединимых на S кортежей ti
ri,
i = 1,
2,…, n.
Не
каждый кортеж каждого отношения может
войти в соединение.
Определение. Отношения
r1,
r2,…,
rn
полностью соединимы,
если каждый кортеж в каждом отношении
является членом списка соединимых на
S кортежей.
Пример
Из
предыдущего примера <a1
b2>
r1,
<b2
c1>
r2
не соединимы. При добавлении к r3
кортежа <a1
c1>
отношения становятся полностью
соединимыми с результатом
r1 r2
r3 =
(A B C)
-
a1
b1
c2
a1
b2
c1
a2
b1
c2
Конец примера
Свойство 6.
Проекция соединения.
Свойство
показывает связь проекции и соединения.
Похоже, что они взаимообратны, но это
не так.
Пусть
r(R) и
s(S) –
отношения, q = r
s, RS – схема q.
Пусть r
= R(q),
тогда r
r (для
любого кортежа t
из отношения q
верно t(R)
r, а r
=t(R)
t
q).
В
r (A B)
-
a1
b1
a1
b2
ключение может быть
собственным:
s (B C)
-
b1
c1
rs (A B C)
-
a1
b1
c1
М
r (A B)
-
a1
b1
a1
b2
s (B C)
-
b1
c1
b2
c2
rs (A B C)
-
a1
b1
c1
a1
b2
c2
ожет быть равенство (r
= r):
Ясно,
что равенство может быть при соединении
полностью соединимых отношений, но
может быть и без этого.
Если
s
= S(q),
то r
= r и s
= s тогда и только тогда,
когда r
и s –
состоят из полностью соединимых кортежей,
то есть полностью соединимы.
Свойство 7.
Соединение проекций.
Поменяем
местами проекции и соединения. Пусть q
– отношение со схемой RS,
r = R(q),
s = S(q).
Пусть q′= r
s. Если t
q, то t(R)
r, t(S)
s
tq′,
т.е. q′
q. При q′
= q отношение разложимо
без потерь на схемы R
и S.
Свойство 8.
Соотношение операций
объединения и соединения.
Пусть
r
и r –
отношения со схемой R
и s –
отношение со схемой S.
Покажем, что (rr)
s = (r
s)(r
s). Обозначим левую часть
равенства как q
(rr)
s, а
правую буквой q
(r
s)(r
s). Для кортежа tq
найдутся кортежи tr
и ts
такие, что t
= tr
ts,
причем trr
или trr
и tss.
Если trr,
то t
r
s, если же trr,
то t
r
s, то есть q
q.
Чтобы установить включение q
q,
выберем tq.
Тогда trs
или trs,
следовательно, t
(rr)
s.
Включения q
q
и q
q
выполняются одновременно только в том
случае, когда q
= q.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #