Найти целые решения системы неравенств
В алгебре часто требуется не просто решить систему неравенств, но выбрать из полученного множества решений решения, удовлетворяющие некоторым дополнительным условиям.
Найти целые решения системы неравенств — одно из заданий такого рода.
1) Найти целые решения системы неравенств:
Неизвестные переносим в одну сторону, известные — в другую с противоположным знаком:
После упрощения разделим обе части каждого неравенства на
Отмечаем решения неравенств на числовых прямых. Решением системы является пересечение решений (то есть та часть, где штриховка есть на обеих прямых).
Оба неравенства строгие, поэтому -4 и 2 изображаются выколотыми точками и в решение не входят:
Из промежутка (-4;2) выбираем целые решения.
Ответ: -3; -2; -1; 0; 1.
2) Какие целые решения имеет система неравенств?
Переносим неизвестные в одну сторону, известные — в другую с противоположным знаком
Упрощаем и делим обе части на число, стоящее перед иксом. Первое неравенство делим на положительное число, поэтому знак неравенства не меняется, второе — на отрицательное число, поэтому знак неравенства изменяется на противоположный:
Отмечаем решения неравенств на числовых прямых. Первое неравенство нестрогое, поэтому -2 изображаем закрашенной точкой. Второе неравенство нестрогое, соответственно, 5 изображается выколотой точкой:
Целые решения на промежутке [-2;5) — это -2; -1; 0; 1; 2; 3; 4.
Ответ: -2; -1; 0; 1; 2; 3; 4.
В некоторых примерах не требуется перечислять целые решения, нужно лишь указать их количество.
3) Сколько целых решений имеет система неравенств?
Переносим неизвестные в одну сторону, известные — в другую:
Обе части первого неравенства делим на отрицательное число, поэтому знак неравенства изменяется на противоположный. Обе части второго неравенства делим на положительное число, знак неравенства при этом не меняется:
Решение неравенств отмечаем на числовых прямых. Оба неравенства нестрогие, поэтому -3,5 и 1,7 изображаем закрашенными точками:
Решением системы является промежуток [-3,5; 1,7]. Целые числа, которые входят в данный промежуток — это -3; -2; -1; 0; 1. Всего их 5.
Ответ: 5.
4) Сколько целых чисел являются решениями системы неравенств?
Неизвестные — в одну сторону, известные — в другую с противоположным знаком:
При делении обеих частей неравенства на положительное число знак неравенства не изменяется, при делении на отрицательное число — меняется на противоположный:
Решение неравенств отмечаем на числовых прямых.
Множество решений системы состоит из единственного элемента — {2}. 2 — целое число, следовательно, решением данной системы является одно целое число.
Ответ: 1.
При решении неравенств вы должны свободно владеть понятием числового неравенства, знать, что такое решение неравенства, что значит решить неравенство, помнить свойства неравенств. То же относится и к системам числовых неравенств. Все эти сведения вы можете найти в любом пособии для поступающих в вузы.
Напомним свойства числовых неравенств.
1. Если а > b , то b < а; наоборот, если а < b, то b > а.
2. Если а > b и b > c, то а > c. Точно так же, если а < b и b < c, то а < c.
3. Если а > b, то а + c > b+ c (и а – c > b – c). Если же а < b, то а + c < b+ c (и а – c < b – c). Т. е. к обеим частям неравенства можно прибавлять (или из них вычесть) одну и ту же величину.
4. Если а > b и c > d, то а + c > b + d; точно так же, если а < b и c < d, то а + c < b + d, т. е. два неравенства одинакового смысла можно почленно складывать.
Замечание.
Два неравенства одинакового смысла нельзя почленно вычитать друг из друга, так как результат может быть верным, но может быть и неверным. Например, если из неравенства 11 > 9 почленно вычесть неравенство 3 > 2, то получим верное неравенство 8 > 7. Если из неравенства 11 > 9 почленно вычесть неравенство 7 > 2, то полученное неравенство будет неверным.
5. Если а > b и c < d, то а – c > b – d; если а < b и c > d, то а – c < b – d, т.е. из одного неравенства можно почленно вычесть другое неравенство противоположного смысла, оставляя знак того неравенства, из которого вычиталось другое.
6. Если а > b и m – положительное число, то m а > m b и , т.е. обе части неравенства можно умножить или разделить на одно и то же положительное число ( знак неравенства остаётся тем же ).
Если же а > b и n – отрицательное число, то n а < n b и , т.е. обе части неравенства можно умножить или разделить на одно и то же отрицательное число, но при этом знак неравенства нужно переменить на противоположный.
7. Если а > b и c > d , где а, b, c, d > 0, то а c > b d и если а < b и c < d, где а, b, c, d > 0, то аc < bd, т.е. неравенства одного смысла на множестве положительных чисел можно почленно перемножать.
Следствие. Если а > b, где а, b > 0, то а2 > b2, и если а < b, то а2 < b2, т.е. на множестве положительных чисел обе части неравенства можно возводить в квадрат.
8. Если а > b, где а, b > 0, то и если а < b , то
.
Виды неравенств и способы их решения
1. Линейные неравенства и системы неравенств
Пример 1. Решить неравенство .
Решение:
.
Ответ: х < – 2.
Пример 2. Решить систему неравенств
Решение:
.
Ответ: (– 2; 0].
Пример 3. Найти наименьшее целое решение системы неравенств
Решение:
Ответ:
2. Квадратные неравенства
Пример 4. Решить неравенство х2 > 4.
Решение:
х2 > 4 (х – 2)∙(х + 2) > 0.
Решаем методом интервалов.
Ответ:
3. Неравенства высших степеней
Пример 5. Решить неравенство (х + 3)∙(х2 – 2х + 1) > 0.
Решение:
Ответ: .
Пример 6. Найти середину отрезка, который является решением неравенства 4х2 – 24х + 24 < 4у2, где .
Решение:
Область определения неравенства: .
С учётом области определения 4х2 – 24х + 24 < 4у2 будет равносильно неравенству
Решаем методом интервалов.
Решение неравенства: .
Середина отрезка: .
Ответ: .
4. Рациональные неравенства
Пример 7. Найти все целые решения, удовлетворяющие неравенству .
Решение:
Методом интервалов:
Решение неравенства: .
Целые числа, принадлежащие полученным полуинтервалам: – 6; – 5; – 4; 1.
Ответ: – 6; – 5; – 4; 1.
5. Иррациональные неравенства
Помните! Начинать решение иррациональных неравенств нужно с нахождения области определения.
Пример 8. Решить неравенство .
Решение:
Область определения: .
Так как арифметический корень не может быть отрицательным числом, то .
Ответ: .
Пример 9. Найти все целые решения неравенства .
Решение:
Область определения .
– быть отрицательным не может, следовательно, чтобы произведение было неотрицательным достаточно потребовать выполнения неравенства
, при этом учитывая область определения. Т.е. исходное неравенство равносильно системе
.
Целыми числами из этого отрезка будут 2; 3; 4.
Ответ: 2; 3; 4.
Пример 10. Решить неравенство .
Решение:
Область определения:
Преобразуем неравенство: . С учётом области определения видим, что обе части неравенства — положительные числа. Возведём обе части в квадрат и получим неравенство, равносильное исходному.
т.е.
, и этот числовой отрезок включён в область определения.
Ответ: .
Пример 11. Решить неравенство .
Решение:
Раскрываем знак модуля.
Объединим решения систем 1) и 2): .
Ответ: .
6. Показательные, логарифмические неравенства и системы неравенств
Пример 12. Решите неравенство .
Решение:
.
Ответ: .
Пример 13. Решите неравенство .
Решение:
.
Ответ: .
Пример 14. Решите неравенство .
Решение:
Ответ: .
Пример 15. Решите неравенство .
Решение:
Ответ: .
Задания для самостоятельного решения
Базовый уровень
Целые неравенства и системы неравенств
1) Решите неравенство 2х – 5 ≤ 3 + х.
2) Решите неравенство – 5х > 0,25.
3) Решите неравенство .
4) Решите неравенство 2 – 5х ≥ – 3х.
5) Решите неравенство х + 2 < 5x – 2(x – 3).
6) Решите неравенство
.
7) Решите неравенство (х – 3) (х + 2) > 0.
Решить систему неравенств
9) Найдите целочисленные решения системы неравенств .
10) Решить систему неравенств .
11) Решить систему неравенств
12) Найти наименьшее целое решение неравенства
13) Решите неравенство .
14) Решите неравенство .
15) Решите неравенство .
16) Решите неравенство .
17) Найдите решение неравенства , принадлежащие промежутку
.
18) Решить систему неравенств
19) Найти все целые решения системы
Рациональные неравенства и системы неравенств
20) Решите неравенство .
21) Решите неравенство .
22) Определите число целых решений неравенства .
23) Определите число целых решений неравенства .
24) Решите неравенство .
25) Решите неравенство 2x<16 .
26) Решите неравенство .
27) Решите неравенство .
28) Решите неравенство .
29) Найдите сумму целых решений неравенства на отрезке [– 7, 7].
30) Решите неравенство .
31) Решите неравенство .
Иррациональные неравенства
32) Решите неравенство .
33) Решите неравенство
34) Решите неравенство .
Показательные, логарифмические неравенства и системы неравенств
35) Решите неравенство .
36) Решите неравенство .
37) Решите неравенство .
38) Решите неравенство .
39) Решите неравенство .
40) Решите неравенство 49∙7х < 73х + 3.
41) Найдите все целые решения неравенства .
42) Решите неравенство .
43) Решите неравенство .
44) Решите неравенство 7x+1-7x<42 .
45) Решите неравенство log3(2x2+x-1)>log32 .
46) Решите неравенство log0,5(2x+3)>0 .
47) Решите неравенство .
48) Решите неравенство .
49) Решите неравенство .
50) Решите неравенство logx+112>logx+12 .
51) Решите неравенство logx9<2.
52) Решите неравенство .
Повышенный уровень
53) Решите неравенство |x-3|>2x.
54) Решите неравенство 2│х + 1| > х + 4.
55) Найдите наибольшее целое решение неравенства .
56) Решить систему неравенств
57) Решить систему неравенств .
58) Решите неравенство .
59) Решите неравенство 25•2x-10x+5x>25 .
60) Решите неравенство .
Ответы
1) х ≤ 8; 2) х < – 0,05; 3) х ≥ 5; 4) х ≤ 1; 5) х > –2; 6) х < 11; 7) ;
(-2;0]; 9) – 1; 10) х ≥ 7,5; 11)
; 12) 1; 13)
; 14) х ≤ – 0,9; 15) х < – 1; 16) х < 24; 17)
; 18)
; 19) 3, 4, 5;
20) (0; 2); 21) (0; 1,5); 22) 3; 23) 6; 24) (–1; 1,5); 25) х < 4; 26); 27) (– 3; 17); 28)
; 29) – 10; 30) (0; + ∞); 31); 32) [1;17); 33) x > 17; 34) х ≥ 2; 35)
; 36) х < 2; 37) х > 0; 38) х ≤ 3; 39) х > – 3,5; 40) х > – 0,5; 41) 0, 1, 2, 3, 4, 5; 42) х < 3; 43)
; 44) х < 1; 45)
; 46) (– 1,5; – 1); 47) х < 0; 48)
; 49)
; 50) х > 0; 51)
; 52)
; 53) х < 1; 54)
; 55) – 1; 56)
; 57) [3,5; 10]; 58) (0, 1); 59) (0; 2); 60)
.
СДАМ ГИА: РЕШУ ЦТ
Образовательный портал для подготовки к экзаменам
Математика
математика
≡ Математика
ЦТ
9 класс
11 класс база
11 класс профиль
Русский язык
Английский язык
Немецкий язык
Французский язык
Испанский язык
Беларуская мова–4
Физика
Биология
Химия
География
Обществоведение
Мировая история
История Беларуси
сайты — меню — вход — новости
СДАМ ГИАРЕШУ ЕГЭРЕШУ ОГЭРЕШУ ВПРРЕШУ ЦТ
О тестировании
Каталог заданий
Варианты
Ученику
Учителю
Школа
Сказать спасибо
Вопрос — ответ
Чужой компьютер
Зарегистрироваться
Восстановить пароль
Войти через ВКонтакте
Новости
15 апреля
Разместили 190 диктантов на белорусском языке для 4 класса
25 июня
Решили варианты ЦТ по математике 2021
16 июня
Настроили перевод первичных баллов в стобалльную шкалу.
13 апреля
Разместили на страницах «Варианты» прошлогодние варианты с решениями по всем предметам, кроме математики
21 марта
Новый сервис: рисование
31 января
Внедрили тёмную тему!
4 апреля
Разместили все варианты выпускного экзамена по математике 9 класса с решениями
Все новости
Наша группа
Каталог заданий.
Cистемы рациональных неравенств
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Тип B1 № 199
i
Найдите сумму целых решений (решение, если оно единственное) системы неравенств
Аналоги к заданию № 199: 679 709 739 … Все
Источник: Централизованное тестирование по математике, 2014
Решение
·
Помощь
2
Тип A6 № 216
i
Укажите номер рисунка, на котором показано множество решений системы неравенств
1)
2)
3)
4)
5)
1) 1
2) 2
3) 3
4) 4
5) 5
Аналоги к заданию № 216: 786 816 846 … Все
Источник: Централизованное тестирование по математике, 2015
Решение
·
Помощь
3
Тип A10 № 1133
i
Решением системы неравенств является:
1)
2)
3)
4)
5)
Аналоги к заданию № 1133: 1163 1193 Все
Источник: Централизованное тестирование по математике, 2018
Решение
·
Помощь
4
Тип A2 № 1299
i
Даны системы неравенств. Укажите номер системы неравенств, которая равносильна системе неравенств
1)
2)
3)
4)
5)
Аналоги к заданию № 1299: 1330 Все
Источник: Централизованное тестирование по математике, 2019
Решение
·
Помощь
5
Тип A15 № 1888
i
Наибольшим целым решением совокупности неравенств является:
1) −4
2) −6
3) −5
4) −3
5) −2
Аналоги к заданию № 1888: 1920 Все
Источник: Централизованное тестирование по математике, 2022
Решение
·
Помощь
Пройти тестирование по этим заданиям
О проекте · Редакция · Правовая информация · О рекламе
© Гущин Д. Д., 2011—2023
В алгебре часто требуется не просто решить систему неравенств, но выбрать из полученного множества решений решения, удовлетворяющие некоторым дополнительным условиям.
Найти целые решения системы неравенств — одно из заданий такого рода.
1) Найти целые решения системы неравенств:
7x — 5\ 5 — x
Неизвестные переносим в одну сторону, известные — в другую с противоположным знаком:
Title=»Rendered by QuickLaTeX.com»>
После упрощения разделим обе части каждого неравенства на . При делении на положительное число знак неравенства не меняется:
Title=»Rendered by QuickLaTeX.com»>
Title=»Rendered by QuickLaTeX.com»>
Отмечаем решения неравенств на числовых прямых. является пересечение решений (то есть та часть, где штриховка есть на обеих прямых).
Оба неравенства строгие, поэтому -4 и 2 изображаются выколотыми точками и в решение не входят:
Из промежутка (-4;2) выбираем целые решения.
Ответ: -3; -2; -1; 0; 1.
2) Какие целые решения имеет система неравенств?
Title=»Rendered by QuickLaTeX.com»>
Переносим неизвестные в одну сторону, известные — в другую с противоположным знаком
Title=»Rendered by QuickLaTeX.com»>
Упрощаем и делим обе части на число, стоящее перед иксом. Первое неравенство делим на положительное число, поэтому знак неравенства не меняется, второе — на отрицательное число, поэтому знак неравенства изменяется на противоположный:
Title=»Rendered by QuickLaTeX.com»>
Отмечаем решения неравенств на числовых прямых. Первое неравенство нестрогое, поэтому -2 изображаем закрашенной точкой. Второе неравенство нестрогое, соответственно, 5 изображается выколотой точкой:
Целые решения на промежутке [-2;5) — это -2; -1; 0; 1; 2; 3; 4.
Ответ: -2; -1; 0; 1; 2; 3; 4.
В некоторых примерах не требуется перечислять целые решения, нужно лишь указать их количество.
3) Сколько целых решений имеет система неравенств?
Переносим неизвестные в одну сторону, известные — в другую:
Title=»Rendered by QuickLaTeX.com»>
Обе части первого неравенства делим на отрицательное число, поэтому знак неравенства изменяется на противоположный. Обе части второго неравенства делим на положительное число, знак неравенства при этом не меняется:
Решение неравенств отмечаем на числовых прямых. Оба неравенства нестрогие, поэтому -3,5 и 1,7 изображаем закрашенными точками:
Решением системы является промежуток [-3,5; 1,7]. Целые числа, которые входят в данный промежуток — это -3; -2; -1; 0; 1. Всего их 5.
4) Сколько целых чисел являются решениями системы неравенств?
Неравенство
это выражение с, ≤, или ≥. Например, 3x — 5 Решить неравенство означает найти все значения переменных, при которых это неравенство верно.
Каждое из этих чисел является решением неравенства, а множество всех таких решений является его множеством решений
. Неравенства, которые имеют то же множество решений, называются эквивалентными неравенствами
.
Линейные неравенства
Принципы решения неравенств аналогичны принципам решения уравнений.
Принципы решения неравенств
Для любых вещественных чисел a, b,
и c
:
Принцип прибавления неравенств
: Если a
Принцип умножения для неравенств
: Если a 0 верно, тогда ac
Если a bc также верно.
Подобные утверждения также применяются для a ≤ b.
Когда обе стороны неравенства умножаются на отрицательное число, необходимо полностью изменить знак неравенства.
Неравенства первого уровня, как в примере 1 (ниже), называются линейными неравенствами
.
Пример 1
Решите каждое из следующих неравенств. Затем изобразите множество решений.
a) 3x — 5
b) 13 — 7x ≥ 10x — 4
Решение
Любое число, меньше чем 11/5, является решением.
Множество решений есть {x|x
Чтобы сделать проверку, мы можем нарисовать график y 1 = 3x — 5 и y 2 = 6 — 2x. Тогда отсюда видно, что для x
Множеством решений есть {x|x ≤ 1}, или (-∞, 1]. График множества решений изображён ниже.
Двойные неравенства
Когда два неравенства соединены словом и
, или
, тогда формируется двойное неравенство
.
Двойное неравенство, как
-3
и
2x + 5 ≤ 7
называется соединённым
, потому что в нём использовано и
. Запись -3
Двойные неравенства могут быть решены с использованием принципов прибавления и умножения неравенств.
Пример 2
Решите -3
Решение
У нас есть
Множество решений {x|x ≤ -1 или
x > 3}. Мы можем также написать решение с использованием обозначения интервала и символ для объединения
или включения обоих множеств: (-∞ -1] (3, ∞). График множества решений изображен ниже.
Для проверки, нарисуем y 1 = 2x — 5, y 2 = -7, и y 3 = 1. Заметьте, что для {x|x ≤ -1 или
x > 3}, y 1 ≤ y 2 или
y 1 > y 3 .
Неравенства с абсолютным значением (модулем)
Неравенства иногда содержат модули. Следующие свойства используются для их решения.
Для а > 0 и алгебраического выражения x:
|x|
|x| > a эквивалентно x или x > a.
Подобные утверждения и для |x| ≤ a и |x| ≥ a.
Например,
|x|
|y| ≥ 1 эквивалентно y ≤ -1 или
y ≥ 1;
и |2x + 3| ≤ 4 эквивалентно -4 ≤ 2x + 3 ≤ 4.
Пример 4
Решите каждое из следующих неравенств. Постройте график множества решений.
a) |3x + 2|
b) |5 — 2x| ≥ 1
Решение
a) |3x + 2|
Множеством решением есть {x|-7/3
b) |5 — 2x| ≥ 1
Множеством решением есть {x|x ≤ 2 или
x ≥ 3}, или (-∞, 2] .
Весь выше прописанный алгоритм записывается так:
3 · x + 12 ≤ 0 ; 3 · x ≤ − 12 ; x ≤ − 4 .
Ответ:
x ≤ − 4 или (− ∞ , − 4 ] .
Пример 2
Указать все имеющиеся решения неравенства − 2 , 7 · z > 0 .
Решение
Из условия видим, что коэффициент a при z равняется — 2 , 7 , а b в явном виде отсутствует или равняется нулю. Первый шаг алгоритма можно не использовать, а сразу переходить ко второму.
Производим деление обеих частей уравнения на число — 2 , 7 . Так как число отрицательное, необходимо поменять знак неравенства на противоположный. То есть получаем, что (− 2 , 7 · z) : (− 2 , 7) < 0: (− 2 , 7) , и дальше z < 0 .
Весь алгоритм запишем в краткой форме:
− 2 , 7 · z > 0 ; z < 0 .
Ответ:
z < 0 или (− ∞ , 0) .
Пример 3
Решить неравенство — 5 · x — 15 22 ≤ 0 .
Решение
По условию видим, что необходимо решить неравенство с коэффициентом a при переменной x , которое равняется — 5 , с коэффициентом b , которому соответствует дробь — 15 22 . Решать неравенство необходимо, следуя алгоритму, то есть: перенести — 15 22 в другую часть с противоположным знаком, разделить обе части на — 5 , изменить знак неравенства:
5 · x ≤ 15 22 ; — 5 · x: — 5 ≥ 15 22: — 5 x ≥ — 3 22
При последнем переходе для правой части используется правило деления числе с разными знаками 15 22: — 5 = — 15 22: 5 , после чего выполняем деление обыкновенной дроби на натурально число — 15 22: 5 = — 15 22 · 1 5 = — 15 · 1 22 · 5 = — 3 22 .
Ответ:
x ≥ — 3 22 и [ — 3 22 + ∞) .
Рассмотрим случай, когда а = 0 . Линейное выражение вида a · x + b < 0 является неравенством 0 · x + b < 0 , где на рассмотрение берется неравенство вида b < 0 , после чего выясняется, оно верное или нет.
Все основывается на определении решения неравенства. При любом значении x получаем числовое неравенство вида b < 0 , потому что при подстановке любого t вместо переменной x , тогда получаем 0 · t + b < 0 , где b < 0 . В случае, если оно верно, то для его решения подходит любое значение. Когда b < 0 неверно, тогда линейное уравнение не имеет решений, потому как не имеется ни одного значения переменной, которое привело бы верному числовому равенству.
Все суждения рассмотрим в виде алгоритма решения линейных неравенств 0 · x + b < 0 (≤ , > , ≥) :
Определение 5
Числовое неравенство вида b < 0 (≤ , > , ≥) верно, тогда исходное неравенство имеет решение при любом значении, а неверно тогда, когда исходное неравенство не имеет решений.
Пример 4
Решить неравенство 0 · x + 7 > 0 .
Решение
Данное линейное неравенство 0 · x + 7 > 0 может принимать любое значение x . Тогда получим неравенство вида 7 > 0 . Последнее неравенство считается верным, значит любое число может быть его решением.
Ответ
: промежуток (− ∞ , + ∞) .
Пример 5
Найти решение неравенства 0 · x − 12 , 7 ≥ 0 .
Решение
При подстановке переменной x любого числа получим, что неравенство получит вид − 12 , 7 ≥ 0 . Оно является неверным. То есть 0 · x − 12 , 7 ≥ 0 не имеет решений.
Ответ:
решений нет.
Рассмотрим решение линейных неравенств, где оба коэффициента равняется нулю.
Пример 6
Определить не имеющее решение неравенство из 0 · x + 0 > 0 и 0 · x + 0 ≥ 0 .
Решение
При подстановке любого числа вместо x получим два неравенства вида 0 > 0 и 0 ≥ 0 . Первое является неверным. Значит, 0 · x + 0 > 0 не имеет решений, а 0 · x + 0 ≥ 0 имеет бесконечное количество решений, то есть любое число.
Ответ
: неравенство 0 · x + 0 > 0 не имеет решений, а 0 · x + 0 ≥ 0 имеет решения.
Данный метод рассматривается в школьном курсе математики. Метод интервалов способен разрешать различные виды неравенств, также и линейные.
Метод интервалов применяется для линейных неравенств при значении коэффициента x не равному 0 . Иначе придется вычислять при помощи другого метода.
Определение 6
Метод интервалов – это:
- введение функции y = a · x + b ;
- поиск нулей для разбивания области определения на промежутки;
- определение знаков для понятия их на промежутках.
Соберем алгоритм для решения линейных уравнений a · x + b < 0 (≤ , > , ≥) при a ≠ 0 с помощью метода интервалов:
- нахождение нулей функции y = a · x + b , чтобы решить уравнение вида a · x + b = 0 . Если a ≠ 0 , тогда решением будет единственный корень, который примет обозначение х 0 ;
- построение координатной прямой с изображением точки с координатой х 0 , при строгом неравенстве точка обозначается выколотой, при нестрогом – закрашенной;
- определение знаков функции y = a · x + b на промежутках, для этого необходимо находить значения функции в точках на промежутке;
- решение неравенства со знаками > или ≥ на координатной прямой добавляется штриховка над положительным промежутком, < или ≤ над отрицательным промежутком.
Рассмотрим несколько примеров решения линейного неравенства при помощи метода интервалов.
Пример 6
Решить неравенство − 3 · x + 12 > 0 .
Решение
Из алгоритма следует, что для начала нужно найти корень уравнения − 3 · x + 12 = 0 . Получаем, что − 3 · x = − 12 , x = 4 . Необходимо изобразить координатную прямую, где отмечаем точку 4 . Она будет выколотой, так как неравенство является строгим. Рассмотрим чертеж, приведенный ниже.
Нужно определить знаки на промежутках. Чтобы определить его на промежутке (− ∞ , 4) , необходимо произвести вычисление функции y = − 3 · x + 12 при х = 3 . Отсюда получим, что − 3 · 3 + 12 = 3 > 0 . Знак на промежутке является положительным.
Определяем знак из промежутка (4 , + ∞) , тогда подставляем значение х = 5 . Имеем, что − 3 · 5 + 12 = − 3 < 0 . Знак на промежутке является отрицательным. Изобразим на числовой прямой, приведенной ниже.
Мы выполняем решение неравенства со знаком > , причем штриховка выполняется над положительным промежутком. Рассмотрим чертеж, приведенный ниже.
Из чертежа видно, что искомое решение имеет вид (− ∞ , 4) или x < 4 .
Ответ
: (− ∞ , 4) или x < 4 .
Чтобы понять, как изображать графически, необходимо рассмотреть на примере 4 линейных неравенства: 0 , 5 · x − 1 < 0 , 0 , 5 · x − 1 ≤ 0 , 0 , 5 · x − 1 > 0 и 0 , 5 · x − 1 ≥ 0 . Их решениями будут значения x < 2 , x ≤ 2 , x > 2 и x ≥ 2 . Для этого изобразим график линейной функции y = 0 , 5 · x − 1 , приведенный ниже.
Видно, что
Определение 7
- решением неравенства 0 , 5 · x − 1 < 0 считается промежуток, где график функции y = 0 , 5 · x − 1 располагается ниже О х;
- решением 0 , 5 · x − 1 ≤ 0 считается промежуток, где функция y = 0 , 5 · x − 1 ниже О х или совпадает;
- решением 0 , 5 · x − 1 > 0 считается промежуток, гре функция располагается выше О х;
- решением 0 , 5 · x − 1 ≥ 0 считается промежуток, где график выше О х или совпадает.
Смысл графического решения неравенств заключается в нахождении промежутков, которое необходимо изображать на графике. В данном случае получаем, что левая часть имеет y = a · x + b , а правая – y = 0 , причем совпадает с О х.
Определение 8
Построение графика функции y = a · x + b производится:
- во время решения неравенства a · x + b < 0 определяется промежуток, где график изображен ниже О х;
- во время решения неравенства a · x + b ≤ 0 определяется промежуток, где график изображается ниже оси О х или совпадает;
- во время решения неравенства a · x + b > 0 производится определение промежутка, где график изображается выше О х;
- во время решения неравенства a · x + b ≥ 0 производится определение промежутка, где график находится выше О х или совпадает.
Пример 7
Решить неравенство — 5 · x — 3 > 0 при помощи графика.
Решение
Необходимо построить график линейной функции — 5 · x — 3 > 0 . Данная прямая является убывающей, потому как коэффициент при x является отрицательным. Для определения координат точки его пересечения с О х — 5 · x — 3 > 0 получим значение — 3 5 . Изобразим графически.
Решение неравенства со знаком > , тогда необходимо обратить внимание на промежуток выше О х. Выделим красным цветом необходимую часть плоскости и получим, что
Необходимый промежуток является частью О х красного цвета. Значит, открытый числовой луч — ∞ , — 3 5 будет решением неравенства. Если бы по условию имели нестрогое неравенство, тогда значение точки — 3 5 также являлось бы решением неравенства. И совпадало бы с О х.
Ответ
: — ∞ , — 3 5 или x < — 3 5 .
Графический способ решения используется, когда левая часть будет отвечать функции y = 0 · x + b , то есть y = b . Тогда прямая будет параллельна О х или совпадающей при b = 0 . Эти случаю показывают, что неравенство может не иметь решений, либо решением может быть любое число.
Пример 8
Определить из неравенств 0 · x + 7 < = 0 , 0 · x + 0 ≥ 0 то, которое имеет хотя бы одно решение.
Решение
Представление y = 0 · x + 7 является y = 7 , тогда будет задана координатная плоскость с прямой, параллельной О х и находящейся выше О х. Значит, 0 · x + 7 < = 0 решений не имеет, потому как нет промежутков.
График функции y = 0 · x + 0 , считается y = 0 , то есть прямая совпадает с О х. Значит, неравенство 0 · x + 0 ≥ 0 имеет множество решений.
Ответ
: второе неравенство имеет решение при любом значении x .
Неравенства, сводящиеся к линейным
Решение неравенств можно свести к решению линейного уравнения, которые называют неравенствами, сводящимися к линейным.
Данные неравенства были рассмотрены в школьном курсе, так как они являлись частным случаем решения неравенств, что приводило к раскрытию скобок и приведению подобных слагаемых. Для примера рассмотрим, что 5 − 2 · x > 0 , 7 · (x − 1) + 3 ≤ 4 · x − 2 + x , x — 3 5 — 2 · x + 1 > 2 7 · x .
Неравенства, приведенные выше, всегда приводятся к виду линейного уравнения. После чего раскрываются скобки и приводятся подобные слагаемые, переносятся из разных частей, меняя знак на противоположный.
При сведении неравенства 5 − 2 · x > 0 к линейному, представляем его таким образом, чтобы оно имело вид − 2 · x + 5 > 0 , а для приведения второго получаем, что 7 · (x − 1) + 3 ≤ 4 · x − 2 + x . Необходимо раскрыть скобки, привести подобные слагаемые, перенести все слагаемые в левую часть и привести подобные слагаемые. Это выглядит таким образом:
7 · x − 7 + 3 ≤ 4 · x − 2 + x 7 · x − 4 ≤ 5 · x − 2 7 · x − 4 − 5 · x + 2 ≤ 0 2 · x − 2 ≤ 0
Это приводит решение к линейному неравенству.
Эти неравенства рассматриваются как линейные, так как имеют такой же принцип решения, после чего возможно приведение их к элементарным неравенствам.
Для решения такого вида неравенства такого вида необходимо свести его к линейному. Это следует делать таким образом:
Определение 9
- раскрыть скобки;
- слева собрать переменные, а справа числа;
- привести подобные слагаемые;
- разделить обе части на коэффициент при x .
Пример 9
Решить неравенство 5 · (x + 3) + x ≤ 6 · (x − 3) + 1 .
Решение
Производим раскрытие скобок, тогда получим неравенство вида 5 · x + 15 + x ≤ 6 · x − 18 + 1 . После приведения подобных слагаемых имеем, что 6 · x + 15 ≤ 6 · x − 17 . После перенесения слагаемых с левой в правую, получим, что 6 · x + 15 − 6 · x + 17 ≤ 0 . Отсюда имеет неравенство вида 32 ≤ 0 из полученного при вычислении 0 · x + 32 ≤ 0 . Видно, что неравенство неверное, значит, неравенство, данное по условию, не имеет решений.
Ответ
: нет решений.
Стоит отметить, что имеется множество неравенств другого вида, которые могут сводится к линейному или неравенству вида, показанного выше. Например, 5 2 · x − 1 ≥ 1
является показательным уравнением, которое сводится к решению линейного вида 2 · x − 1 ≥ 0 . Эти случаи будут рассмотрены при решении неравенств данного вида.
Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter
Задание 1750
Найдите наименьшее значение x, удовлетворяющее системе неравенств: $$left{begin{matrix}6x+18leq0\ x+8geq2end{matrix}right.$$
Ответ: -6
Скрыть
$$left{begin{matrix}6x+18leq0\ x+8geq2end{matrix}right.Leftrightarrow$$$$left{begin{matrix}6x leq -18|:6 \ xgeq 2-8 end{matrix}right.Leftrightarrow$$$$left{begin{matrix}x leq -3\ xgeq -6 end{matrix}right.$$
Получаем, что $$x in [-6;-3]$$, тогда наименьшее значение $$x=-6$$
Задание 1751
Найдите наибольшее значение x, удовлетворяющее системе неравенств: $$left{begin{matrix}5x+15leq 0\ x+5geq 1end{matrix}right.$$
Ответ: -3
Скрыть
$$left{begin{matrix}5x+15leq 0\ x+5geq 1end{matrix}right.Leftrightarrow$$$$left{begin{matrix}5xleq -15\ xgeq 1-5end{matrix}right.Leftrightarrow$$$$left{begin{matrix}xleq -3\ xgeq -4end{matrix}right.$$
То есть мы получили, что $$xin [ -4; -3]$$. В таком случае наибольшее значение будет $$x=-3$$
Задание 4839
На каком рисунке изображено множество решений системы неравенств
$$left{begin{matrix}2(x+2)-7<15\-3x+12<0end{matrix}right.$$
Ответ: 1
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Скрыть
$$left{begin{matrix}2(x+2)-7<15\-3x+12<0end{matrix}right.$$ $$Leftrightarrow$$ $$left{begin{matrix}2x+4-7-15<0\-3x<-12end{matrix}right.$$ $$Leftrightarrow$$ $$left{begin{matrix}2x<18\x>4end{matrix}right.$$ $$Leftrightarrow$$ $$left{begin{matrix}x<9\x>4end{matrix}right.$$
Задание 5030
Найдите сумму наибольшего целого и наименьшего целого решения системы $$left{begin{matrix}x+4<2x+3\3x-4leq2x+4end{matrix}right.$$
Ответ: 10
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Скрыть
$$left{begin{matrix}x+4<2x+3\3x-4leq2x+4end{matrix}right.$$ $$Leftrightarrow$$ $$left{begin{matrix}x-3<2x-x\3x-2xleq4+4end{matrix}right.$$ $$Leftrightarrow$$ $$left{begin{matrix}x>1\xleq8end{matrix}right.$$
$$x_{min}=2$$; $$x_{max}=8$$
Задание 6778
На каком рисунке изображено множество решений системы неравенств $$left{begin{matrix}2x-3<1\ 5-3x>8end{matrix}right.$$
Ответ: 3
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Скрыть
$$left{begin{matrix}2x-3<1\5-3x>8end{matrix}right.Leftrightarrow$$ $$left{begin{matrix}2x<4\-3x>3end{matrix}right.Leftrightarrow$$ $$left{begin{matrix}x<2\x<-1end{matrix}right.Leftrightarrow$$ $$x<-1$$, что соответствует 3 варианту ответа ( т.к. $$(-4;1) in (-infty ;-1)$$ )
Задание 7461
Найдите сумму наибольшего целого и наименьшего целого решения системы $$left{begin{matrix}2x+5<3x+7\ 5x-3leq 4x+3end{matrix}right.$$
Ответ: 5
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Скрыть
$$left{begin{matrix}2x+5<3x+7\ 5x-3leq 4x+3end{matrix}right.Leftrightarrow$$$$left{begin{matrix}5-7<3x-2x\ 5x-4xleq 3+3end{matrix}right.Leftrightarrow$$$$left{begin{matrix}x>-2\ xleq 6end{matrix}right.$$ Так как первое неравенство строгое, то -2 в ответ не входит, следовательно, наименьшее целое будет -1. Наибольше же целое составляет 6. Тогда их сумма : $$-1+6=5$$
Задание 7581
Укажите решение системы неравенств $$left{begin{matrix}-9+3x<0\ 2-3x>-10end{matrix}right.$$
- $$(-infty;3)$$
- $$(-infty;4)$$
- $$(3;+infty)$$
- $$(3;4)$$
Ответ: 1
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 7751
Найдите наименьшее значение x, удовлетворяющее системе неравенств: $$left{begin{matrix} 5x+12geq 0\ 3x-5leq 7 end{matrix}right.$$
Ответ: -2,4
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 9436
Укажите множество решений системы неравенств $$left{begin{matrix}x<-3\9-x<0end{matrix}right.$$
Ответ: 4
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 9915
Укажите номер решения системы неравенств $$left{begin{matrix} x+4geq -4,5\ x+4leq 0 end{matrix}right.$$
- $$[-8,5;-4]$$
- $$[4;+infty)$$
- $$(-infty;-8,5]$$
- $$(-infty;-8,5]cup[4;+infty)$$
Ответ: 1
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 10353
Решите систему неравенств $$left{begin{matrix} x-4geq 0\ x-0,3geq 1 end{matrix}right.$$. В ответе укажите номер правильного ответа.
- $$[1,3;+infty)$$
- $$[4;+infty)$$
- $$[1,3;4]$$
- $$(-infty;1,3]cup[4;+infty)$$
Ответ: 2
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Скрыть
Задание 10951
Решите систему неравенств $$left{ begin{array}{c} x^2le 4 \ x+3ge 0 end{array} right.$$. В ответе укажите номер правильного ответа.
$$genfrac{}{}{0pt}{}{1) (-infty ;3]}{ begin{array}{c} 2) left(-infty ;3right]cup [2;+infty ) \ 3)[-2;2] \ 4)[-2;3] end{array} }$$
Ответ: 3
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Скрыть
$${rm }left{ begin{array}{c}
x^2le 4 \
x+3ge 0 end{array}
right.leftrightarrow left{ begin{array}{c}
(x-2)(x+2)le 0 \
xge -3 end{array}
right.leftrightarrow left{ begin{array}{c}
xge -2 \
xle 2 \
xge -3 end{array}
right.leftrightarrow xin left[-2;2right],$$ т.е. 3 вариант.