Как найти сумму целых решений системы неравенства

Найти целые решения системы неравенств




В алгебре часто требуется не просто решить систему неравенств, но выбрать из полученного множества решений решения, удовлетворяющие некоторым дополнительным условиям.

Найти целые решения системы неравенств — одно из заданий такого рода.

1) Найти целые решения системы неравенств:

    [left{ begin{array}{l} 9x + 3 > 7x - 5\ 5 - x < 15 - 6x end{array} right.]

Неизвестные переносим в одну сторону, известные — в другую с противоположным знаком:

    [left{ begin{array}{l} 9x - 7x > - 5 - 3\ - x + 6x < 15 - 5 end{array} right.]

После упрощения разделим обе части каждого неравенства на     [left{ begin{array}{l} 2x > - 8___left| {:2 > 0} right.\ 5x < 10___left| {:5 > 0} right. end{array} right.]

    [left{ begin{array}{l} x > - 4\ x < 2 end{array} right.]

Отмечаем решения неравенств на числовых прямых. Решением системы является пересечение решений (то есть та часть, где штриховка есть на обеих прямых).

Оба неравенства строгие, поэтому -4 и 2 изображаются выколотыми точками и в решение не входят:

najti-celye-cesheniya-sistemy-neravenstv

Из промежутка (-4;2) выбираем целые решения.

Ответ: -3; -2; -1; 0; 1.

2) Какие целые решения имеет система неравенств?

    [left{ begin{array}{l} 4x + 1 ge x - 5\ 37 - 8x > 17 - 4x end{array} right.]

Переносим неизвестные в одну сторону, известные — в другую с противоположным знаком

    [left{ begin{array}{l} 4x - x ge - 5 - 1\ - 8x + 4x > 17 - 37 end{array} right.]

Упрощаем и делим обе части на число, стоящее перед иксом. Первое неравенство делим на положительное число, поэтому знак неравенства не меняется, второе — на отрицательное число, поэтому знак неравенства изменяется на противоположный:

    [left{ begin{array}{l} 3x ge - 6___left| {:3 > 0} right.\ - 4x > - 20___left| {:( - 4) < 0} right. end{array} right.]

    [left{ begin{array}{l} x ge - 2\ x < 5 end{array} right.]

Отмечаем решения неравенств на числовых прямых. Первое неравенство нестрогое, поэтому -2 изображаем закрашенной точкой. Второе неравенство нестрогое, соответственно, 5 изображается выколотой точкой:

celye-cesheniya-sistemy-neravenstv

Целые решения на промежутке  [-2;5) — это -2; -1; 0; 1; 2; 3; 4.

Ответ: -2; -1; 0; 1; 2; 3; 4.

В некоторых примерах не требуется перечислять целые решения, нужно лишь указать их количество.

3) Сколько целых решений имеет система неравенств?

    [left{ begin{array}{l} 3x - 4 ge 5x + 3\ 11x - 2 le 15 + x end{array} right.]

Переносим неизвестные в одну сторону, известные — в другую:

    [left{ begin{array}{l} 3x - 5x ge 3 + 4\ 11x - x le 15 + 2 end{array} right.]

    [left{ begin{array}{l} - 2x le 7___left| {:( - 2) < 0} right.\ 10x le 17___left| {:10 > 0} right. end{array} right.]

Обе части первого неравенства делим на отрицательное число, поэтому знак неравенства изменяется на противоположный. Обе части второго неравенства делим на положительное число, знак неравенства при этом не меняется:

    [left{ begin{array}{l} x ge - 3,5\ x le 1,7 end{array} right.]

Решение неравенств отмечаем на числовых прямых. Оба неравенства нестрогие, поэтому -3,5 и 1,7 изображаем закрашенными точками:

skolko-celyh-ceshenij-imeet-sistema-neravenstv

Решением системы является промежуток [-3,5; 1,7]. Целые числа, которые входят в данный промежуток — это -3; -2; -1; 0; 1. Всего их 5.

Ответ: 5.

4) Сколько целых чисел являются решениями системы неравенств?

    [left{ begin{array}{l} 12 - 3x ge 5x - 4\ 5x - 5 ge 17 - 6x end{array} right.]

Неизвестные — в одну сторону, известные — в другую с противоположным знаком:

    [left{ begin{array}{l} - 3x - 5x ge - 4 - 12\ 5x + 6x ge 17 + 5 end{array} right.]

    [left{ begin{array}{l} - 8x ge - 16___left| {:( - 8) < 0} right.\ 11x ge 22___left| {:11 > 0} right. end{array} right.]

При делении обеих частей неравенства на положительное число знак неравенства не изменяется, при делении на отрицательное число — меняется на противоположный:

    [left{ begin{array}{l} x le 2\ x ge 2 end{array} right.]

Решение неравенств отмечаем на числовых прямых.najti-kolichestvo-celyh-ceshenij-sistemy-neravenstv

Множество решений системы состоит из единственного элемента — {2}. 2 — целое число, следовательно, решением данной системы является одно целое число.

Ответ: 1.

    При решении неравенств вы должны свободно владеть понятием числового неравенства, знать, что такое решение неравенства, что значит решить неравенство, помнить свойства неравенств. То же относится и к системам числовых неравенств. Все эти сведения вы можете найти в любом пособии для поступающих в вузы. 
    Напомним свойства числовых неравенств.
    1. Если а > b , то b < а; наоборот, если а < b, то b > а.
    2. Если а > b и b > c, то а > c. Точно так же, если а < b и b < c, то а < c.
    3. Если а > b, то а + c > b+ c (и  а – c > b – c). Если же а < b, то а + c < b+ c (и а – c < b – c). Т. е. к обеим частям неравенства можно прибавлять (или из них вычесть) одну и ту же величину.
    4. Если а > b и c > d, то а + c > b + d; точно так же, если а < b и c < d, то а + c < b + d, т. е. два неравенства одинакового смысла можно почленно складывать.

Замечание.

Два неравенства одинакового смысла нельзя почленно вычитать друг из друга, так как результат может быть верным, но может быть и неверным. Например, если из неравенства 11 > 9 почленно вычесть неравенство 3 > 2, то получим верное неравенство 8 > 7. Если из неравенства 11 > 9 почленно вычесть неравенство 7 > 2, то полученное неравенство будет неверным.
    5. Если а > b и c < d, то а – c > b – d; если а < b и c > d, то а – c < b – d, т.е. из одного неравенства можно почленно вычесть другое неравенство противоположного смысла, оставляя знак того неравенства, из которого вычиталось другое.
    6. Если а > b и m – положительное число, то m а > m b и  , т.е. обе части неравенства можно умножить или разделить на одно и то же положительное число ( знак неравенства остаётся тем же ).
    Если же а > b и n – отрицательное число, то n а < n b и , т.е. обе части неравенства можно умножить или разделить на одно и то же отрицательное число, но при этом знак неравенства нужно переменить на противоположный.
    7. Если а > b и c > d , где а, b, c, d > 0, то а c > b d и если а < b и c < d, где а, b, c, d > 0, то аc < bd, т.е. неравенства одного смысла на множестве положительных чисел можно почленно перемножать.
Следствие. Если а > b, где а, b > 0, то а2 > b2, и если а < b, то а2 < b2, т.е. на множестве положительных чисел обе части неравенства можно возводить в квадрат.

    8. Если а > b, где а, b > 0, то  и если а < b , то .

Виды неравенств и способы их решения

1. Линейные неравенства и системы неравенств

Пример 1. Решить неравенство .
    Решение:
          .
    Ответ: х < – 2.

Пример 2. Решить систему неравенств  
    Решение:
         .
    Ответ: (– 2; 0].

Пример 3. Найти наименьшее целое решение системы неравенств 

    Решение:
        
    Ответ: 

2. Квадратные неравенства

Пример 4. Решить неравенство х2 > 4.
    Решение:
        х2 > 4   (х – 2)∙(х + 2) > 0.
        Решаем методом интервалов.

        

        

Ответ:

3. Неравенства высших степеней

Пример 5. Решить неравенство (х + 3)∙(х2 – 2х + 1) > 0. 
    Решение:
          
    Ответ: 

Пример 6. Найти середину отрезка, который является решением неравенства 4х2 – 24х + 24 < 4у2, где   .
    Решение:
        Область определения неравенства: .
        С учётом области определения 4х2 – 24х + 24 < 4у2 будет равносильно неравенству

        

        Решаем методом интервалов.

        
        Решение неравенства: .
        Середина отрезка: .
    Ответ: .

4. Рациональные неравенства

Пример 7. Найти все целые решения, удовлетворяющие неравенству .
    Решение:
             
        

        

        Методом интервалов:

        

        Решение неравенства: .
        Целые числа, принадлежащие полученным полуинтервалам: – 6; – 5; – 4; 1. 
    Ответ:  – 6; – 5; – 4; 1.

5. Иррациональные неравенства

Помните! Начинать решение иррациональных неравенств нужно с нахождения области определения.

Пример 8. Решить неравенство .
    Решение:    
        Область определения: .
        Так как арифметический корень не может быть отрицательным числом, то .
    Ответ: .

Пример 9. Найти все целые решения неравенства .

    Решение:

        Область определения .

        – быть отрицательным не может, следовательно, чтобы произведение было неотрицательным достаточно потребовать выполнения неравенства , при этом учитывая область определения. Т.е. исходное неравенство равносильно системе 

        Целыми числами из этого отрезка будут 2; 3; 4.

    Ответ: 2; 3; 4.

Пример 10. Решить неравенство .

    Решение:

        Область определения:  

        Преобразуем неравенство: . С учётом области определения видим, что обе части неравенства —  положительные числа. Возведём обе части в квадрат и получим неравенство, равносильное  исходному.

        

        

         т.е. , и этот числовой отрезок включён в область определения.

    Ответ: .

Пример 11. Решить неравенство .

    Решение:

        Раскрываем знак модуля.

        
        Объединим решения систем 1) и 2): .

    Ответ: 

6. Показательные, логарифмические неравенства и системы неравенств

Пример 12. Решите неравенство .

    Решение:

                      .

    Ответ: .

Пример 13. Решите неравенство .

    Решение:

        .

    Ответ: .

Пример 14. Решите неравенство .

    Решение:

        

    Ответ: .

Пример 15. Решите неравенство .

    Решение:

        
    Ответ: .    

Задания для самостоятельного решения

Базовый уровень

 Целые неравенства и системы неравенств

    1) Решите неравенство 2х – 5 ≤ 3 + х.

    2) Решите неравенство – 5х > 0,25. 

    3) Решите неравенство .

    4) Решите неравенство 2 – 5х ≥ – 3х.

    5) Решите неравенство х + 2 < 5x – 2(x – 3).

    6) Решите неравенство 
 .

    7) Решите неравенство (х – 3) (х + 2) > 0.

     8) Решить систему неравенств  

    9) Найдите целочисленные решения системы неравенств 

    10) Решить систему неравенств .

    11) Решить систему неравенств  

    12) Найти наименьшее целое решение неравенства  

    13) Решите неравенство .

    14) Решите неравенство .

    15) Решите неравенство .

    16) Решите неравенство .

    17) Найдите решение неравенства , принадлежащие промежутку .

    18) Решить систему неравенств  

    19) Найти все целые решения системы  

Рациональные неравенства и системы неравенств

    20) Решите неравенство .

    21) Решите неравенство .

    22) Определите число целых решений неравенства .

    23) Определите число целых решений неравенства .

    24) Решите неравенство .

    25) Решите неравенство 2x<16 .

    26) Решите неравенство .

    27) Решите неравенство .

    28) Решите неравенство .

    29) Найдите сумму целых решений неравенства  на отрезке [– 7, 7].

    30) Решите неравенство .

    31) Решите неравенство .

Иррациональные неравенства

    32) Решите неравенство .

    33) Решите неравенство 

    34) Решите неравенство .

Показательные, логарифмические неравенства и системы неравенств

    35) Решите неравенство .

    36) Решите неравенство .

    37) Решите неравенство .

    38) Решите неравенство .

    39) Решите неравенство .

    40) Решите неравенство 49∙7х < 73х + 3.

    41) Найдите все целые решения неравенства .

    42) Решите неравенство .

    43) Решите неравенство .

    44) Решите неравенство 7x+1-7x<42 .

    45) Решите неравенство log3(2x2+x-1)>log32 .

    46) Решите неравенство log0,5(2x+3)>0 .

    47) Решите неравенство .

    48) Решите неравенство .

    49) Решите неравенство .

    50) Решите неравенство logx+112>logx+12 .

    51) Решите неравенство logx9<2.

    52) Решите неравенство .

Повышенный уровень

    53) Решите неравенство |x-3|>2x.

    54) Решите неравенство 2│х + 1| > х + 4.

    55) Найдите наибольшее целое решение неравенства .

    56) Решить систему неравенств  

    57) Решить систему неравенств .

    58) Решите неравенство .

    59) Решите неравенство 25•2x-10x+5x>25 .

    60) Решите неравенство .

Ответы

1) х ≤ 8; 2) х < – 0,05; 3) х ≥ 5; 4) х ≤ 1; 5) х > –2; 6) х < 11; 7) ; 8) (-2;0]; 9) – 1; 10) х ≥ 7,5;               11); 12) 1; 13); 14) х ≤ – 0,9; 15) х < – 1; 16) х < 24; 17); 18) ; 19) 3, 4, 5; 

20) (0; 2); 21) (0; 1,5); 22) 3; 23) 6; 24) (–1; 1,5); 25) х < 4; 26); 27) (– 3; 17);                                           28)

; 29) – 10; 30) (0; + ∞); 31); 32) [1;17); 33) x > 17; 34) х ≥ 2; 35);   36) х < 2; 37) х > 0; 38) х ≤ 3; 39) х > – 3,5; 40) х > – 0,5; 41) 0, 1, 2, 3, 4, 5; 42) х < 3; 43) ; 44) х < 1;                           45) 46) (– 1,5; – 1); 47) х < 0; 48); 49) ; 50) х > 0;            51) ; 52) ; 53) х < 1; 54); 55) – 1; 56) ; 57) [3,5; 10]; 58) (0, 1); 59) (0; 2); 60) 

.

СДАМ ГИА: РЕШУ ЦТ

Образовательный портал для подготовки к экзаменам

Математика

математика

≡ Математика

ЦТ

9 класс

11 класс база

11 класс профиль

Русский язык

Английский язык

Немецкий язык

Французский язык

Испанский язык

Беларуская мова–4

Физика

Биология

Химия

География

Обществоведение

Мировая история

История Беларуси

сайты — меню — вход — новости

СДАМ ГИАРЕШУ ЕГЭРЕШУ ОГЭРЕШУ ВПРРЕШУ ЦТ

О тестировании

Каталог заданий

Варианты

Ученику

Учителю

Школа

Сказать спасибо

Вопрос — ответ

Чужой компьютер

Зарегистрироваться

Восстановить пароль

Войти через ВКонтакте

Новости

15 апреля

Раз­мес­ти­ли 190 дик­тан­тов на бе­ло­рус­ском язы­ке для 4 клас­са

25 июня

Решили варианты ЦТ по математике 2021

16 июня

На­стро­или пе­ре­вод пер­вич­ных бал­лов в сто­бал­льную шка­лу.

13 апреля

Раз­мес­ти­ли на стра­ни­цах «Ва­ри­ан­ты» про­ш­ло­год­ние ва­ри­ан­ты с ре­ше­ни­я­ми по всем пред­ме­там, кро­ме ма­те­ма­ти­ки

21 марта

Новый сервис: рисование

31 января

Внедрили тёмную тему!

4 апреля

Разместили все варианты выпускного экзамена по математике 9 класса с решениями

Все новости

Наша группа

Каталог заданий.
Cистемы рациональных неравенств


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Тип B1 № 199

i

Найдите сумму целых решений (решение, если оно единственное) системы неравенств  система выражений 2x плюс 8 больше или равно x в квадрате , левая круглая скобка x минус 1 правая круглая скобка в квадрате больше 0. конец системы .

Аналоги к заданию № 199: 679 709 739 … Все

Источник: Цен­тра­ли­зо­ван­ное те­сти­ро­ва­ние по ма­те­ма­ти­ке, 2014

Решение

·

Помощь


2

Тип A6 № 216

i

Укажите номер рисунка, на котором показано множество решений системы неравенств  система выражений xleqslant минус 1,6,1 минус 2x меньше 9. конец системы .

1)  

2)  

3)  

4)  

5)  

1) 1

2) 2

3) 3

4) 4

5) 5

Аналоги к заданию № 216: 786 816 846 … Все

Источник: Цен­тра­ли­зо­ван­ное те­сти­ро­ва­ние по ма­те­ма­ти­ке, 2015

Решение

·

Помощь


3

Тип A10 № 1133

i

Решением системы неравенств  система выражений левая круглая скобка 2,5x минус 1 правая круглая скобка x плюс 0,1 больше 0,22x минус 1leqslant13 минус 6x конец системы . является:

1)  левая круглая скобка минус бесконечность ;0,5 правая квадратная скобка

2)  левая круглая скобка минус бесконечность ;2 правая квадратная скобка

3)  левая круглая скобка минус бесконечность ;0,2 правая круглая скобка cup левая круглая скобка 0,2;0,5 правая круглая скобка

4)  левая круглая скобка минус бесконечность ;0,2 правая круглая скобка cup левая круглая скобка 0,2;0,5 правая квадратная скобка

5)  левая круглая скобка 0,2;0,5 правая круглая скобка

Аналоги к заданию № 1133: 1163 1193 Все

Источник: Цен­тра­ли­зо­ван­ное те­сти­ро­ва­ние по ма­те­ма­ти­ке, 2018

Решение

·

Помощь


4

Тип A2 № 1299

i

Даны системы неравенств. Укажите номер системы неравенств, которая равносильна системе неравенств  система выражений x больше 3,xleqslant5. конец системы .

1)  система выражений x минус 2 больше 1,x плюс 1le6; конец системы .

2)  система выражений 2x больше 3,xle5; конец системы .

3)  система выражений x больше 3,x плюс 2 le3; конец системы .

4)  система выражений x плюс 1 больше 2,xle5; конец системы .

5)  система выражений x больше 3, минус xle5. конец системы .

Аналоги к заданию № 1299: 1330 Все

Источник: Цен­тра­ли­зо­ван­ное те­сти­ро­ва­ние по ма­те­ма­ти­ке, 2019

Решение

·

Помощь


5

Тип A15 № 1888

i

Наибольшим целым решением совокупности неравенств  совокупность выражений 3x плюс 7 меньше 0, минус 5 больше x конец совокупности . является:

1) −4

2) −6

3) −5

4) −3

5) −2

Аналоги к заданию № 1888: 1920 Все

Источник: Цен­тра­ли­зо­ван­ное те­сти­ро­ва­ние по ма­те­ма­ти­ке, 2022

Решение

·

Помощь

Пройти тестирование по этим заданиям

О проекте · Редакция · Правовая информация · О рекламе

© Гущин Д. Д., 2011—2023

В алгебре часто требуется не просто решить систему неравенств, но выбрать из полученного множества решений решения, удовлетворяющие некоторым дополнительным условиям.

Найти целые решения системы неравенств — одно из заданий такого рода.

1) Найти целые решения системы неравенств:

7x — 5\ 5 — x

Неизвестные переносим в одну сторону, известные — в другую с противоположным знаком:

Title=»Rendered by QuickLaTeX.com»>

После упрощения разделим обе части каждого неравенства на . При делении на положительное число знак неравенства не меняется:

Title=»Rendered by QuickLaTeX.com»>

Title=»Rendered by QuickLaTeX.com»>

Отмечаем решения неравенств на числовых прямых. является пересечение решений (то есть та часть, где штриховка есть на обеих прямых).

Оба неравенства строгие, поэтому -4 и 2 изображаются выколотыми точками и в решение не входят:

Из промежутка (-4;2) выбираем целые решения.

Ответ: -3; -2; -1; 0; 1.

2) Какие целые решения имеет система неравенств?

Title=»Rendered by QuickLaTeX.com»>

Переносим неизвестные в одну сторону, известные — в другую с противоположным знаком

Title=»Rendered by QuickLaTeX.com»>

Упрощаем и делим обе части на число, стоящее перед иксом. Первое неравенство делим на положительное число, поэтому знак неравенства не меняется, второе — на отрицательное число, поэтому знак неравенства изменяется на противоположный:

Title=»Rendered by QuickLaTeX.com»>

Отмечаем решения неравенств на числовых прямых. Первое неравенство нестрогое, поэтому -2 изображаем закрашенной точкой. Второе неравенство нестрогое, соответственно, 5 изображается выколотой точкой:

Целые решения на промежутке [-2;5) — это -2; -1; 0; 1; 2; 3; 4.

Ответ: -2; -1; 0; 1; 2; 3; 4.

В некоторых примерах не требуется перечислять целые решения, нужно лишь указать их количество.

3) Сколько целых решений имеет система неравенств?

Переносим неизвестные в одну сторону, известные — в другую:

Title=»Rendered by QuickLaTeX.com»>

Обе части первого неравенства делим на отрицательное число, поэтому знак неравенства изменяется на противоположный. Обе части второго неравенства делим на положительное число, знак неравенства при этом не меняется:

Решение неравенств отмечаем на числовых прямых. Оба неравенства нестрогие, поэтому -3,5 и 1,7 изображаем закрашенными точками:

Решением системы является промежуток [-3,5; 1,7]. Целые числа, которые входят в данный промежуток — это -3; -2; -1; 0; 1. Всего их 5.

4) Сколько целых чисел являются решениями системы неравенств?

Неравенство
это выражение с, ≤, или ≥. Например, 3x — 5 Решить неравенство означает найти все значения переменных, при которых это неравенство верно.
Каждое из этих чисел является решением неравенства, а множество всех таких решений является его множеством решений
. Неравенства, которые имеют то же множество решений, называются эквивалентными неравенствами
.

Линейные неравенства

Принципы решения неравенств аналогичны принципам решения уравнений.

Принципы решения неравенств

Для любых вещественных чисел a, b,
и c
:
Принцип прибавления неравенств
: Если a
Принцип умножения для неравенств
: Если a 0 верно, тогда ac
Если a bc также верно.
Подобные утверждения также применяются для a ≤ b.

Когда обе стороны неравенства умножаются на отрицательное число, необходимо полностью изменить знак неравенства.
Неравенства первого уровня, как в примере 1 (ниже), называются линейными неравенствами
.

Пример 1
Решите каждое из следующих неравенств. Затем изобразите множество решений.
a) 3x — 5
b) 13 — 7x ≥ 10x — 4
Решение

Любое число, меньше чем 11/5, является решением.
Множество решений есть {x|x

Чтобы сделать проверку, мы можем нарисовать график y 1 = 3x — 5 и y 2 = 6 — 2x. Тогда отсюда видно, что для x

Множеством решений есть {x|x ≤ 1}, или (-∞, 1]. График множества решений изображён ниже.

Двойные неравенства

Когда два неравенства соединены словом и
, или
, тогда формируется двойное неравенство
.
Двойное неравенство, как
-3
и
2x + 5 ≤ 7
называется соединённым
, потому что в нём использовано и
. Запись -3
Двойные неравенства могут быть решены с использованием принципов прибавления и умножения неравенств.

Пример 2
Решите -3
Решение
У нас есть

Множество решений {x|x ≤ -1 или
x > 3}. Мы можем также написать решение с использованием обозначения интервала и символ для объединения
или включения обоих множеств: (-∞ -1] (3, ∞). График множества решений изображен ниже.

Для проверки, нарисуем y 1 = 2x — 5, y 2 = -7, и y 3 = 1. Заметьте, что для {x|x ≤ -1 или
x > 3}, y 1 ≤ y 2 или
y 1 > y 3 .

Неравенства с абсолютным значением (модулем)

Неравенства иногда содержат модули. Следующие свойства используются для их решения.
Для а > 0 и алгебраического выражения x:
|x|
|x| > a эквивалентно x или x > a.
Подобные утверждения и для |x| ≤ a и |x| ≥ a.

Например,
|x|
|y| ≥ 1 эквивалентно y ≤ -1 или
y ≥ 1;
и |2x + 3| ≤ 4 эквивалентно -4 ≤ 2x + 3 ≤ 4.

Пример 4
Решите каждое из следующих неравенств. Постройте график множества решений.
a) |3x + 2|
b) |5 — 2x| ≥ 1

Решение

a) |3x + 2|

Множеством решением есть {x|-7/3

b) |5 — 2x| ≥ 1
Множеством решением есть {x|x ≤ 2 или
x ≥ 3}, или (-∞, 2] .

Весь выше прописанный алгоритм записывается так:

3 · x + 12 ≤ 0 ; 3 · x ≤ − 12 ; x ≤ − 4 .

Ответ:
x ≤ − 4 или (− ∞ , − 4 ] .

Пример 2

Указать все имеющиеся решения неравенства − 2 , 7 · z > 0 .

Решение

Из условия видим, что коэффициент a при z равняется — 2 , 7 , а b в явном виде отсутствует или равняется нулю. Первый шаг алгоритма можно не использовать, а сразу переходить ко второму.

Производим деление обеих частей уравнения на число — 2 , 7 . Так как число отрицательное, необходимо поменять знак неравенства на противоположный. То есть получаем, что (− 2 , 7 · z) : (− 2 , 7) < 0: (− 2 , 7) , и дальше z < 0 .

Весь алгоритм запишем в краткой форме:

− 2 , 7 · z > 0 ; z < 0 .

Ответ:
z < 0 или (− ∞ , 0) .

Пример 3

Решить неравенство — 5 · x — 15 22 ≤ 0 .

Решение

По условию видим, что необходимо решить неравенство с коэффициентом a при переменной x , которое равняется — 5 , с коэффициентом b , которому соответствует дробь — 15 22 . Решать неравенство необходимо, следуя алгоритму, то есть: перенести — 15 22 в другую часть с противоположным знаком, разделить обе части на — 5 , изменить знак неравенства:

5 · x ≤ 15 22 ; — 5 · x: — 5 ≥ 15 22: — 5 x ≥ — 3 22

При последнем переходе для правой части используется правило деления числе с разными знаками 15 22: — 5 = — 15 22: 5 , после чего выполняем деление обыкновенной дроби на натурально число — 15 22: 5 = — 15 22 · 1 5 = — 15 · 1 22 · 5 = — 3 22 .

Ответ:
x ≥ — 3 22 и [ — 3 22 + ∞) .

Рассмотрим случай, когда а = 0 . Линейное выражение вида a · x + b < 0 является неравенством 0 · x + b < 0 , где на рассмотрение берется неравенство вида b < 0 , после чего выясняется, оно верное или нет.

Все основывается на определении решения неравенства. При любом значении x получаем числовое неравенство вида b < 0 , потому что при подстановке любого t вместо переменной x , тогда получаем 0 · t + b < 0 , где b < 0 . В случае, если оно верно, то для его решения подходит любое значение. Когда b < 0 неверно, тогда линейное уравнение не имеет решений, потому как не имеется ни одного значения переменной, которое привело бы верному числовому равенству.

Все суждения рассмотрим в виде алгоритма решения линейных неравенств 0 · x + b < 0 (≤ , > , ≥) :

Определение 5

Числовое неравенство вида b < 0 (≤ , > , ≥) верно, тогда исходное неравенство имеет решение при любом значении, а неверно тогда, когда исходное неравенство не имеет решений.

Пример 4

Решить неравенство 0 · x + 7 > 0 .

Решение

Данное линейное неравенство 0 · x + 7 > 0 может принимать любое значение x . Тогда получим неравенство вида 7 > 0 . Последнее неравенство считается верным, значит любое число может быть его решением.

Ответ
: промежуток (− ∞ , + ∞) .

Пример 5

Найти решение неравенства 0 · x − 12 , 7 ≥ 0 .

Решение

При подстановке переменной x любого числа получим, что неравенство получит вид − 12 , 7 ≥ 0 . Оно является неверным. То есть 0 · x − 12 , 7 ≥ 0 не имеет решений.

Ответ:
решений нет.

Рассмотрим решение линейных неравенств, где оба коэффициента равняется нулю.

Пример 6

Определить не имеющее решение неравенство из 0 · x + 0 > 0 и 0 · x + 0 ≥ 0 .

Решение

При подстановке любого числа вместо x получим два неравенства вида 0 > 0 и 0 ≥ 0 . Первое является неверным. Значит, 0 · x + 0 > 0 не имеет решений, а 0 · x + 0 ≥ 0 имеет бесконечное количество решений, то есть любое число.

Ответ
: неравенство 0 · x + 0 > 0 не имеет решений, а 0 · x + 0 ≥ 0 имеет решения.

Данный метод рассматривается в школьном курсе математики. Метод интервалов способен разрешать различные виды неравенств, также и линейные.

Метод интервалов применяется для линейных неравенств при значении коэффициента x не равному 0 . Иначе придется вычислять при помощи другого метода.

Определение 6

Метод интервалов – это:

  • введение функции y = a · x + b ;
  • поиск нулей для разбивания области определения на промежутки;
  • определение знаков для понятия их на промежутках.

Соберем алгоритм для решения линейных уравнений a · x + b < 0 (≤ , > , ≥) при a ≠ 0 с помощью метода интервалов:

  • нахождение нулей функции y = a · x + b , чтобы решить уравнение вида a · x + b = 0 . Если a ≠ 0 , тогда решением будет единственный корень, который примет обозначение х 0 ;
  • построение координатной прямой с изображением точки с координатой х 0 , при строгом неравенстве точка обозначается выколотой, при нестрогом – закрашенной;
  • определение знаков функции y = a · x + b на промежутках, для этого необходимо находить значения функции в точках на промежутке;
  • решение неравенства со знаками > или ≥ на координатной прямой добавляется штриховка над положительным промежутком, < или ≤ над отрицательным промежутком.

Рассмотрим несколько примеров решения линейного неравенства при помощи метода интервалов.

Пример 6

Решить неравенство − 3 · x + 12 > 0 .

Решение

Из алгоритма следует, что для начала нужно найти корень уравнения − 3 · x + 12 = 0 . Получаем, что − 3 · x = − 12 , x = 4 . Необходимо изобразить координатную прямую, где отмечаем точку 4 . Она будет выколотой, так как неравенство является строгим. Рассмотрим чертеж, приведенный ниже.

Нужно определить знаки на промежутках. Чтобы определить его на промежутке (− ∞ , 4) , необходимо произвести вычисление функции y = − 3 · x + 12 при х = 3 . Отсюда получим, что − 3 · 3 + 12 = 3 > 0 . Знак на промежутке является положительным.

Определяем знак из промежутка (4 , + ∞) , тогда подставляем значение х = 5 . Имеем, что − 3 · 5 + 12 = − 3 < 0 . Знак на промежутке является отрицательным. Изобразим на числовой прямой, приведенной ниже.

Мы выполняем решение неравенства со знаком > , причем штриховка выполняется над положительным промежутком. Рассмотрим чертеж, приведенный ниже.

Из чертежа видно, что искомое решение имеет вид (− ∞ , 4) или x < 4 .

Ответ
: (− ∞ , 4) или x < 4 .

Чтобы понять, как изображать графически, необходимо рассмотреть на примере 4 линейных неравенства: 0 , 5 · x − 1 < 0 , 0 , 5 · x − 1 ≤ 0 , 0 , 5 · x − 1 > 0 и 0 , 5 · x − 1 ≥ 0 . Их решениями будут значения x < 2 , x ≤ 2 , x > 2 и x ≥ 2 . Для этого изобразим график линейной функции y = 0 , 5 · x − 1 , приведенный ниже.

Видно, что

Определение 7

  • решением неравенства 0 , 5 · x − 1 < 0 считается промежуток, где график функции y = 0 , 5 · x − 1 располагается ниже О х;
  • решением 0 , 5 · x − 1 ≤ 0 считается промежуток, где функция y = 0 , 5 · x − 1 ниже О х или совпадает;
  • решением 0 , 5 · x − 1 > 0 считается промежуток, гре функция располагается выше О х;
  • решением 0 , 5 · x − 1 ≥ 0 считается промежуток, где график выше О х или совпадает.

Смысл графического решения неравенств заключается в нахождении промежутков, которое необходимо изображать на графике. В данном случае получаем, что левая часть имеет y = a · x + b , а правая – y = 0 , причем совпадает с О х.

Определение 8

Построение графика функции y = a · x + b производится:

  • во время решения неравенства a · x + b < 0 определяется промежуток, где график изображен ниже О х;
  • во время решения неравенства a · x + b ≤ 0 определяется промежуток, где график изображается ниже оси О х или совпадает;
  • во время решения неравенства a · x + b > 0 производится определение промежутка, где график изображается выше О х;
  • во время решения неравенства a · x + b ≥ 0 производится определение промежутка, где график находится выше О х или совпадает.

Пример 7

Решить неравенство — 5 · x — 3 > 0 при помощи графика.

Решение

Необходимо построить график линейной функции — 5 · x — 3 > 0 . Данная прямая является убывающей, потому как коэффициент при x является отрицательным. Для определения координат точки его пересечения с О х — 5 · x — 3 > 0 получим значение — 3 5 . Изобразим графически.

Решение неравенства со знаком > , тогда необходимо обратить внимание на промежуток выше О х. Выделим красным цветом необходимую часть плоскости и получим, что

Необходимый промежуток является частью О х красного цвета. Значит, открытый числовой луч — ∞ , — 3 5 будет решением неравенства. Если бы по условию имели нестрогое неравенство, тогда значение точки — 3 5 также являлось бы решением неравенства. И совпадало бы с О х.

Ответ
: — ∞ , — 3 5 или x < — 3 5 .

Графический способ решения используется, когда левая часть будет отвечать функции y = 0 · x + b , то есть y = b . Тогда прямая будет параллельна О х или совпадающей при b = 0 . Эти случаю показывают, что неравенство может не иметь решений, либо решением может быть любое число.

Пример 8

Определить из неравенств 0 · x + 7 < = 0 , 0 · x + 0 ≥ 0 то, которое имеет хотя бы одно решение.

Решение

Представление y = 0 · x + 7 является y = 7 , тогда будет задана координатная плоскость с прямой, параллельной О х и находящейся выше О х. Значит, 0 · x + 7 < = 0 решений не имеет, потому как нет промежутков.

График функции y = 0 · x + 0 , считается y = 0 , то есть прямая совпадает с О х. Значит, неравенство 0 · x + 0 ≥ 0 имеет множество решений.

Ответ
: второе неравенство имеет решение при любом значении x .

Неравенства, сводящиеся к линейным

Решение неравенств можно свести к решению линейного уравнения, которые называют неравенствами, сводящимися к линейным.

Данные неравенства были рассмотрены в школьном курсе, так как они являлись частным случаем решения неравенств, что приводило к раскрытию скобок и приведению подобных слагаемых. Для примера рассмотрим, что 5 − 2 · x > 0 , 7 · (x − 1) + 3 ≤ 4 · x − 2 + x , x — 3 5 — 2 · x + 1 > 2 7 · x .

Неравенства, приведенные выше, всегда приводятся к виду линейного уравнения. После чего раскрываются скобки и приводятся подобные слагаемые, переносятся из разных частей, меняя знак на противоположный.

При сведении неравенства 5 − 2 · x > 0 к линейному, представляем его таким образом, чтобы оно имело вид − 2 · x + 5 > 0 , а для приведения второго получаем, что 7 · (x − 1) + 3 ≤ 4 · x − 2 + x . Необходимо раскрыть скобки, привести подобные слагаемые, перенести все слагаемые в левую часть и привести подобные слагаемые. Это выглядит таким образом:

7 · x − 7 + 3 ≤ 4 · x − 2 + x 7 · x − 4 ≤ 5 · x − 2 7 · x − 4 − 5 · x + 2 ≤ 0 2 · x − 2 ≤ 0

Это приводит решение к линейному неравенству.

Эти неравенства рассматриваются как линейные, так как имеют такой же принцип решения, после чего возможно приведение их к элементарным неравенствам.

Для решения такого вида неравенства такого вида необходимо свести его к линейному. Это следует делать таким образом:

Определение 9

  • раскрыть скобки;
  • слева собрать переменные, а справа числа;
  • привести подобные слагаемые;
  • разделить обе части на коэффициент при x .

Пример 9

Решить неравенство 5 · (x + 3) + x ≤ 6 · (x − 3) + 1 .

Решение

Производим раскрытие скобок, тогда получим неравенство вида 5 · x + 15 + x ≤ 6 · x − 18 + 1 . После приведения подобных слагаемых имеем, что 6 · x + 15 ≤ 6 · x − 17 . После перенесения слагаемых с левой в правую, получим, что 6 · x + 15 − 6 · x + 17 ≤ 0 . Отсюда имеет неравенство вида 32 ≤ 0 из полученного при вычислении 0 · x + 32 ≤ 0 . Видно, что неравенство неверное, значит, неравенство, данное по условию, не имеет решений.

Ответ
: нет решений.

Стоит отметить, что имеется множество неравенств другого вида, которые могут сводится к линейному или неравенству вида, показанного выше. Например, 5 2 · x − 1 ≥ 1
является показательным уравнением, которое сводится к решению линейного вида 2 · x − 1 ≥ 0 . Эти случаи будут рассмотрены при решении неравенств данного вида.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Задание 1750

Най­ди­те наименьшее зна­че­ние x, удо­вле­тво­ря­ю­щее си­сте­ме не­ра­венств: $$left{begin{matrix}6x+18leq0\ x+8geq2end{matrix}right.$$

Ответ: -6

Скрыть

$$left{begin{matrix}6x+18leq0\ x+8geq2end{matrix}right.Leftrightarrow$$$$left{begin{matrix}6x leq -18|:6 \ xgeq 2-8 end{matrix}right.Leftrightarrow$$$$left{begin{matrix}x leq -3\ xgeq -6 end{matrix}right.$$
Получаем, что $$x in [-6;-3]$$, тогда наименьшее значение $$x=-6$$

Задание 1751

Най­ди­те наи­боль­шее зна­че­ние x, удо­вле­тво­ря­ю­щее си­сте­ме не­ра­венств: $$left{begin{matrix}5x+15leq 0\ x+5geq 1end{matrix}right.$$

Ответ: -3

Скрыть

$$left{begin{matrix}5x+15leq 0\ x+5geq 1end{matrix}right.Leftrightarrow$$$$left{begin{matrix}5xleq -15\ xgeq 1-5end{matrix}right.Leftrightarrow$$$$left{begin{matrix}xleq -3\ xgeq -4end{matrix}right.$$
То есть мы получили, что $$xin [ -4; -3]$$. В таком случае наибольшее значение будет $$x=-3$$

Задание 4839

На каком рисунке изображено множество решений системы неравенств

$$left{begin{matrix}2(x+2)-7<15\-3x+12<0end{matrix}right.$$

Ответ: 1

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$left{begin{matrix}2(x+2)-7<15\-3x+12<0end{matrix}right.$$ $$Leftrightarrow$$ $$left{begin{matrix}2x+4-7-15<0\-3x<-12end{matrix}right.$$ $$Leftrightarrow$$ $$left{begin{matrix}2x<18\x>4end{matrix}right.$$ $$Leftrightarrow$$ $$left{begin{matrix}x<9\x>4end{matrix}right.$$

Задание 5030

 Найдите сумму наибольшего целого и наименьшего целого решения системы $$left{begin{matrix}x+4<2x+3\3x-4leq2x+4end{matrix}right.$$

Ответ: 10

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$left{begin{matrix}x+4<2x+3\3x-4leq2x+4end{matrix}right.$$ $$Leftrightarrow$$ $$left{begin{matrix}x-3<2x-x\3x-2xleq4+4end{matrix}right.$$ $$Leftrightarrow$$ $$left{begin{matrix}x>1\xleq8end{matrix}right.$$

$$x_{min}=2$$; $$x_{max}=8$$

Задание 6778

На каком рисунке изображено множество решений системы неравенств $$left{begin{matrix}2x-3<1\ 5-3x>8end{matrix}right.$$

Ответ: 3

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$left{begin{matrix}2x-3<1\5-3x>8end{matrix}right.Leftrightarrow$$ $$left{begin{matrix}2x<4\-3x>3end{matrix}right.Leftrightarrow$$ $$left{begin{matrix}x<2\x<-1end{matrix}right.Leftrightarrow$$ $$x<-1$$, что соответствует 3 варианту ответа ( т.к. $$(-4;1) in (-infty ;-1)$$ )

Задание 7461

Найдите сумму наибольшего целого и наименьшего целого решения системы $$left{begin{matrix}2x+5<3x+7\ 5x-3leq 4x+3end{matrix}right.$$

Ответ: 5

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$left{begin{matrix}2x+5<3x+7\ 5x-3leq 4x+3end{matrix}right.Leftrightarrow$$$$left{begin{matrix}5-7<3x-2x\ 5x-4xleq 3+3end{matrix}right.Leftrightarrow$$$$left{begin{matrix}x>-2\ xleq 6end{matrix}right.$$ Так как первое неравенство строгое, то -2 в ответ не входит, следовательно, наименьшее целое будет -1. Наибольше же целое составляет 6. Тогда их сумма : $$-1+6=5$$

Задание 7581

Укажите решение системы неравенств $$left{begin{matrix}-9+3x<0\ 2-3x>-10end{matrix}right.$$

  1. $$(-infty;3)$$
  2. $$(-infty;4)$$
  3. $$(3;+infty)$$
  4. $$(3;4)$$

Ответ: 1

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 7751

Найдите наименьшее значение x, удовлетворяющее системе неравенств: $$left{begin{matrix} 5x+12geq 0\ 3x-5leq 7 end{matrix}right.$$

Ответ: -2,4

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 9436

Укажите множество решений системы неравенств $$left{begin{matrix}x<-3\9-x<0end{matrix}right.$$

Ответ: 4

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 9915

Укажите номер решения системы неравенств $$left{begin{matrix} x+4geq -4,5\ x+4leq 0 end{matrix}right.$$

  1. $$[-8,5;-4]$$
  2. $$[4;+infty)$$
  3. $$(-infty;-8,5]$$
  4. $$(-infty;-8,5]cup[4;+infty)$$

Ответ: 1

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 10353

Решите систему неравенств $$left{begin{matrix} x-4geq 0\ x-0,3geq 1 end{matrix}right.$$. В ответе укажите номер правильного ответа.

  1. $$[1,3;+infty)$$
  2. $$[4;+infty)$$
  3. $$[1,3;4]$$
  4. $$(-infty;1,3]cup[4;+infty)$$

Ответ: 2

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

Задание 10951

Решите систему неравенств $$left{ begin{array}{c} x^2le 4 \ x+3ge 0 end{array} right.$$. В ответе укажите номер правильного ответа.

$$genfrac{}{}{0pt}{}{1) (-infty ;3]}{ begin{array}{c} 2) left(-infty ;3right]cup [2;+infty ) \ 3)[-2;2] \ 4)[-2;3] end{array} }$$ 

Ответ: 3

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть
$${rm }left{ begin{array}{c}
x^2le 4 \
x+3ge 0 end{array}
right.leftrightarrow left{ begin{array}{c}
(x-2)(x+2)le 0 \
xge -3 end{array}
right.leftrightarrow left{ begin{array}{c}
xge -2 \
xle 2 \
xge -3 end{array}
right.leftrightarrow xin left[-2;2right],$$ т.е. 3 вариант.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как составить акт об опоздании на работу сотрудника образец
  • Как найти чья машина по номеру автомобиля
  • Как найти бизнес партнера в турции
  • Самсунг аккаунт произошел сбой как это исправить
  • Как найти сеть вайфая на ноутбуке

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии