Как найти стороны равнобокой трапеции через периметр

В равнобокой трапеции боковые стороны и углы при основаниях равны между собой, следовательно, все формулы значительно упрощаются. Периметр такой трапеции равен сумме двух оснований и удвоенной боковой стороны.
P=2a+b+d

Высота равнобокой трапеции является катетом в прямоугольном треугольнике, где гипотенуза – боковая сторона трапеции, а второй катет – половина разности большего и меньшего оснований. Вычислить высоту в равнобокой трапеции можно с помощью теоремы Пифагора в этом треугольнике. (рис.104.1)
h=√(a^2-(c-b)^2/4)

Средняя линия трапеции не связана с боковыми сторонами и представляет собой сумму большего и меньшего основании, разделенную на два.
m=(b+c)/2

Площадь равнобокой трапеции вычисляется также как и обычной – произведением высоты на среднюю линию.
S=hm

Найти диагонали в равнобокой трапеции проще, так как высоты, входящие с ними в прямоугольные треугольники, делят большее основание на три части, одна из которых равна меньшему основанию, а две другие равны между собой. Сами диагонали также равны друг другу и вычислить их можно по формулам, приведенным из теоремы Пифагора. (рис.104.2)
d=√(h^2+((b+c)/2)^2 )=√(a^2-(c-b)^2/4+(b+c)^2/4)=√((2a^2-b^2-c^2)/2)

Внутри равнобокой окружности можно вписать окружность, радиус которой будет равен квадратному корню из произведения оснований, деленному на два, если сумма боковых сторон равна сумме оснований (что представляет собой половину высоты) (рис.104.3)
r=√bc/2

Радиус окружности, описанной вокруг равнобокой трапеции, ищется как радиус описанной окружности треугольника, образованного ее диагональю со сторонами. (рис.104.4)
R=abd/√((a+b+d)(a+b)(a+d)(b+d))


1. Формула длины основания равнобедренной трапеции через среднюю линию

Основания равнобедренной трапеции

a — нижнее основание

b — верхнее основание

m — средняя линия

Формулы длины основания:

Формула длины стороны трапецииФормула длины стороны трапеции

2. Формулы длины сторон через высоту и угол при нижнем основании

Длина сторон равнобедренной трапеции

a — нижнее основание

b — верхнее основание

c — равные боковые стороны

α угол при основании трапеции

h — высота трапеции

Формулы всех четырех сторон трапеции:

Формула длины сторон равнобедренной трапеции через высоту

Формула длины сторон равнобедренной трапеции через высоту

Формула длины сторон равнобедренной трапеции через боковую сторону


3. Формула длины сторон трапеции через диагонали, высоту и угол между диагоналями

Длина сторон равнобедренной трапеции через диагональ

a — нижнее основание

b — верхнее основание

c — равные боковые стороны

d — диагонали

α , β — углы между диагоналями

h — высота трапеции

Формулы длины сторон трапеции:

Формула длины основания равнобедренной трапеции через диагонали

справедливо для данной ситуации:


4. Формулы длины сторон равнобедренной трапеции через площадь

Стороны равнобедренной трапеции через площадь

a — нижнее основание

b — верхнее основание

c — равные боковые стороны

α , β — углы при основаниях

m — средняя линия

h — средняя линия

Формулы длины сторон равнобедренной трапеции через площадь:

Формулы длины сторон  равнобедренной трапеции через площадьФормулы длины сторон  равнобедренной трапеции через площадь

Формулы длины сторон  равнобедренной трапеции через площадь

Формулы длины сторон  равнобедренной трапеции через площадь



Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии

Подробности

Опубликовано: 08 октября 2013

Обновлено: 13 августа 2021

Для начала найдем длины боковых сторон равнобедренной трапеции. Равнобедренная трапеция имеет две параллельные стороны (основания) и две равные не параллельные стороны (боковые стороны). Зная основания и периметр трапеции, мы можем найти длину каждой из боковых сторон.

Основания равны 8 и 18, а периметр равен 52. Обозначим длины боковых сторон трапеции как a и b.

Так как это равнобедренная трапеция, a = b.

Теперь найдем длины боковых сторон:

a + b + 8 + 18 = 52

a + a + 26 = 52

2a = 26

a = 13

Теперь, когда у нас есть длины боковых сторон, давайте найдем высоту трапеции. Высота трапеции опускается перпендикулярно к основаниям. Разделите трапецию на два равнобедренных треугольника. В таком случае, можно использовать теорему Пифагора для одного из этих треугольников.

Разность оснований равна 18 — 8 = 10. Таким образом, каждый из равнобедренных треугольников имеет основание, равное 10/2 = 5.

Теперь используем теорему Пифагора:

a^2 = h^2 + b^2

13^2 = h^2 + 5^2

169 = h^2 + 25

h^2 = 144

h = 12

Теперь, когда у нас есть высота и основания трапеции, мы можем найти её площадь. Формула для площади трапеции:

S = ((a + b) / 2) * h

S = ((8 + 18) / 2) * 12

S = (26 / 2) * 12

S = 13 * 12

S = 156

Площадь равнобедренной трапеции равна 156 квадратных единиц.

Равнобедренная трапеция, её ещё называют равнобокой, имеет равные боковые стороны. Кроме этого, у нее в арсенале есть еще множество интересных и полезных свойств, которые можно с легкостью применять на практике или при решении математических задач.

Определение, признаки и элементы трапеции

Трапецией в геометрии принято называть любой четырехугольник, у которого есть две параллельные друг другу стороны, при том что продолжения других двух сторон пересекаются.

Равнобедренная трапеция

Определение же равнобедренной трапеции идет от того, что у нее боковые стороны эквиваленты по длине.

Свойства равнобедренной трапеции

Существует всего несколько основных свойств, присущих именно данной фигуре. Сейчас мы рассмотрим каждое из них:

  1. Прямая, которая проходит через середину оснований такой трапеции, является ее осью симметрии, а также она перпендикулярна ее основаниям.
  2. Углы при основаниях трапеции равны.
  3. У равнобедренной трапеции также равны и длины диагоналей. Если диагонали перпендикулярны, тогда высота трапеции будет равна сумме основания, деленной на 2.
  4. Диагональ разбивает фигуру на 2 треугольника.
  5. Биссектрисы углов, принадлежащих одной и той же боковой стороне, всегда перпендикулярны друг другу.
  6. Если мы опустим высоту на большее из оснований трапеции, то получим в итоге 2 отрезка АЕ и ЕВ: 

101

Первый отрезок АЕ будет равен сумме оснований, деленной на 2, а второй отрезок ЕВ — разности, разделенной на 2:

102

Периметр равнобедренной трапеции

Эту величину найти очень просто. Простейшей формулой будет сложение всех ее сторон. Однако иногда составители задач не дают нам информацию обо всех из сторон.

Периметр равнобедренной трапеции

В таком случае нам следует в первую очередь найти все стороны фигуры, а затем уже приступать к их сложению.

Как найти стороны трапеции?

Существует множество различных способов решения данной задачи, однако мы предложим только некоторые из них.

В первую очередь можно найти стороны с помощью средней линии:

103

Есть альтернатива, если вам известны высота и угол при большем основании:

104

Средняя линия

Средней линией в трапеции называется параллельный основаниям отрезок, который делит боковые стороны фигуры на равные части. 

105

У нее есть множество интересных свойств и теорем с нетрудным доказательством, таких как, например, решение задач на подобие, однако мы на них останавливаться не будем.

Высота трапеции

Высотой трапеции называется самый короткий по длине отрезок, который продолжается ровно от одного основания до другого. Он выполняет своеобразную вспомогательную роль в задачах вплоть до 10 класса с неизвестными сторонами и в тех задачах, где нужно дополнить фигуру до прямоугольника, например.

106

Для нахождения длины этого отрезка нам необходимо знать оба основания (a и b), а также боковую сторону c. Также полезно было бы знать угол при большем основании α. Формулы здесь довольно простые и не нуждаются в доказательстве.

Диагональ трапеции

Эта линия просто идет от одного угла трапеции к другому, причем эти углы противоположны. В равнобедренной трапеции довольно приятным фактом является то, что диагонали в ней равны друг другу.

107

А каким образом можно найти длину диагонали? Есть один очень простой способ. Мы можем сделать это, зная все три величины: боковую сторону и каждое из оснований:

108

Площадь равнобедренной трапеции

Самой простой формулой является полусумма оснований, умноженная на высоту. Она подходит к любым трапециям.

109

Для второй формулы нужно знать все стороны трапеции. Это по сути усложненная версия первой, но подойдет она в том случае, если вы не знаете высоту.

110

 

Это самые базовые формулы, поэтому очень часто используются в различных задачах.

Вписанная и описанные окружности

Интересно, что вписать в трапецию окружность можно только при определенном условии. И это условие выполняется, если мы попарно сложим противоположные стороны нашего четырехугольника, и эти суммы окажутся равны. 

Найти радиус этой окружности не составит труда. Нужно просто разделить высоту пополам.

111

А вот с описанной окружностью все не так гладко. Есть различные полезные формулы. Например, если диагональ составляет с основанием прямой угол, то диаметр описанной окружности будет равен противоположному основанию трапеции.

Теперь разберемся с формулой нахождения радиуса. К слову, она здесь не очень простая. Сначала найдем p — полупериметр ∆DBC, а затем просто применим его в следующей формуле:

112

Математика бесспорно является матерью всех современных наук. Она по праву занимает свой престол и управляет абсолютно всеми мировыми законами. 

Одной из наиболее интересных подразделений математики принято считать именно геометрию. Ее фигуры также подчиняются математическим правилам и формулам, поэтому она необходима при различных сложных расчетах.

Содержание материала

  1. Советы
  2. Видео
  3. Решение задач о прямоугольной трапеции
  4. Задача Даны три стороны, одна из которых перпендикулярная боковая.
  5. Задача Даны оба основания и угол при основании
  6. Высота трапеции через стороны
  7. Средняя линия трапеции
  8. Формулы определения длины средней линии трапеции:
  9. Способы нахождений периметра
  10. По сторонам равнобедренной трапеции
  11. Через среднюю линию
  12. Диагонали трапеции
  13. Формулы определения длины диагоналей трапеции:
  14. Примеры вычисления периметра трапеции

Советы

  • Для специальных прямоугольных треугольников (треугольник 30-60-90 или треугольник 90-45-45 ) существуют формулы, при помощи которых можно найти неизвестные стороны без использования функции синуса или теоремы Пифагора.
  • Чтобы найти синус угла, воспользуйтесь научным калькулятором – введите угол, а затем нажмите клавишу SIN. Или используйте тригонометрические таблицы.

Решение задач о прямоугольной трапеции

Прямоугольной называют трапецию, у которой углы при одной из боковых сторон равны 90. Рассмотрим пример, как найти боковую сторону трапеции, если известны три другие стороны.

Задача Даны три стороны, одна из которых перпендикулярная боковая

Допустим, нам дана прямоугольная трапеция АВСД, у которой АВ перпендикулярно ВС. Известно, что АВ = 12 см, ВС = 1 см, АД = 6 см. Необходимо найти большую боковую сторону.

Решение:

Из точки С опускаем проводим высоту СК и получаем прямоугольный треугольник СДК и прямоугольник АВСК. Поскольку у прямоугольника противоположные стороны равны СК = АВ = 12 см, а АК = ВС = 1 см.

Находим отрезок КД:

  • КД = АД – АК = 6 – 1 = 5 (см)

Согласно теореме Пифагора:

  • СД2=СК2+КД2=122+52=144+25=169
  • СД = √169 = 13 (см)

Ответ: СД = 13 см

Задача Даны оба основания и угол при основании

Дана трапеция АВСД, у которой основания ВС и АД равны 6 и 10 см соответственно, угол ВАД – прямой, а СДА равен 45 градусов. Найдите меньшую боковую сторону.

  1. Проводим высоту СК и получаем прямоугольный треугольник СКД и прямоугольник АВСК. Поскольку у прямоугольника противоположные стороны равны АК = ВС = 6 см.
  2. КД = АД – АК = 10 – 6 = 4 см
  3. cos 45 = √2/2 = КД / СД, отсюда СД = КД / cos 45
  4. Получаем СД = 4/√2/2 = 4√2 (см)

Ответ: СД = 4√2 см

Видео

Высота трапеции через стороны

Высота трапеции через стороны рассчитывается по формуле:

$h = sqrt{b^2 – (frac{(a – d)^2 + b^2 – c^2}{2 cdot (a – d)})^2}$, где

$a$ — основание большего размера;

$d$ — основание меньшего размера;

$b$ — первая боковая сторона;

$c$ — вторая боковая сторона.

Пример 1

Задача

Дана трапеция с основаниями $a$ и $d$, равными $4.5$ и $2.5$ см и боковыми сторонами $b, c$, равными $2$ и $2sqrt2$ см. Найдите, чему равна высота трапеции $h$.

Решение:

Воспользуемся вышеприведённой формулой:

$h = sqrt{2^2 – (frac{(4.5 – 2.5)^2 + 2^2 – (2sqrt2)^2}{2 cdot (4.5 — 2.5)})^2} = sqrt{4 – (frac{4 + 4 — 8}{4}} = 2$ см.

Проверим полученное значение с помощью онлайн-калькулятора. Результат совпадает, а значит, задача решена верно.

Средняя линия трапеции

Определение. Средняя линия — отрезок, соединяющий середины боковых сторон трапеции.

Формулы определения длины средней линии трапеции:

1. Формула определения длины средней линии через длины оснований:

2. Формула определения длины средней линии через площадь и высоту:
m  = S h

Способы нахождений периметра

Рассмотрим способы, с помощью которых можно найти сумму длин всех сторон данного четырехугольника.

По сторонам равнобедренной трапеции

Если нам известны ребра этого четырехугольника с одинаковыми боковыми сторонами, то находить ее P можно по следующей формуле:

(P=2times a+b+c)

или

(P=2times c+a+b)

Через среднюю линию

Так как средняя линия трапеции равна полусумме ее оснований, то формулу P можно выразить так:

(P=2times l+AB+CD)

где l — средняя линия фигуры.

Диагонали трапеции

Формулы определения длины диагоналей трапеции:

1. Формулы диагоналей по теореме косинусов:

d1 = √a2 + d2 — 2ad·cos β

d2 = √a2 + c2 — 2ac·cos α

2. Формулы диагоналей через четыре стороны:

d1 =  d 2 + ab —  a(d 2c2)
ab
d2 =  c2 + ab —  a(c2d 2)
ab

3. Формула длины диагоналей через высоту:

d1 = √h2 + (ah · ctg β)2 = h2 + (b + h · ctg α)2

d2 = √h2 + (ah · ctg α)2 = h2 + (b + h · ctg β)2

4. Формулы длины диагонали через сумму квадратов диагоналей:

d 1 = √c 2 + d 2 + 2ab — d 22

d 2 = √c 2 + d 2 + 2ab — d 12

Примеры вычисления периметра трапеции

Пример

Задание. Найти периметр трапеции $ABCD$ со сторонами $AB=1,5$ см, $BC=2$ см, $CD=1$ см, $AD=3$ см.

Решение. Для нахождения периметра трапеции $ABCD$ воспользуемся формулой $$P_{Delta A B C D}=A B+B C+C D+A D$$

Подставляя в неё заданные в условии длины сторон, получим:

$P_{Delta A B C D}=1,5+2+1+3=7,5$ (см)

Ответ. $P_{Delta A B C D}=7,5$ (см) Все формулы периметров Калькулятор периметра трапеции

                                    Мы помогли уже

Мы помогли уже 4 372 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут! Узнать стоимость

Пример

Задание. Заданна равнобокая трапеция $ABCD$ с основаниями $BC=3$ см, $AD=7$ см и высотой $BK=2 sqrt{3}$ см. Найти периметр заданной трапеции.

Решение. Сделаем рисунок.

Опустим высоту $CN$. Полученный в результате четырехугольник $BCKN$ является прямоугольником, поэтому $BC=KN$. Треугольники $Delta A B K quad$ и $quad Delta N C D$ — прямоугольные и равны между собой. Тогда $AK=ND$. Найдем чему равно $AK$:

$A K=(A D-B C): 2 Rightarrow A K=(7-3): 2=2$ (см)

Из $Delta ABK$ по теореме Пифагора найдем боковую сторону $AB$ трапеции:

$=sqrt{12+4}=sqrt{16}=4$ (см)

Тогда периметр рассматриваемой равнобокой трапеции

$P_{Delta A B C D}=2 cdot 4+3+7=18$ (см)

Ответ. $P_{Delta A B C D}=18$ (см)

Читать дальше: как найти периметр ромба.

Теги

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти коэффициент сопротивления среды колебания
  • Как найти обитание раков
  • Как составить реабилитационный диагноз
  • Как найти время релаксации по графику
  • Doom eternal failed to allocate video memory как исправить

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии