Возведение числа в степень является важнейшей математической операцией, часто используемой для различных вычислений. В зависимости от вида основания и показателя значение степени рассчитывается по-разному. Ниже будут подробно рассмотрены основные правила нахождения значений степеней.
Возведение числа в степень с натуральным показателем
Прежде чем приступить к изучению операции возведения в степень необходимо рассмотреть базовое понятие натуральной степени числа.
Определение
Натуральной степенью n числа а называют произведение, состоящее из n множителей, каждый из которых равен a.
[a^{n}=underbrace{a times a times ldots times a}_{text {п множсителей }}]
Таким образом, для натурального показателя степень представляет собой укороченную запись умножения одинаковых множителей. В данном случае чтобы найти значение степени, следует перемножить число, которое является основанием, само на себя указанное количество раз.
Пример 1
Рассмотрим возведение числа 3 в степень 5. Согласно приведенному выше базовому определению:
35 = 3 × 3 × 3 × 3 × 3 = 243
Для операций возведения во вторую и третью степень имеются устоявшиеся названия: возведение в квадрат и куб, соответственно. Таким образом, выражение «32» может быть прочитано как «три во второй степени» или «три в квадрате», оба варианта будут верными.
Значение степенных выражений с дробным основанием и натуральным показателем находится по той же схеме. В то же время, в соответствии с правилом умножения дробей, операция возведения дроби в степень может быть разбита на два действия, когда числитель и знаменатель возводятся в соответствующую показателю степень по отдельности.
Пример 2
Найдем, чему будут равны [ frac{2}{5} ] в степени 3:
[left(frac{2}{5}right)^{3}=frac{2}{5} times frac{2}{5} times frac{2}{5}=frac{2^{3}}{5^{3}}=frac{8}{125}]
Операция возведения в натуральную степень имеет определенные особенности при работе с отрицательными числами. Рассмотрим следующий пример:
Пример 3
Найдем значения степенных выражений (-5)3 и (-5)4. Для этого, согласно базовому определению, необходимо умножить основание само на себя 3 и 4 раза соответственно:
(-5)3 = (-5) × (-5) × (-5) = -125
(-5)4 =(-5) × (-5) × (-5) × (-5) = 625
Из приведенного примера можно видеть, что в первом случае полученный результат является отрицательным числом, а во втором – положительным. Это связано с правилом перемножения отрицательных чисел. Следствием из него является то, что если показатель степени отрицательного числа представляет собой четное число, результат будет положительным, если нечетное – отрицательным. Таким образом, степень с отрицательным основанием и четным показателем будет равна степени с таким же показателем и основанием, равным по модулю, но противоположным по знаку.
(-a)2n = a2n
Если требуется возвести в натуральную степень иррациональное число, то его необходимо предварительно округлить до той значащей цифры, которая позволит получить ответ с требуемой точностью. Рассмотрим данный случай на примере числа π.
Пример 4
Выполним возведение в степень 3 числа π.
π – это бесконечное иррациональное число. С точностью до 10 знаков после запятой оно записывается следующим образом:
π = 3,1415926536
Допустим, нам необходим результат с точностью два знака после запятой. Тогда число π может быть округлено до 3,14.
(3,14)3 = 3,14 × 3,14 × 3,14 ≈ 30,96
Отдельно следует отметить, чему будет равно число в степени 1. В соответствии с базовым определением
[a^{n}=underbrace{a times a times ldots times a}_{text {п множсителей }}]
вне зависимости от значения основания, число в степени 1 равно самому себе.
На практике возможны и более сложные случаи, когда требуется найти значение степенного выражения, в котором показатель не является натуральным числом. Ниже будут рассмотрены ситуации, когда показатель степени представляет собой целое, дробное, рациональное или иррациональное число.
Вычисление степеней с целым показателем
Все операции по возведению в целую степень можно разделить на три группы: когда показатель является целым положительным (натуральным) числом, когда он равен нулю, и когда он является отрицательным числом.
Случай с натуральным показателем был рассмотрен ранее, поэтому мы не будем к нему возвращаться.
В случае, когда показатель равен нулю, для любого не равного нулю основания значение степени будет равно единице. Если же и основание, и показатель степени равны нулю значение выражения будет не определено.
Пример 5
Рассмотрим возведение в нулевую степень натурального, дробного, иррационального чисел, а также нуля:
100 = 1
0,50 = 1
π0 = 1
00 – не определено.
Осталось рассмотреть нахождение значения степенного выражения с целым отрицательным показателем. Число а в степени -n представляет собой дробь, числитель которой равен единице, а знаменатель – числу а в степени n.
[a^{-n}=frac{1}{a^{n}}]
Можно видеть, что знаменатель дроби является натуральной степенью, вычисление которой было рассмотрено ранее. Таким образом, две степени, у которых основания одинаковы, а показатели противоположны по знаку, но равны по модулю, будут являться обратными числами. Рассмотрим возведение в отрицательную степень целого и дробного чисел:
Пример 6
Вычислим, чему равно 7 в степень -3:
[7^{-3}=frac{1}{7^{3}}=frac{1}{7 times 7 times 7}=frac{1}{343}]
Пример 7
Найдем значение степенного выражения [left(frac{2}{9}right)^{-2}]
При возведении дробного числа в отрицательную степень на определенном этапе осуществляется «переворот» дроби. Он может быть выполнен как в конце вычислений:
[left(frac{2}{9}right)^{-2}=frac{1}{left(frac{2}{9}right)^{2}}=frac{1}{frac{2}{9} times frac{2}{9}}=frac{1}{frac{4}{81}}=frac{81}{4}=20 frac{1}{4}]
так и в начале:
[left(frac{2}{9}right)^{-2}=left(frac{9}{2}right)^{2}=frac{81}{4}=20 frac{1}{4}]
Из-за указанного в примере «переворота», при возведении десятичной дроби в отрицательную степень рекомендуется предварительно преобразовать основание к форме обыкновенной дроби. Рассмотрим данную ситуацию на примере:
Пример 8
Найдем значение степенного выражения 0,5-2:
[0,5^{-2}=left(frac{5}{10}right)^{-2}=left(frac{10}{5}right)^{2}=frac{10^{2}}{5^{2}}=frac{100}{25}=4]
Отдельно следует упомянуть о выражениях с целым отрицательным показателем, основание которых равно нулю. Подобное выражение будет не определено, поскольку его преобразование будет приводить к дроби, знаменатель которой равен нулю.
[0^{-n}=frac{1}{0^{n}}] ‒ выражение не определено.
Возведение числа в дробную степень
Прежде чем приступить к вычислению, следует рассмотреть базовое определение степени с дробным показателем. В виде формулы оно может быть записано следующим образом:
[a^{m / n}=sqrt[n]{a^{m}}, text { где }]
a – положительное число;
m – целое число;
n – натуральное число.
Из указанного определения следует, что операция нахождения алгебраического корня любой степени также может быть представлена в форме возведения в дробную степень, когда числитель показателя равен единице, а знаменатель – основанию корня.
[sqrt[n]{a}=a^{1 / n}]
При этом не следует воспринимать данное свойство как способ преобразования иррационального числа в рациональное. Изменяется только форма записи. Например, если число √2 является иррациональным, то при записи его в форме [2^{1 / 2}] оно также останется иррациональным.
При нахождении значения степени с дробным показателем следует последовательно выполнить два математических действия: возведение основания в степень с целым показателем m и извлечение корня n-ной степени. При этом согласно свойству корней, указанные действия можно выполнить и в обратной последовательности, то есть можно сначала извлечь из основания корень n-й степени, а затем возвести полученный результат в степень m.
[sqrt[n]{a^{m}}=(sqrt[n]{a})^{m}]
Рассмотрим оба способа вычисления степеней с дробным показателем на конкретном примере.
Пример 9
Найдем значение степенного выражения [128^{5 / 7}].
Способ 1. Возведение в степень подкоренного выражения с последующим извлечением корня
[128^{5 / 7}=sqrt[7]{128^{5}}=sqrt[7]{34359738368}=32]
В данном случае из-за большого значения числа под корнем найти значение выражения, не прибегая к помощи калькулятора, невозможно.
Способ 2. Извлечение корня из основания с последующим возведением в степень.
[128^{5 / 7}=(sqrt[7]{128})^{5}=2^{5}=32]
Указанный способ нахождения значения степени существенно легче. При этом результат вычислений не отличается, то есть можно выбирать тот способ, который будет удобнее в конкретном случае.
Если показатель степени представлен в форме десятичной дроби, то удобнее будет записать его в виде обычной.
Пример 10
Вычислим значение степени [243^{0,4}]:
[243^{0,4}=243^{4 / 10}=243^{2 / 5}=(sqrt[5]{243})^{2}=3^{2}=9]
В случае, когда показатель представляет собой смешанное число, для удобства вычислений он может быть записан в виде неправильной дроби.
Пример 11
Вычислим значение выражения:
[left(12 frac{1}{4}right)^{1 frac{1}{2}}=left(frac{49}{4}right)^{3 / 2}=left(sqrt{frac{49}{4}}right)^{3}=left(frac{7}{2}right)^{3}=frac{343}{8}=42 frac{7}{8}]
Следует обратить внимание на математическую операцию возведения в отрицательную дробную степень. В этом случае вычисления производятся в три этапа: нахождение числа, обратного исходному, извлечение корня, степень которого соответствует значению знаменателя показателя, и возведение в степень, соответствующую числителю дробного показателя. Как и в случае с положительным дробным показателем, указанные действия могут выполняться в любой последовательности.
Пример 12
Найдем значение выражения [49^{-1 / 2}].
Выполним преобразование числа в обратное ему:
[49^{-1 / 2}=frac{1}{49^{1 / 2}}]
Найдем значение степени в знаменателе полученной дроби:
[frac{1}{49^{1 / 2}}=frac{1}{sqrt{49}}=frac{1}{7}]
Также необходимо рассмотреть случай, когда основанием степени является ноль, а показателем – дробное число. Как и в случае с целыми показателями, подобные выражения имеют смысл лишь в том случае, когда показатель больше нуля. В противном случае выражение будет не определено.
Нет времени решать самому?
Наши эксперты помогут!
Нахождение степеней с иррациональным показателем
Иногда возникает необходимость нахождения значения степени, показатель которой представляет собой иррациональное число. Проблема заключается в том, что найти точное значение подобного выражения невозможно. Однако для решения любой практической задачи, как правило, достаточно нахождения значения степенного выражения с определенной степенью точности. В этом случае иррациональный показатель округляется до требуемого десятичного знака, после чего вычисление осуществляется согласно правилам, принятым для дробного показателя.
Рассмотрим решение подобной задачи на конкретном примере:
Пример 13
Предположим, что нам необходимо найти значение выражения 2 в степени √2. Показатель степени является иррациональным числом. В виде бесконечной десятичной дроби оно может быть записано следующим образом:
√2 = 1,41421356…
Найдем значение выражения с различной степенью приближения.
Вариант 1.
Округлим значение иррационального числа до двух цифр после запятой и найдем приближенное значение степени:
[√2≈1,41]
[2^{sqrt{2}} approx 2^{1,41} approx 2,65737]
Вариант 2.
Округлим значение иррационального числа до четырех цифр после запятой и найдем приближенное значение степени:
[√2≈1,4142]
[2^{sqrt{2}} approx 2^{1,4142} approx 2,66512]
Можно видеть, что полученные значения различаются во втором знаке после запятой, при этом второе значение является более точным.
В большинстве случаев вычисление степеней с иррациональными показателями является сложной задачей, для решения которой используется вычислительная техника.
Корни и степени
-
Степень с натуральным показателем
-
Степень с целым показателем
-
Кубический корень
-
Корень -ной степени
-
Сравнение арифметических корней
-
Как избавиться от иррациональности в знаменателе
-
Как упрощать иррациональные выражения, пользуясь формулами сокращенного умножения
Степенью называется выражение вида .
Здесь — основание степени,
— показатель степени.
к оглавлению ▴
Степень с натуральным показателем
Проще всего определяется степень с натуральным (то есть целым положительным) показателем.
По определению, .
Выражения «возвести в квадрат» и «возвести в куб» нам давно знакомы.
Возвести число в квадрат — значит умножить его само на себя.
.
Возвести число в куб — значит умножить его само на себя три раза.
.
Возвести число в натуральную степень — значит умножить его само на себя
раз:
к оглавлению ▴
Степень с целым показателем
Показатель степени может быть не только натуральным (то есть целым положительным), но и равным нулю, а также целым отрицательным.
По определению,
.
Это верно для . Выражение 00 не определено.
Определим также, что такое степень с целым отрицательным показателем.
Конечно, все это верно для , поскольку на ноль делить нельзя.
Например,
Заметим, что при возведении в минус первую степень дробь переворачивается.
Показатель степени может быть не только целым, но и дробным, то есть рациональным числом. В статье «Числовые множества» мы говорили, что такое рациональные числа. Это числа, которые можно записать в виде дроби , где
— целое,
— натуральное.
Здесь нам понадобится новое понятие — корень -степени. Корни и степени — две взаимосвязанные темы. Начнем с уже знакомого вам арифметического квадратного корня.
Определение.
Арифметический квадратный корень из числа — это такое неотрицательное число, квадрат которого равен
.
Согласно определению,
В школьной математике мы извлекаем корень только из неотрицательных чисел. Выражение для нас сейчас имеет смысл только при
.
Выражение всегда неотрицательно, т.е.
. Например,
.
Свойства арифметического квадратного корня:
Запомним важное правило:
По определению, .
к оглавлению ▴
Кубический корень
Аналогично, кубический корень из — это такое число, которое при возведении в третью степень дает число
.
Например, , так как
;
, так как
;
, так как
.
Обратите внимание, что корень третьей степени можно извлекать как из положительных, так и из отрицательных чисел.
Теперь мы можем дать определение корня -ной степени для любого целого
.
к оглавлению ▴
Корень
-ной степени
Корень -ной степени из числа
— это такое число, при возведении которого в
-ную степень получается число
.
Например,
Заметим, что корень третьей, пятой, девятой — словом, любой нечетной степени, — можно извлекать как из положительных, так и из отрицательных чисел.
Квадратный корень, а также корень четвертой, десятой, в общем, любой четной степени можно извлекать только из неотрицательных чисел.
Итак, — такое число, что
. Оказывается, корни можно записывать в виде степеней с рациональным показателем. Это удобно.
По определению,
в общем случае .
Сразу договоримся, что основание степени больше 0.
Например,
Выражение по определению равно
.
При этом также выполняется условие, что больше 0.
Например,
Запомним правила действий со степенями:
— при перемножении степеней показатели складываются;
— при делении степени на степень показатели вычитаются;
— при возведении степени в степень показатели перемножаются;
Покажем, как применяются эти формулы в заданиях ЕГЭ по математике:
1.
Внесли все под общий корень, разложили на множители, сократили дробь и извлекли корень.
2.
3.
Здесь мы записали корни в виде степеней и использовали формулы действий со степенями.
4. Найдите значение выражения при
Решение:
При получим
Ответ: -0,5.
5. Найдите значение выражения при
Решение:
При a = 12 получим
Мы воспользовались свойствами степеней.
Ответ: 144.
6. Найдите значение выражения при b = — 5.
Решение:
При b = — 5 получим:
Ответ: -125.
7. Расположите в порядке возрастания:
Решение:
Запишем выражения как степени с положительным показателем и сравним.
Так как
то
Так как
то
Сравним и
для этого оценим их разность:
значит
Получим : поэтому
Ответ:
8. Представьте выражение в виде степени:
Решение:
Вынесем за скобку степень с меньшим показателем:
Ответ:
9. Упростите выражение:
Решение:
Приведем основания 6 и 12 к основаниям 2 и 3:
(выполним деление степеней с одинаковыми основаниями)
Ответ: 0,25.
10. Чему равно значение выражения при
?
Решение:
При получим
Ответ: 9.
к оглавлению ▴
Сравнение арифметических корней
11. Какое из чисел больше: или
?
Решение:
Возведем в квадрат оба числа (числа положительные):
Найдем разность полученных результатов:
так как
Значит, первое число больше второго.
Ответ:
к оглавлению ▴
Как избавиться от иррациональности в знаменателе
Если дана дробь вида то нужно умножить числитель и знаменатель дроби на
:
Тогда знаменатель станет рациональным.
Если дана дробь вида или
то нужно умножить числитель и знаменатель дроби на сопряженное выражение, чтобы получить в знаменателе разность квадратов.
Сопряженные выражения — это выражения, отличающиеся только знаками. Например,
и
и
— сопряженные выражения.
Пример:
12. Вот несколько примеров — как избавиться от иррациональности в знаменателе:
Пример 1.
Пример 2.
Пример 3.
Пример 4.
Совет. Если в знаменателе дана сумма двух корней, то в разности первым числом пишите то, которое больше, и тогда разность квадратов корней будет положительным числом.
Пример 5.
13. Сравните и
1)
2) Сравним и 14.
то и
а значит,
Ответ: меньше.
к оглавлению ▴
Как упрощать иррациональные выражения, пользуясь формулами сокращенного умножения
Покажем несколько примеров.
14. Упростите: выражения:
Пример 5.
т.к.
Пример 6.
Пример 7.
так как
Следующие несколько задач решаются с помощью формулы:
Решение:
Получим уравнение
Ответ:
19. Вычислите значение выражения:
Решение:
Ответ: 1.
20. Вычислите значение выражения:
Решение:
Ответ: 1.
21. Вычислите значение выражения: если
Решение.
Если то
следовательно
Ответ: — 1.
22. Вычислите:
Решение:
Ответ: 1.
Рассмотрим уравнение вида где
Это равенство выполняется, только если
Подробно об таких уравнениях — в статье «Показательные уравнения».
При решении уравнений такого вида мы пользуемся монотонностью показательной функции.
23. Решите уравнение:
а)
б)
в)
Решение.
23. Решите уравнение:
Решение:
тогда
Ответ: -1.
24. Решите уравнение:
Решение:
Ответ: 4.
25. Решите уравнение:
Решение:
Значит,
Ответ: -0,2.
Если вы хотите разобрать большее количество примеров — записывайтесь на курсы подготовки к ЕГЭ по математике онлайн
Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Корни и степени» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена:
08.05.2023
План урока:
Определение степени с целым числом
Свойства степени с целым показателем
Преобразование выражений с целыми степенями
Стандартный вид числа
Действия с числами в стандартном виде
Определение степени с целым показателем
В 7 классе мы уже изучили степень с натуральным показателем. Напомним, что запись an означает произведение, состоящее из n множителей, каждый из которых равен a:
Число а именуется основанием степени, а n – это показатель степени. Отдельно напомним, что число в первой степени равно самому себе:
а1 = а
Любое число, кроме нуля, возведенное в нулевую степень, дает единицу:
а0 = 1
Сам же ноль в нулевую степень возводить нельзя (так же, как и нельзя делить на ноль).
Математики стремятся по возможности расширить используемые ими понятия. Можно ли сделать показатель степени отрицательным числом? Для этого надо дать новое определение степени. При этом важно, чтобы все уже известные нам правила действий со степенями (их умножение и деление) оставались справедливыми.
При делении степеней их показатели вычитаются, например:
815:813 = 815 – 13 = 82 = 64
Теперь попробуем произвести деление в том случае, когда показатель делимого меньше показателя делителя:
815:817 = 815 – 17 = 8– 2
Получили отрицательную степень, смысл которой нам пока не понятен. Выполним это же деление с помощью дробей, при этом учтем, что 817 = 815•82:
Итак, мы получили, что
То есть 8– 2 – это число, обратное 82. Подобные рассуждения помогают сформулировать определение степени с отрицательным показателем:
Напомним, что обратными называются числа, которые при умножении друг на друга дают единицу. Примерами обратных чисел являются:
- 5 и 1/5
- 2 и 1/2
- (– 15) и – 1/15
Вообще для каждой дроби обратной является «перевернутая дробь», поэтому следующие пары чисел являются обратными:
Теперь покажем, как вычислять отрицательную степень числа, пользуясь определением:
Вообще находить отрицательную степень дроби удобней с помощью формулы
Докажем ее справедливость:
Покажем применение этой формулы:
Заметим, что возвести ноль в отрицательную степень не получится. Действительно, если мы попробуем, например, вычислить 0– 2, то получим деление на ноль:
Вообще, при возведении нуля в любую отрицательную степень получается деление на ноль, а потому выражение 0n, где n–отрицательное число, не имеет смысла.
Отрицательные степени очень удобны при работе с некоторыми выражениями. В частности, любую дробь с их помощью можно записать в виде произведения:
Пример: Запишите в виде произведения дробь
Решение.
Ответ: а2b– 4
Отдельно заметим, формулу, определяющую отрицательную степень
можно и «перевернуть». В ней число 1 выступает в роли делимого, выражение аn – это делитель, а a– n – это частное. Известно, что делитель можно получить, поделив делимое на частное, то есть верна запись
Это значит, что справедливо не только равенство
но и
Свойства степени с целым показателем
Правила действий со степенями, имеющими целый показатель, не отличаются от тех, которые мы изучали ранее. Напомним их.
Убедимся в этом на нескольких примерах:
Однако эти примеры ещё не являются полноценными доказательствами этого свойства степеней. Приведем общее доказательство для того случая, когда число в натуральной степени умножается на число в отрицательной степени:
Также докажем справедливость этого правила и в том случае, когда перемножаются два числа в отрицательной степени:
Проиллюстрируем это:
Для строгого доказательства заменим операцию деления на умножение. Так как
Здесь мы сначала заменяем степень an на дробь 1/а– n (по определению отрицательной степени), а потом пользуемся тем, что деление на дробь равносильно умножению на «перевернутую дробь».
Продемонстрируем применение этого правила:
Следующие правила позволяют работать со степенями, у которых различаются основания, но совпадают показатели:
Покажем, как это работает:
Для общего случая доказательство будет выглядеть так:
Это правило можно проиллюстрировать так:
Приведем доказательство этого свойства для отрицательных степеней с целым показателем:
Как видим, свойства степеней с целыми показателями (в частности, с отрицательными), не отличаются от уже изученных нами свойств степеней с натуральными показателями. Единственное исключение – добавляется дополнительное ограничение, согласно которому основанием степени с отрицательным целым показателем не может быть ноль. То есть запись 0– 3 не имеет смысла, хотя выражение 03 имеет смысл:
03 = 0•0•0 = 0
Рассмотрим несколько заданий, в которых необходимо использовать правила работы со степенями
Пример. Представьте в виде степени выражение
у– 8•у10
Решение. При перемножении степеней их показатели следует сложить:
у– 8•у10 = у– 8 + 10 = у2
Ответ: у2
Пример. Вычислите значение выражения
(10– 1)– 6 : (0,1)– 3
Решение.
(10– 1)– 6 : (0,1)– 3 = 10(– 1)•(– 6): (10– 1)– 3 = 106: 103 = 106 – 3 = 103 = 1000
Ответ: 1000
Пример. Представьте число 3– 36 в виде степени с основанием 9.
Решение.
3– 36 = 32•(– 18) = 9– 18
Ответ: 9– 18
Пример. Представьте произведение 64v– 3 как степень.
Решение.
64v– 3 = 43v– 3 = (1/4)– 3v– 3 = (v/4)– 3
Ответ: (v/4)– 3
Преобразование выражений с целыми степенями
Ранее мы рассматривали понятие рационального выражения. Так называлось выражение, в котором используются 4 основные арифметические операции (в том числе деление), а также возведение в степень. Однако использование отрицательной степени помогает избавиться от операции деления как ненужной. Например, возможны такие преобразования:
Во всех случаях мы заменили деление на возведение в отрицательную степень.
Рассмотрим несколько примеров по преобразованию выражений со степенями.
Пример. Упростите выражение
Решение. Возведение в степень (– 1) означает, по сути, переворачивание дроби:
Ответ: ab
Пример. Упростите дробь
Решение. Вынесем в числителе множитель а– 3 за скобки
Пример. Представьте в виде дроби выражение
Решение.
В данном случае мы воспользовались формулой суммы кубов:
a3 + b3 = (a + b)(a2 – ab + b2)
Пример. Упростите выражение
(h2 + ht + t2)(h– 2 + h– 1t– 1 + t– 2)– 1
Решение.
Вынесем из первой скобки множитель h2t2. При вынесении множителя каждое слагаемое делится на этот самый множитель:
C учетом этого получаем:
(h2 + ht + t2) = h2t2(t– 2 + h– 1t– 1 + h– 2) = h2t2(h– 2 + h– 1t– 1 + t– 2)
Зная это, можно записать
(h2 + ht + t2)(h– 2 + h– 1t– 1 + t– 2)– 1 = h2t2(h– 2 + h– 1t– 1 + t– 2)(h– 2 + h– 1t– 1 + t– 2)– 1
В двух скобках стоят одинаковые выражения, но одно из них в степени (– 1). Такие выражения можно сократить, ведь они являются обратными числами:
а•a– 1 = 1
Поэтому
h2t2(h– 2 + h– 1t– 1 + t– 2)(h– 2 + h– 1t– 1 + t– 2)– 1 = h2t2
Ответ: h2t2
Пример. Докажите тождество
Решение. Преобразуем левую часть:
Стандартный вид числа
В физике и других естественных науках изучаются объекты, чьи характеристики (масса, длина, скорость и т.д.) могут измеряться очень большими или очень малыми величинами. Например, масса атома железа равна 0,0000000000000000000000000927 килограмм, а масса Солнца оценивается в 1988500000000000000000000000000 килограмм. Работать с такими числами достаточно неудобно. Сложно даже сравнивать их между собой, ведь для этого надо подсчитывать количество нулей в каждом числе. Поэтому в науке часто используется особая форма чисел, которую называют стандартным видом числа. Он основан на том, что любое число можно записать как произведение числа a, находящегося в пределах от 1 до 10, и какой-нибудь целой (в том числе отрицательной) степени десятки.
Приведем примеры представления чисел в стандартном виде
90 = 9•10 = 9•101
91 = 9,1•10 = 9,1•101
900 = 9•100 = 9•102
912 = 9,12•100 = 9,12•102
Покажем случаи, когда порядок равен нулю или меньше него
7 = 7•1 = 7•100
7,63 = 7,63•1 = 7,63•100
0,8 = 8•0,1 = 8•10– 1
0,0875 = 8,75•100 = 8,75•10– 2
Посмотрите, насколько короче выглядит запись физических величин с использованием стандартного вида:
- масса Солнца: 1988500000000000000000000000000 кг = 1,9885•1030 кг;
- масса Земли: 5970000000000000000000000 кг = 5,97•1024 кг;
- масса атома железа: 0,0000000000000000000000000927 = 9,27•10-26 кг.
Пример. Укажите стандартный вид числа 76000000.
Решение. Первой ненулевой цифрой в записи является семерка, поэтому стандартный вид будет выглядеть так:
7,6•10n
где n– какое-то целое число, которое нам надо найти. Поставим в исходном числе запятую после семерки:
7,6000000
Видно, что мы отделили запятой 7 разрядов, то есть перенесли запятую на 7 разрядов вправо. Поэтому n равно 7:
76000000 = 7,6•107
Действительно, умножение дробного числа на 10 приводит к смещению запятой на одну позицию влево, поэтому при умножении 7,6 на 107 получим 76000000. Наши действия можно проиллюстрировать рисунком:
В случае с числами, меньшими единицы, также надо смотреть на количество разрядов между запятой и первой ненулевой цифрой. Пусть надо представить в стандартном виде десятичную дробь 0,000005605. Значащей частью числа будет 5,605. Для того чтобы получить ее, надо в исходной дроби перенести запятую на 6 разрядов вправо. Поэтому порядок будет равен (– 6):
Теперь попробуем выполнить обратное преобразование – по стандартному виду числа записать его в привычной нам десятичной форме. Пусть есть запись 2,56•105. Для начала искусственно припишем несколько ноликов к значащей части:
2,56 = 2,5600000
Теоретически мы можем дописать любое количество нулей, величина дроби от этого не изменится. Порядок числа равен 5, а потому запятую надо перенести на 5 знаков вправо:
2,5600000•105 = 256000,00
Теперь лишние нули после запятой и саму запятую можно и убрать:
256000,00 = 256000
Обратите внимание, что порядок числа был равен 5, а в итоге мы получили шестизначное число. Можно сформулировать правило: у числа, имеющего в стандартной виде порядок n, в десятичной представлении перед запятой будет стоять (n + 1)знак. Например:
1,23456789•106 = 1234567,89
Здесь порядок числа равен 6, а потому перед запятой стоит 7 знаков.
Напомним, что если число целое и, соответственно, в его записи нет запятой, то ее можно искусственно добавить:
568 = 568,0
Теперь рассмотрим похожий пример с отрицательным порядком числа. Пусть надо записать в десятичном виде число 9,8765•10– 4. Для этого сначала можно условно «подрисовать» нолики перед значащей частью:
0000009,8765
Порядок равен (– 4), а потому надо передвинуть запятую на 4 знака влево
0000009,8765 =000,00098765
Получается, что мы подрисовали слишком много ноликов. Уберем два из нихи получим число в обычной форме:
0,00098765
Вообще, если у числа отрицательный порядок (– n), то первая ненулевая цифра должна оказаться на n-ой позиции после запятой:
Действия с числами в стандартном виде
Стандартный вид чисел удобен тогда, когда есть необходимость сравнивать физические величины, а также перемножать их и делить. Рассмотрим правила сравнения умножения и деления чисел в стандартном виде.
Из двух чисел больше то, у которого больше порядок стандартного вида числа. Так, масса Солнца больше масса Земли, так как у нее порядок равен 30, а у нашей планеты – только 24. Если же порядки одинаковы, то больше то число, у которого больше значащая часть.
Пример. Радиус ядра Солнца оценивается в 1,73•108 м, а радиус Юпитера составляет 6,99•107 м. Какая из этих величин больше?
Решение. Порядок у радиуса ядра Солнца равен 8, а у Юпитера только 7, поэтому радиус ядра Солнца больше радиуса Юпитера.
Пример. Масса протона составляет 1,673•10– 27 кг, а масса нейтрона равна 1,675•10– 27 кг. Какая из этих двух частиц тяжелее?
Решение. У обоих величин одинаковый порядок, равный (– 27). Однако значащая часть у массы нейтрона больше:
1,675 > 1,673
Следовательно, нейтрон тяжелее.
Ответ: Нейтрон тяжелее.
Посмотрим, как перемножать числа, находящиеся в стандартном виде. Переставляя множители местами, можно получить:
(a•10n)•(b•10m) = a•b•10n•10m = (ab)•10n+m
В итоге можно сформулировать правило:
Пример. Земля двигается по своей орбите со средней скоростью 3•104 м/с. Какое расстояние она проходит в течение одного невисокосного календарного года (в каждом таком году 31536000 секунд)?
Решение. Переведем количество секунд в году в стандартный вид
31536000 = 3,1536 •107
Расстояние (обозначим его как S) равно произведению средней скорости на время:
S = 3•104 м/с • 3,1536•107c = 3•3,1536•104 + 7 = 9,4608•1011м.
Ответ: 9,4608•1011м.
Пример. Представьте в стандартном виде произведение чисел 9,5•108 и 1,38•10– 2.
Решение.
(9,5•108)•(1,38•10– 2) = (9,5•1,38)•108 + (– 2) = 13,11•106
Получили число НЕ в стандартном виде, так как 13,11 > 10. Поэтому следует произвести замену 13,11 = 1,311•10:
13,11•106 = 1,311•10•106 = 1,311•107
Ответ: 1,311•107
Теперь попытаемся поделить два числа, находящихся в стандартном виде:
Видно, что справедливо следующее правило:
Пример. Во сколько раз масса Солнца больше массы Земли?
Решение. Выше мы приводили данные, что масса Солнца оценивается в 1,9885•1030 кг, а масса нашей планеты составляет 5,97•1024 кг. Поделим массу звезды на массу планеты:
(1,9885•1030):(5,97•1024) = (1,9885:5,97)•1030 – 24≈0,333•106 = 333000
Получили, что Солнце примерно в 333 тысячи раз тяжелее Земли.
Ответ: В 333000 раз.
Как посчитать степень
- Главная
- /
- Математика
- /
- Арифметика
- /
- Как посчитать степень
Для того чтобы возвести любое число в любую степень воспользуйтесь нашим удобным онлайн калькулятором:
Онлайн калькулятор
Просто введите число и степень, в которую хотите его возвести, и получите ответ.
Теория
Возведение в степень – это математическая операция, при которой число умножается само на себя энное количество раз в зависимости от значения степени.
Формула
an=a⋅a⋅a…и так n-раз
Пример
К примеру, возведём число 2 в 3-ю степень:
23 = 2⋅2⋅2 = 4⋅2 = 8
Как посчитать отрицательную степень
Возведение в отрицательную (минусовую) степень происходит по следующей формуле:
Формула
a-n = 1/an
Пример
К примеру, возведём число 2 в −3-ю степень:
2-3 = 1/(2⋅2⋅2) = 1/(4⋅2) = 1/8 = 0,125
Как посчитать дробную степень
Возведение числа в дробную степень происходит по следующей формуле:
Формула
an/m = m√an
Пример
К примеру, возведём число 4 в степень 0.5:
40.5 = 4½ = 2√41 = 2
Теперь пример посложней: возведём число 2 в степень ¾:
2¾ = 4√23 ≈ 1.6817