Вычисление среднего отклонения может быть эффективным способом анализа изменчивости в наборе данных. Независимо от точного характера собранных данных, знание их среднего отклонения может помочь вам в их интерпретации. Знание того, как рассчитать среднее отклонение — ценный навык, но он требует изучения и практики. В этой статье мы обсудим, что такое среднее отклонение, как его рассчитать, а также различия между абсолютным и средним отклонением, средним средним и средним отклонением от среднего и стандартным отклонением в сравнении со средним отклонением.
Что такое среднее отклонение?
Среднее отклонение набора данных — это среднее значение всех отклонений от заданной центральной точки. Это статистический инструмент для измерения расстояния от среднего значения или медианы, где среднее значение — это среднее значение всех чисел в наборе данных, а медиана — это точное среднее число, когда мы упорядочиваем набор данных от самого низкого до самого высокого числа. Среднее отклонение набора данных также называется средним абсолютным отклонением (MAD) или средним абсолютным отклонением.
Хотя при работе с относительно небольшими наборами данных вы можете рассчитать среднее отклонение вручную, для больших наборов данных обычно требуется специальное программное обеспечение, которое выполняет расчеты за вас после ввода исходных данных.
Как рассчитать среднее отклонение
Рассмотрим эти шаги при расчете среднего отклонения набора данных:
1. Рассчитать среднюю медиану
Первый шаг — вычисление среднего значения. Вы можете сделать это, сложив все значения в наборе данных и разделив полученную сумму на общее количество значений.
Также можно вычислить медиану, если вы хотите использовать ее вместо среднего значения. Расположите все числа в числовом порядке и подсчитайте, сколько их всего. Затем, если общее число нечетное, разделите его на два и округлите, чтобы найти положение медианы. Если общее число четное, разделите его на два и сделайте среднее между числом в этой позиции и числом в следующей более высокой позиции.
2. Рассчитайте отклонение от среднего значения
После расчета среднего значения можно рассчитать отклонение от среднего для каждого значения в наборе данных. Вычислите разницу между ранее рассчитанным средним и каждым значением в наборе данных и запишите абсолютное значение получившихся чисел. Абсолютное значение числа — это его модуль или неотрицательное значение. Поскольку направление каждого отклонения не имеет значения при расчете среднего отклонения, все результирующие числа положительны.
3. Вычислите сумму всех отклонений
После вычисления отклонения от среднего значения для каждого значения в наборе данных необходимо сложить их вместе. Поскольку это операция с абсолютным значением, каждое значение должно быть положительным числом.
4. Вычислить среднее отклонение
Наконец, рассчитайте среднее отклонение вашего набора данных, разделив ранее рассчитанную сумму всех отклонений на общее количество отклонений, которые вы сложили вместе. Полученное число — это среднее отклонение от среднего.
Пример
Рассмотрите этот пример при расчете среднего отклонения от среднего значения.
Баскетболист сыграл 5 игр в этом сезоне. Числа очков в каждой игре: 23, 30, 31, 15 и 46.
Первый шаг — вычисление среднего значения. Вы делаете это, складывая очки и деля результат на пять игр.
23+30+31+15+46=145
1455=29
Теперь, когда вы определили, что игрок набирал в среднем 29 очков за игру, вам нужно рассчитать отклонение от среднего значения для каждой игры.
23-29=6
30-29=1
31-29=2
15-29=14
46-29=17
Далее необходимо вычислить сумму всех вариаций.
6+1+2+14+17=40
Среднее отклонение — это сумма всех отклонений, деленная на общее количество записей.
Среднее отклонение=405=8
Среднее отклонение от среднего значения по очкам, набранным в первых пяти играх сезона, составляет 8.
Абсолютное отклонение vs. среднее отклонение
Вычисление абсолютного отклонения является важным шагом для определения среднего отклонения. Абсолютное отклонение — это разница между средним значением набора данных и каждым значением в соответствующем наборе данных. Название абсолютного отклонения происходит от того, что все полученные числа записываются как абсолютные числа. Мера выражает расстояние между средним и каждым значением, поэтому отрицательное или положительное число не имеет значения.
После расчета абсолютного отклонения для каждого значения в наборе данных можно рассчитать среднее отклонение, сложив их все вместе и разделив на общее количество значений в наборе данных.
Среднее значение против. среднее отклонение от среднего
Вычисление среднего значения также является важным шагом для определения среднего отклонения от среднего значения. Среднее среднее — это просто сумма всех значений, включенных в набор данных, деленная на общее количество значений. Вычисление среднего значения помогает определить отклонение от среднего путем вычисления разницы между средним и каждым значением. Далее разделите сумму всех ранее рассчитанных значений на количество отклонений, сложенных вместе, и в результате получите среднее отклонение от среднего.
Стандартное отклонение против. среднее отклонение
Стандартное отклонение также является мерой изменчивости в наборе данных, так как оно показывает размер отклонения между всеми значениями в наборе данных. Основное различие между ними заключается в том, что значения, полученные в результате вычитания среднего из значения каждой точки данных, записываются как абсолютные только при вычислении среднего отклонения. Чтобы рассчитать стандартное отклонение, полученные значения записываются не в абсолютных величинах, а в квадрате. Затем необходимо вычислить среднее арифметическое всех квадратных значений. Квадратный корень из этого среднего значения является стандартным средним значением.
Стандартное отклонение чаще всего используется для измерения изменчивости, являясь очень популярным инструментом для расчета волатильности финансовых инструментов и потенциальной инвестиционной доходности. Более высокая волатильность обычно означает, что существует повышенный риск того, что инвестиции принесут убытки. Это означает, что инвестор, который берет на себя риск высоковолатильной ценной бумаги, обычно ожидает от нее высокой доходности. Среднее отклонение также используется в качестве финансового инструмента, но, как правило, реже, чем стандартное отклонение.
Стандартное отклонение (англ. Standard Deviation) — простыми словами это мера того, насколько разбросан набор данных.
Вычисляя его, можно узнать, являются ли числа близкими к среднему значению или далеки от него. Если точки данных находятся далеко от среднего значения, то в наборе данных имеется большое отклонение; таким образом, чем больше разброс данных, тем выше стандартное отклонение.
Стандартное отклонение обозначается буквой σ (греческая буква сигма).
Стандартное отклонение также называется:
- среднеквадратическое отклонение,
- среднее квадратическое отклонение,
- среднеквадратичное отклонение,
- квадратичное отклонение,
- стандартный разброс.
Использование и интерпретация величины среднеквадратического отклонения
Стандартное отклонение используется:
- в финансах в качестве меры волатильности,
- в социологии в опросах общественного мнения — оно помогает в расчёте погрешности.
Пример:
Рассмотрим два малых предприятия, у нас есть данные о запасе какого-то товара на их складах.
День 1 | День 2 | День 3 | День 4 | |
---|---|---|---|---|
Пред.А | 19 | 21 | 19 | 21 |
Пред.Б | 15 | 26 | 15 | 24 |
В обеих компаниях среднее количество товара составляет 20 единиц:
- А -> (19 + 21 + 19+ 21) / 4 = 20
- Б -> (15 + 26 + 15+ 24) / 4 = 20
Однако, глядя на цифры, можно заметить:
- в компании A количество товара всех четырёх дней очень близко находится к этому среднему значению 20 (колеблется лишь между 19 ед. и 21 ед.),
- в компании Б существует большая разница со средним количеством товара (колеблется между 15 ед. и 26 ед.).
Если рассчитать стандартное отклонение каждой компании, оно покажет, что
- стандартное отклонение компании A = 1,
- стандартное отклонение компании Б ≈ 5.
Стандартное отклонение показывает эту волатильность данных — то, с каким размахом они меняются; т.е. как сильно этот запас товара на складах компаний колеблется (поднимается и опускается).
Расчет среднеквадратичного (стандартного) отклонения
Формулы вычисления стандартного отклонения
σ — стандартное отклонение,
xi — величина отдельного значения выборки,
μ — среднее арифметическое выборки,
n — размер выборки.
Эта формула применяется, когда анализируются все значения выборки.
S — стандартное отклонение,
n — размер выборки,
xi — величина отдельного значения выборки,
xср — среднее арифметическое выборки.
Эта формула применяется, когда присутствует очень большой размер выборки, поэтому на анализ обычно берётся только её часть.
Единственная разница с предыдущей формулой: “n — 1” вместо “n”, и обозначение «xср» вместо «μ».
Разница между формулами S и σ («n» и «n–1»)
Состоит в том, что мы анализируем — всю выборку или только её часть:
- только её часть – используется формула S (с «n–1»),
- полностью все данные – используется формула σ (с «n»).
Как рассчитать стандартное отклонение?
Пример 1 (с σ)
Рассмотрим данные о запасе какого-то товара на складах Предприятия Б.
День 1 | День 2 | День 3 | День 4 | |
Пред.Б | 15 | 26 | 15 | 24 |
Если значений выборки немного (небольшое n, здесь он равен 4) и анализируются все значения, то применяется эта формула:
Применяем эти шаги:
1. Найти среднее арифметическое выборки:
μ = (15 + 26 + 15+ 24) / 4 = 20
2. От каждого значения выборки отнять среднее арифметическое:
x1 — μ = 15 — 20 = -5
x2 — μ = 26 — 20 = 6
x3 — μ = 15 — 20 = -5
x4 — μ = 24 — 20 = 4
3. Каждую полученную разницу возвести в квадрат:
(x1 — μ)² = (-5)² = 25
(x2 — μ)² = 6² = 36
(x3 — μ)² = (-5)² = 25
(x4 — μ)² = 4² = 16
4. Сделать сумму полученных значений:
Σ (xi — μ)² = 25 + 36+ 25+ 16 = 102
5. Поделить на размер выборки (т.е. на n):
(Σ (xi — μ)²)/n = 102 / 4 = 25,5
6. Найти квадратный корень:
√((Σ (xi — μ)²)/n) = √ 25,5 ≈ 5,0498
Пример 2 (с S)
Задача усложняется, когда существуют сотни, тысячи или даже миллионы данных. В этом случае берётся только часть этих данных и анализируется методом выборки.
У Андрея 20 яблонь, но он посчитал яблоки только на 6 из них.
Популяция — это все 20 яблонь, а выборка — 6 яблонь, это деревья, которые Андрей посчитал.
Яблоня 1 | Яблоня 2 | Яблоня 3 | Яблоня 4 | Яблоня 5 | Яблоня 6 |
9 | 2 | 5 | 4 | 12 | 7 |
Так как мы используем только выборку в качестве оценки всей популяции, то нужно применить эту формулу:
Математически она отличается от предыдущей формулы только тем, что от n нужно будет вычесть 1. Формально нужно будет также вместо μ (среднее арифметическое) написать X ср.
Применяем практически те же шаги:
1. Найти среднее арифметическое выборки:
Xср = (9 + 2 + 5 + 4 + 12 + 7) / 6 = 39 / 6 = 6,5
2. От каждого значения выборки отнять среднее арифметическое:
X1 – Xср = 9 – 6,5 = 2,5
X2 – Xср = 2 – 6,5 = –4,5
X3 – Xср = 5 – 6,5 = –1,5
X4 – Xср = 4 – 6,5 = –2,5
X5 – Xср = 12 – 6,5 = 5,5
X6 – Xср = 7 – 6,5 = 0,5
3. Каждую полученную разницу возвести в квадрат:
(X1 – Xср)² = (2,5)² = 6,25
(X2 – Xср)² = (–4,5)² = 20,25
(X3 – Xср)² = (–1,5)² = 2,25
(X4 – Xср)² = (–2,5)² = 6,25
(X5 – Xср)² = 5,5² = 30,25
(X6 – Xср)² = 0,5² = 0,25
4. Сделать сумму полученных значений:
Σ (Xi – Xср)² = 6,25 + 20,25+ 2,25+ 6,25 + 30,25 + 0,25 = 65,5
5. Поделить на размер выборки, вычитав перед этим 1 (т.е. на n–1):
(Σ (Xi – Xср)²)/(n-1) = 65,5 / (6 – 1) = 13,1
6. Найти квадратный корень:
S = √((Σ (Xi – Xср)²)/(n–1)) = √ 13,1 ≈ 3,6193
Дисперсия и стандартное отклонение
Стандартное отклонение равно квадратному корню из дисперсии (S = √D). То есть, если у вас уже есть стандартное отклонение и нужно рассчитать дисперсию, нужно лишь возвести стандартное отклонение в квадрат (S² = D).
Дисперсия — в статистике это «среднее квадратов отклонений от среднего». Чтобы её вычислить нужно:
- Вычесть среднее значение из каждого числа
- Возвести каждый результат в квадрат (так получатся квадраты разностей)
- Найти среднее значение квадратов разностей.
Ещё расчёт дисперсии можно сделать по этой формуле:
S² — выборочная дисперсия,
Xi — величина отдельного значения выборки,
Xср (может появляться как X̅) — среднее арифметическое выборки,
n — размер выборки.
Правило трёх сигм
Это правило гласит: вероятность того, что случайная величина отклонится от своего математического ожидания более чем на три стандартных отклонения (на три сигмы), почти равна нулю.
Глядя на рисунок нормального распределения случайной величины, можно понять, что в пределах:
- одного среднеквадратического отклонения заключаются 68,26% значений (Xср ± 1σ или μ ± 1σ),
- двух стандартных отклонений — 95,44% (Xср ± 2σ или μ ± 2σ),
- трёх стандартных отклонений — 99,72% (Xср ± 3σ или μ ± 3σ).
Это означает, что за пределами остаются лишь 0,28% — это вероятность того, что случайная величина примет значение, которое отклоняется от среднего более чем на 3 сигмы.
Стандартное отклонение в excel
Вычисление стандартного отклонения с «n – 1» в знаменателе (случай выборки из генеральной совокупности):
1. Занесите все данные в документ Excel.
2. Выберите поле, в котором вы хотите отобразить результат.
3. Введите в этом поле «=СТАНДОТКЛОНА(«
4. Выделите поля, где находятся данные, потом закройте скобки.
5. Нажмите Ввод (Enter).
В случае если данные представляют всю генеральную совокупность (n в знаменателе), то нужно использовать функцию СТАНДОТКЛОНПА.
Коэффициент вариации
Коэффициент вариации — отношение стандартного отклонения к среднему значению, т.е. Cv = (S/μ) × 100% или V = (σ/X̅) × 100%.
Стандартное отклонение делится на среднее и умножается на 100%.
Можно классифицировать вариабельность выборки по коэффициенту вариации:
- при <10% выборка слабо вариабельна,
- при 10% – 20 % — средне вариабельна,
- при >20 % — выборка сильно вариабельна.
Узнайте также про:
- Корреляции,
- Метод Крамера,
- Метод наименьших квадратов,
- Теорию вероятностей
- Интегралы.
-
1
Look at your data set. This is a crucial step in any type of statistical calculation, even if it is a simple figure like the mean or median.[2]
- Know how many numbers are in your sample.
- Do the numbers vary across a large range? Or are the differences between the numbers small, such as just a few decimal places?
- Know what type of data you are looking at. What do your numbers in your sample represent? this could be something like test scores, heart rate readings, height, weight etc.
- For example, a set of test scores is 10, 8, 10, 8, 8, and 4.
-
2
Gather all of your data. You will need every number in your sample to calculate the mean.[3]
- The mean is the average of all your data points.
- This is calculated by adding all of the numbers in your sample, then dividing this figure by the how many numbers there are in your sample (n).
- In the sample of test scores (10, 8, 10, 8, 8, 4) there are 6 numbers in the sample. Therefore n = 6.
Advertisement
-
3
Add the numbers in your sample together. This is the first part of calculating a mathematical average or mean.[4]
- For example, use the data set of quiz scores: 10, 8, 10, 8, 8, and 4.
- 10 + 8 + 10 + 8 + 8 + 4 = 48. This is the sum of all the numbers in the data set or sample.
- Add the numbers a second time to check your answer.
-
4
Divide the sum by how many numbers there are in your sample (n). This will provide the average or mean of the data.[5]
- In the sample of test scores (10, 8, 10, 8, 8, and 4) there are six numbers, so n = 6.
- The sum of the test scores in the example was 48. So you would divide 48 by n to figure out the mean.
- 48 / 6 = 8
- The mean test score in the sample is 8.
Advertisement
-
1
Find the variance. The variance is a figure that represents how far the data in your sample is clustered around the mean.[6]
- This figure will give you an idea of how far your data is spread out.
- Samples with low variance have data that is clustered closely about the mean.
- Samples with high variance have data that is clustered far from the mean.
- Variance is often used to compare the distribution of two data sets.
-
2
Subtract the mean from each of your numbers in your sample. This will give you a figure of how much each data point differs from the mean.[7]
- For example, in our sample of test scores (10, 8, 10, 8, 8, and 4) the mean or mathematical average was 8.
- 10 — 8 = 2; 8 — 8 = 0, 10 — 8 = 2, 8 — 8 = 0, 8 — 8 = 0, and 4 — 8 = -4.
- Do this procedure again to check each answer. It is very important you have each of these figures correct as you will need them for the next step.
-
3
Square all of the numbers from each of the subtractions you just did. You will need each of these figures to find out the variance in your sample.[8]
- Remember, in our sample we subtracted the mean (8) from each of the numbers in the sample (10, 8, 10, 8, 8, and 4) and came up with the following: 2, 0, 2, 0, 0 and -4.
- To do the next calculation in figuring out variance you would perform the following: 22, 02, 22, 02, 02, and (-4)2 = 4, 0, 4, 0, 0, and 16.
- Check your answers before proceeding to the next step.
-
4
Add the squared numbers together. This figure is called the sum of squares.[9]
- In our example of test scores, the squares were as follows: 4, 0, 4, 0, 0, and 16.
- Remember, in the example of test scores we started by subtracting the mean from each of the scores and squaring these figures: (10-8)^2 + (8-8)^2 + (10-8)^2 + (8-8)^2 + (8-8)^2 + (4-8)^2
- 4 + 0 + 4 + 0 + 0 + 16 = 24.
- The sum of squares is 24.
-
5
Divide the sum of squares by (n-1). Remember, n is how many numbers are in your sample. Doing this step will provide the variance. The reason to use n-1 is to have sample variance and population variance unbiased. [10]
- In our sample of test scores (10, 8, 10, 8, 8, and 4) there are 6 numbers. Therefore, n = 6.
- n-1 = 5.
- Remember the sum of squares for this sample was 24.
- 24 / 5 = 4.8
- The variance in this sample is thus 4.8.
Advertisement
-
1
Find your variance figure. You will need this to find the standard deviation for your sample.[11]
- Remember, variance is how spread out your data is from the mean or mathematical average.
- Standard deviation is a similar figure, which represents how spread out your data is in your sample.
- In our example sample of test scores, the variance was 4.8.
-
2
Take the square root of the variance. This figure is the standard deviation.[12]
- Usually, at least 68% of all the samples will fall inside one standard deviation from the mean.
- Remember in our sample of test scores, the variance was 4.8.
- √4.8 = 2.19. The standard deviation in our sample of test scores is therefore 2.19.
- 5 out of 6 (83%) of our sample of test scores (10, 8, 10, 8, 8, and 4) is within one standard deviation (2.19) from the mean (8).
-
3
Go through finding the mean, variance and standard deviation again. This will allow you to check your answer.[13]
- It is important that you write down all steps to your problem when you are doing calculations by hand or with a calculator.
- If you come up with a different figure the second time around, check your work.
- If you cannot find where you made a mistake, start over a third time to compare your work.
Advertisement
Practice Problems and Answers
Add New Question
-
Question
What is the standard deviation of 10 samples with a mean of 29.05?
Depends on the 10 samples of data. If all ten numbers were 29.05 then the standard deviation would be zero. Standard deviation is a measure of how much the data deviates from the mean.
-
Question
How do I calculate the standard deviation of 5 samples with the mean of 26?
You take the average of 26 and 5, divide by b squared and multiply by deviation equation constant.
-
Question
How do I find the standard deviation of 10 samples with a mean of 29.05?
Take each sample and subract the mean. Next, square each result, getting rid of the negative. Add the 10 results and divide the sun by 10 — 1 or 9. That is the standard deviation.
See more answers
Ask a Question
200 characters left
Include your email address to get a message when this question is answered.
Submit
Advertisement
Video
Thanks for submitting a tip for review!
References
About This Article
Article SummaryX
To calculate standard deviation, start by calculating the mean, or average, of your data set. Then, subtract the mean from all of the numbers in your data set, and square each of the differences. Next, add all the squared numbers together, and divide the sum by n minus 1, where n equals how many numbers are in your data set. Finally, take the square root of that number to find the standard deviation. To learn how to find standard deviation with the help of example problems, keep reading!
Did this summary help you?
Thanks to all authors for creating a page that has been read 2,558,705 times.
Reader Success Stories
-
«This article was the best statistics instructor I have ever been taught by. I have learned more from this little…» more
Did this article help you?
Расчет среднего абсолютного отклонения
На чтение 6 мин. Просмотров 1.3k. Опубликовано 27.07.2021
Статистические данные позволяют измерить разброс или разброс. Хотя чаще всего используются диапазон и стандартное отклонение, есть и другие способы количественной оценки дисперсии. Мы посмотрим, как рассчитать среднее абсолютное отклонение для набора данных.
Содержание
- Определение
- Варианты
- Пример: Среднее абсолютное отклонение относительно среднего
- Пример: Среднее абсолютное отклонение от среднего
- Пример: среднее абсолютное отклонение относительно медианы
- Пример: Среднее абсолютное отклонение от медианы
- Быстрые факты
- Распространенное использование
Определение
Начнем с определения среднего абсолютного отклонения, которое также называется средним абсолютным отклонением. Формула, отображаемая в этой статье, является формальным определением среднего абсолютного отклонения. Возможно, имеет смысл рассматривать эту формулу как процесс или серию шагов, которые мы можем использовать для получения нашей статистики.
- Мы начинаем со среднего значения или измерения центра набора данных, которое мы обозначим m.
- Затем мы находим, насколько каждый из значения данных отклоняются от m. Это означает, что мы берем разницу между каждым из значений данных и m.
- После этого мы берем абсолютное значение каждого отличия от предыдущего шага. Другими словами, мы отбрасываем любые отрицательные знаки для любых различий. Причина в том, что есть положительные и отрицательные отклонения от m. Если мы не найдем способ устранить отрицательные знаки, все отклонения нейтрализуют друг друга, если мы сложим их вместе.
- Теперь мы сложим все эти абсолютные значений.
- Наконец, мы делим эту сумму на n , которое представляет собой общее количество значений данных. Результат – среднее абсолютное отклонение.
Варианты
Существует несколько вариантов описанного выше процесса. Обратите внимание, что мы не указали точно, что такое m . Причина этого в том, что мы можем использовать различные статистические данные для m. Обычно это центр нашего набора данных, поэтому можно использовать любое из измерений центральной тенденции.
Наиболее распространенными статистическими измерениями центра набора данных являются среднее значение, медиана и мода. Таким образом, любой из них может использоваться как m при вычислении среднего абсолютного отклонения. Вот почему принято относиться к среднему абсолютному отклонению относительно среднего или среднему абсолютному отклонению от медианы. Мы увидим несколько примеров этого.
Пример: Среднее абсолютное отклонение относительно среднего
Предположим, что мы начнем со следующего набор данных:
1, 2, 2, 3, 5, 7, 7, 7, 7, 9.
Среднее значение этого набора данных равно 5. Следующая таблица организует нашу работу по вычислению среднего абсолютного отклонения от среднего..
Значение данных | Отклонение от среднего | Абсолютное значение отклонения |
1 | 1-5 = -4 | | -4 | = 4 |
2 | 2 – 5 = -3 | | -3 | = 3 |
2 | 2 – 5 = -3 | | -3 | = 3 |
3 | 3-5 = -2 | | -2 | = 2 |
5 | 5 – 5 = 0 | | 0 | = 0 |
7 | 7 – 5 = 2 | | 2 | = 2 |
7 | 7 – 5 = 2 | | 2 | = 2 |
7 | 7 – 5 = 2 | | 2 | = 2 |
7 | 7 – 5 = 2 | | 2 | = 2 |
9 | 9 – 5 = 4 | | 4 | = 4 |
Сумма абсолютных отклонений: | 24 |
Теперь разделим эту сумму на 10, поскольку всего имеется десять значений данных. Среднее абсолютное отклонение от среднего составляет 24/10 = 2,4.
Пример: Среднее абсолютное отклонение от среднего
Теперь мы начинаем с другого набора данных:
1, 1, 4, 5, 5, 5, 5, 7, 7, 10.
Как и в предыдущем наборе данных, среднее значение этого набора данных равно 5.
Значение данных | Отклонение от среднего | Абсолютное значение отклонения |
1 | 1-5 = -4 | | -4 | = 4 |
1 | 1-5 = -4 | | -4 | = 4 |
4 | 4-5 = -1 | | -1 | = 1 |
5 | 5 – 5 = 0 | | 0 | = 0 |
5 | 5 – 5 = 0 | | 0 | = 0 |
5 | 5 – 5 = 0 | | 0 | = 0 |
5 | 5 – 5 = 0 | | 0 | = 0 |
7 | 7 – 5 = 2 | | 2 | = 2 |
7 | 7 – 5 = 2 | | 2 | = 2 |
10 | 10 – 5 = 5 | | 5 | = 5 |
Сумма абсолютных отклонений: | 18 |
Таким образом, среднее абсолютное отклонение от среднего составляет 18/10 = 1,8. Сравним этот результат с первым примером. Хотя среднее значение было одинаковым для каждого из этих примеров, данные в первом примере были более разбросанными. Из этих двух примеров видно, что среднее абсолютное отклонение от первого примера больше, чем среднее абсолютное отклонение от второго примера. Чем больше среднее абсолютное отклонение, тем больше разброс наших данных.
Пример: среднее абсолютное отклонение относительно медианы
Начните с того же набора данных, что и в первом примере:
1, 2, 2, 3, 5, 7, 7, 7, 7, 9.
Медиана набора данных равна 6. В следующей таблице мы показываем детали расчета среднего абсолютного отклонения от медианы.
Значение данных | Отклонение от медианы | Абсолютное значение отклонения |
1 | 1-6 = -5 | | -5 | = 5 |
2 | 2-6 = -4 | | -4 | = 4 |
2 | 2-6 = -4 | | -4 | = 4 |
3 | 3-6 = -3 | | -3 | = 3 |
5 | 5-6 = -1 | | -1 | = 1 |
7 | 7 – 6 = 1 | | 1 | = 1 |
7 | 7 – 6 = 1 | | 1 | = 1 |
7 | 7 – 6 = 1 | | 1 | = 1 |
7 | 7 – 6 = 1 | | 1 | = 1 |
9 | 9 – 6 = 3 | | 3 | = 3 |
Сумма абсолютных отклонений: | 24 |
Снова делим сумму на 10 и получить среднее среднее отклонение от медианы как 24/10 = 2,4.
Пример: Среднее абсолютное отклонение от медианы
Начните с того же набора данных, что и раньше:
1, 2, 2, 3, 5, 7, 7, 7, 7, 9.
На этот раз мы обнаруживаем, что режим этого набора данных равен 7. В следующей таблице мы показываем детали вычисления среднего абсолютного отклонения для режима.
Данные | Отклонение от режима | Абсолютное значение отклонения |
1 | 1-7 = -6 | | -5 | = 6 |
2 | 2-7 = -5 | | -5 | = 5 |
2 | 2-7 = -5 | | -5 | = 5 |
3 | 3-7 = -4 | | -4 | = 4 |
5 | 5-7 = -2 | | -2 | = 2 |
7 | 7-7 = 0 | | 0 | = 0 |
7 | 7-7 = 0 | | 0 | = 0 |
7 | 7-7 = 0 | | 0 | = 0 |
7 | 7-7 = 0 | | 0 | = 0 |
9 | 9-7 = 2 | | 2 | = 2 |
Сумма абсолютных отклонений: | 22 |
Делим сумму абсолютных отклонений и видим, что у нас есть среднее абсолютное отклонение о режиме 22/10 = 2.2.
Быстрые факты
Есть несколько основных свойств, касающихся средних абсолютных отклонений
- Среднее абсолютное отклонение от медианы всегда меньше или равно среднему абсолютному отклонению около значение.
- Стандартное отклонение больше или равно среднему абсолютному отклонению относительно среднего.
- Среднее абсолютное отклонение иногда сокращается до MAD. К сожалению, это может быть неоднозначным, поскольку MAD может альтернативно относиться к среднему абсолютному отклонению.
- Среднее абсолютное отклонение для нормального распределения примерно в 0,8 раза превышает размер стандартного отклонения.
Распространенное использование
Среднее абсолютное отклонение имеет несколько применений. Первое применение состоит в том, что эту статистику можно использовать для обучения некоторым идеям, лежащим в основе стандартного отклонения. Среднее абсолютное отклонение относительно среднего намного легче вычислить, чем стандартное отклонение. Это не требует, чтобы мы возводили отклонения в квадрат, и нам не нужно находить квадратный корень в конце нашего расчета. Кроме того, среднее абсолютное отклонение более интуитивно связано с разбросом набора данных, чем стандартное отклонение. Вот почему иногда сначала изучают среднее абсолютное отклонение, прежде чем вводить стандартное отклонение.
Некоторые зашли так далеко, что утверждают, что стандартное отклонение должно быть заменено средним абсолютным отклонением. Хотя стандартное отклонение важно для научных и математических приложений, оно не так интуитивно понятно, как среднее абсолютное отклонение. Для повседневных приложений среднее абсолютное отклонение – более ощутимый способ измерить разброс данных.
-
Различия между стандартными отклонениями для совокупности и выборки
-
Как рассчитать образец стандарта Отклонение
-
Эмпирическая взаимосвязь между средним, медианным и модой
-
Разница между средним и медианным значением и Режим
-
Что такое диапазон в статистике?
-
Когда стандартное отклонение равно нулю?
-
Разница между описательной и выводимой статистикой
-
Как определяются выбросы в статистике?
-
-
Как рассчитать стандарт населения Отклонение
-
Что такое первый и третий квартили?
-
Расчет Коэффициент корреляции
-
Пример доверительного интервала для дисперсии совокупности
-
Что такое моменты в статистике?
-
Дисперсия и стандартное отклонение
-
Ярлык формулы суммы квадратов
Загрузить PDF
Загрузить PDF
Вычислив среднеквадратическое отклонение, вы найдете разброс значений в выборке данных.[1]
Но сначала вам придется вычислить некоторые величины: среднее значение и дисперсию выборки. Дисперсия – мера разброса данных вокруг среднего значения.[2]
Среднеквадратическое отклонение равно квадратному корню из дисперсии выборки. Эта статья расскажет вам, как найти среднее значение, дисперсию и среднеквадратическое отклонение.
-
1
Возьмите наборе данных. Среднее значение – это важная величина в статистических расчетах.[3]
- Определите количество чисел в наборе данных.
- Числа в наборе сильно отличаются друг от друга или они очень близки (отличаются на дробные доли)?
- Что представляют числа в наборе данных? Тестовые оценки, показания пульса, роста, веса и так далее.
- Например, набор тестовых оценок: 10, 8, 10, 8, 8, 4.
-
2
Для вычисления среднего значения понадобятся все числа данного набора данных.[4]
- Среднее значение – это усредненное значение всех чисел в наборе данных.
- Для вычисления среднего значения сложите все числа вашего набора данных и разделите полученное значение на общее количество чисел в наборе (n).
- В нашем примере (10, 8, 10, 8, 8, 4) n = 6.
-
3
Сложите все числа вашего набора данных.[5]
- В нашем примере даны числа: 10, 8, 10, 8, 8 и 4.
- 10 + 8 + 10 + 8 + 8 + 4 = 48. Это сумма всех чисел в наборе данных.
- Сложите числа еще раз, чтобы проверить ответ.
-
4
Разделите сумму чисел на количество чисел (n) в выборке. Вы найдете среднее значение.[6]
- В нашем примере (10, 8, 10, 8, 8 и 4) n = 6.
- В нашем примере сумма чисел равна 48. Таким образом, разделите 48 на n.
- 48/6 = 8
- Среднее значение данной выборки равно 8.
Реклама
-
1
Вычислите дисперсию. Это мера разброса данных вокруг среднего значения.[7]
- Эта величина даст вам представление о том, как разбросаны данные выборки.
- Выборка с малой дисперсией включает данные, которые ненамного отличаются от среднего значения.
- Выборка с высокой дисперсией включает данные, которые сильно отличаются от среднего значения.
- Дисперсию часто используют для того, чтобы сравнить распределение двух наборов данных.
-
2
Вычтите среднее значение из каждого числа в наборе данных. Вы узнаете, насколько каждая величина в наборе данных отличается от среднего значения.[8]
- В нашем примере (10, 8, 10, 8, 8, 4) среднее значение равно 8.
- 10 — 8 = 2; 8 — 8 = 0, 10 — 2 = 8, 8 — 8 = 0, 8 — 8 = 0, и 4 — 8 = -4.
- Проделайте вычитания еще раз, чтобы проверить каждый ответ. Это очень важно, так как полученные значения понадобятся при вычислениях других величин.
-
3
Возведите в квадрат каждое значение, полученное вами в предыдущем шаге.[9]
- При вычитании среднего значения (8) из каждого числа данной выборки (10, 8, 10, 8, 8 и 4) вы получили следующие значения: 2, 0, 2, 0, 0 и -4.
- Возведите эти значения в квадрат: 22, 02, 22, 02, 02, и (-4)2 = 4, 0, 4, 0, 0, и 16.
- Проверьте ответы, прежде чем приступить к следующему шагу.
-
4
Сложите квадраты значений, то есть найдите сумму квадратов.[10]
- В нашем примере квадраты значений: 4, 0, 4, 0, 0 и 16.
- Напомним, что значения получены путем вычитания среднего значения из каждого числа выборки: (10-8)^2 + (8-8)^2 + (10-2)^2 + (8-8)^2 + (8-8)^2 + (4-8)^2
- 4 + 0 + 4 + 0 + 0 + 16 = 24.
- Сумма квадратов равна 24.
-
5
Разделите сумму квадратов на (n-1). Помните, что n – это количество данных (чисел) в вашей выборке. Таким образом, вы получите дисперсию.[11]
- В нашем примере (10, 8, 10, 8, 8, 4) n = 6.
- n-1 = 5.
- В нашем примере сумма квадратов равна 24.
- 24/5 = 4,8
- Дисперсия данной выборки равна 4,8.
Реклама
-
1
Найдите дисперсию, чтобы вычислить среднеквадратическое отклонение.[12]
- Помните, что дисперсия – это мера разброса данных вокруг среднего значения.
- Среднеквадратическое отклонение – это аналогичная величина, описывающая характер распределения данных в выборке.
- В нашем примере дисперсия равна 4,8.
-
2
Извлеките квадратный корень из дисперсии, чтобы найти среднеквадратическое отклонение.[13]
- Как правило, 68% всех данных расположены в пределах одного среднеквадратического отклонения от среднего значения.
- В нашем примере дисперсия равна 4,8.
- √4,8 = 2,19. Среднеквадратическое отклонение данной выборки равно 2,19.
- 5 из 6 чисел (83%) данной выборки (10, 8, 10, 8, 8, 4) находится в пределах одного среднеквадратического отклонения (2,19) от среднего значения (8).
-
3
Проверьте правильность вычисления среднего значения, дисперсии и среднеквадратического отклонения. Это позволит вам проверить ваш ответ.[14]
- Обязательно записывайте вычисления.
- Если в процессе проверки вычислений вы получили другое значение, проверьте все вычисления с самого начала.
- Если вы не можете найти, где сделали ошибку, проделайте вычисления с самого начала.
Реклама
Об этой статье
Эту страницу просматривали 64 743 раза.