Синус, косинус и тангенс острого угла прямоугольного треугольника
Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.
Напомним, что прямой угол — это угол, равный 90 градусов. Другими словами, половина развернутого угла.
Острый угол — меньший 90 градусов.
Тупой угол — больший 90 градусов. Применительно к такому углу «тупой» — не оскорбление, а математический термин
Нарисуем прямоугольный треугольник. Прямой угол обычно обозначается C. Обратим внимание, что сторона, лежащая напротив угла, обозначается той же буквой, только маленькой. Так, сторона, лежащая напротив угла A, обозначается .
Угол A обозначается соответствующей греческой буквой .
Гипотенуза прямоугольного треугольника — это сторона, лежащая напротив прямого угла.
Катеты — стороны, лежащие напротив острых углов.
Катет , лежащий напротив угла
, называется противолежащим (по отношению к углу
). Другой катет
, который лежит на одной из сторон угла
, называется прилежащим.
Синус острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе:
sin A
Косинус острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе:
cos A
Тангенс острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:
tg A
Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:
tg A
Котангенс острого угла в прямоугольном треугольнике — отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):
ctg A
Обратите внимание на основные формулы для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.
sin |
sin |
|
cos |
1+tg |
cos |
tg |
1+ctg |
sin |
ctg |
tg |
Давайте докажем некоторые из них.
- Сумма углов любого треугольника равна
. Значит, сумма двух острых углов прямоугольного треугольника равнa
.
- С одной стороны,
как отношение противолежащего катета к гипотенузе. С другой стороны,
, поскольку для угла
катет а будет прилежащим. Получаем, что
. Иными словами,
.
- Возьмем теорему Пифагора:
. Поделим обе части на
получаем
то есть
Мы получили основное тригонометрическое тождество. - Поделив обе части основного тригонометрического тождества на
, получим:
Это значит, что если нам дан тангенс острого угла
, то мы сразу можем найти его косинус. Аналогично,
Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?
Мы знаем, что сумма углов любого треугольника равна .
Знаем соотношение между сторонами прямоугольного треугольника. Это теорема Пифагора: .
Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов — свое соотношение, для сторон — свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?
С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.
Синус, косинус и тангенс — их еще называют тригонометрическими функциями угла — дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.
Мы тоже нарисуем таблицу значений синуса, косинуса, тангенса и котангенса для «хороших» углов от до
.
0 | |||||
sin |
0 | ||||
cos |
0 | ||||
tg |
0 | − | |||
ctg |
− | 0 |
Обратите внимание на два прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.
Докажем теорему:
Если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то синусы этих углов равны, косинусы этих углов равны и тангенсы этих углов равны.
В самом деле, пусть АВС и — два прямоугольных треугольника с прямыми углами С и
и равными острыми углами А и
Треугольники АВС и подобны по первому признаку подобия треугольников, поэтому
Из этих равенств следует, что т. е. sin А = sin
Аналогично, т. е. cos А = cos
и
т. е. tg A = tg
Это значит, что синус, косинус и тангенс зависят только от величины угла.
Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.
Задача 1. В треугольнике ABC угол C равен , sin A = 0,1. Найдите cos B.
Задача решается за четыре секунды.
Поскольку , sin A = cos B = 0,1.
Задача 2. В треугольнике угол
равен
,
,
.
Найдите .
Решение:
Отсюда
Найдем AC по теореме Пифагора.
Ответ: 4,8.
Задача 3. В треугольнике АВС угол С равен AВ = 13, ВС = 5. Найдите косинус и тангенс острого угла А. Ответ округлите до сотых.
Решение:
Для угла А противолежащий катет – это ВС,
АВ является гипотенузой треугольника, лежит против Значит, sin A
Катет, прилежащий к – это катет АС, следовательно, cos А
Длину катета АС найдем по теореме Пифагора:
Тогда
cos А
tg A
Ответ: 0,92; 0,42.
Заметим, что если катеты прямоугольного треугольника равны 5 и 12, то гипотенуза равна 13. Это одна из так называемых Пифагоровых троек. О них мы расскажем в других статьях сайта.
Задача 4. В треугольнике АВС угол С равен AC = 2, sin A=
Найдите BC.
Решение:
AC = b = 2, BC = a, AB = c.
Так как sin A
По теореме Пифагора получим
Ответ: 0,5.
Задача 5. В треугольнике АВС угол С равен
tg A =
Найдите AB.
Решение:
AC = b = 4, tg A
Ответ: 7.
Задача 6.
В треугольнике АВС угол С равен CH – высота, AB = 13, tg A =
Найдите AH.
Решение:
AВ = с = 13, tg A = тогда b = 5a.
По теореме Пифагора ABC:
тогда
(по двум углам), следовательно
откуда
Ответ: 12,5.
Задача 7. В треугольнике АВС угол С равен
CH – высота, BC = 3, sin A =
Найдите AH.
Решение:
Так как sin A = тогда
c = АВ = 18.
sin A = = cos B =
Рассмотрим BHC:
=
получим
тогда BH = = 0,5,
AH = AB — BH = 18 — 0,5 = 17,5.
Ответ: 17,5.
Задача 8. В треугольнике АВС угол С равен 90 CH — высота, BC = 3, cos A =
Найдите АH.
Решение:
Так как для АВС:
A =
sin В =
а для ВНС: sin В =
=
, откуда СН =
По теореме Пифагора найдем ВН:
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой. Поэтому для АВС получим:
тогда
Ответ: 17,5.
Задача 9. В треугольнике АВС угол С равен 90 CH — высота, СН = 24 и BН = 7. Найдите sin A.
Решение:
По определению sin A= =
=
Рассмотрим BHC :
ВС найдем по теореме Пифагора:
ВС=
тогда а значит и sin A =
= 0,28.
Ответ: 0,28.
Задача 10. В треугольнике АВС угол С равен 90 CH — высота, СН = 8 и BН = 4. Найдите tg A.
Решение:
По определению sin A = =
=
cos A =
=
=
тогда tg A = который найдем из
BHC:
Ответ: 0,5.
Задача 11. В треугольнике АВС угол С равен 90 CH — высота, BН = 12, tg A =
Найдите АН.
Решение:
По определению tg A=
Для BHC:
, значит
СН =
Для АHC: tg A=
то
AH =
Ответ: 27.
Задача 12. В треугольнике АВС угол С равен 90 CH — высота, BН = 12, sin A =
Найдите АВ.
Решение:
Так как cos В = = sin A =
Из СВН имеем cos В =
=
тогда ВС =
В АВС имеем sinA =
=
тогда AВ =
Ответ: 27.
Задача 13. В треугольнике АВС угол С равен 90 из вершины прямого угла к гипотенузе проведена высота СН. Найдите cos A, AC и AB, если СН = 12, ВС = 20.
Решение:
Найдем НВ по теореме Пифагора из ВСН:
sin В = =
Для АВС: cos A =
получили cos A = 0,6.
Найдем АС и АВ несколькими способами.
1-й способ.
Так как cos A = то пусть АС = 3х, АВ = 5х,
тогда по теореме Пифагора получим
х = 5 ( так как х0). Значит,
2-й способ.
(по двум углам), значит
или
k = тогда
АС =
;
АВ =
3-й способ.
(высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой) , тогда
АН = 144:16 = 9.
АВ = АН + НВ = 9 + 16 = 25.
По теореме Пифагора найдем АС:
=
Ответ: cos A = 0,6; АС = 15, АВ = 25.
Задача 14.
Высота ВН прямоугольного треугольника АВС, проведенная из вершины прямого угла В, равна 24 и отсекает от гипотенузы АС отрезок НС, равный 18.
Найдите АВ и cos А.
Решение:
Из прямоугольного ВНС по теореме Пифагора найдем гипотенузу ВС и cos C:
ВС = =
cos C =
Для АВС: sin А =
= cos C =
Для АНВ: sin А =
=
то
=
АВ =
Из основного тригонометрического тождества найдем
cos A =
Ответ: АВ = 40, cos A = 0,8.
Задача 15.
Гипотенуза АС прямоугольного треугольника АСЕ равна 50, sin А =
Найдите площадь треугольника.
Решение:
В прямоугольном АСЕ sin А =
значит
= 14.
Второй катет найдем, используя теорему Пифагора:
Площадь прямоугольного треугольника равна S =
поэтому
Ответ: 336.
Задача 16.
В треугольнике АВС угол С — прямой, катеты АВ = 13 и ВС = 12, СК — высота.
Найдите sin Результат округлите до сотых.
Решение:
A-общий,
),
значит sin
Найдем АС по теореме Пифагора из САВ:
Тогда sin
Ответ: 0,38.
Задача 17. В треугольнике АВС АС = ВС, АВ = 72, cos A = Найдите высоту СН.
Решение:
Так как АС = ВС, то АВС — равнобедренный с основанием АВ, тогда
высота СН является медианой, то есть АН = НВ =
Поскольку АСН — прямоугольный,
cos A =
то есть
АС =
По теореме Пифагора тогда
Ответ: 15.
Задача 18. В треугольнике АВС угол С равен 90 sin A =
AC = 10
Найдите АВ.
Решение:
1-й способ.
Поскольку sin A =
то можно обозначить
ВС = 11х, АВ = 14х.
По теореме Пифагора
(14х- 11х)(14х + 11х) = 3 100;
учитывая, что длина стороны положительна, х = 2,
следовательно, АВ = 14 2 = 28.
2-й способ.
Воспользуемся основным тригонометрическим тождеством
cos A =
По определению cos A = значит
Так как АС=10 то
откуда АВ =
= 28.
Ответ: 28.
Задача 19. Найдите углы ромба АВСD, если его диагонали АС и ВD равны 4 и 4.
Решение:
Пусть ВАО =
Диагонали ромба делят его углы пополам, значит, =
Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам, следовательно, в прямоугольном треугольнике АВО катет АО = а катет ВО =
Поэтому tg откуда
Ответ:
Часто в задачах встречаются треугольники с углами и
или с углами
и
. Основные соотношения для них запоминайте наизусть!
Для треугольника с углами и
катет, лежащий напротив угла в
, равен половине гипотенузы.
Треугольник с углами и
— равнобедренный. В нем гипотенуза в
раз больше катета.
Задача 20.
В треугольнике АВС угол С равен 90 угол А равен 30
АВ = 2
Найдите высоту CH.
Решение:
Рассмотрим АВС:
По свойству катета, лежащего против угла имеем ВС =
АВ =
В BHC:
то
следовательно, ВН =
BC =
По теореме Пифагора найдем НС:
Ответ: 1,5.
Задача 21.
В треугольнике АВС угол С равен 90 CH — высота, АВ = 2,
Найдите АH.
Решение:
Из АВС найдем ВС =
АВ = 1 (по свойству катета, лежащего против угла 30
),
то
Из ВСН:
то
следовательно,
ВН = ВС =
АН = АВ — НВ = 2 — = 1,5.
Ответ: 1,5.
Еще раз повторим, что такое синус, косинус и тангенс угла в прямоугольном треугольнике.
Как запомнить эти соотношения? Лучший способ – решать много задач, и на уроках геометрии, и готовясь к ЕГЭ. Тогда все формулы, равенства, соотношения запомнятся сами собой.
Мы рассмотрели задачи на решение прямоугольных треугольников — то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника. Об этом — в следующей статье.
Если вам понравился разбор данной темы — записывайтесь на курсы подготовки к ЕГЭ по математике онлайн
Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Синус, косинус и тангенс острого угла прямоугольного треугольника» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
08.05.2023
Внимание! Эти формулы работают только если аргументы у тригонометрических функций одинаковые, т.е.
(sin^2 776^° +cos^2 776^° =1)
(tg, 3xcdot ctg, 3x=1)
Но:
(sin^2x+cos^23x≠1)
(tg, xcdot ctg, y≠1)
Все формулы связи тригонометрических функций учить не надо, потому что они достаточно легко получаются друг из друга несложными преобразованиями (подробности в этих видео). Кроме того, при частом использовании они постепенно запоминаются сами.
Примеры применения формул связи
Зачем нужны формулы связи? Они позволяют найти все тригонометрические функции угла, если известна лишь одна из них, а также дают возможность упрощать выражения, доказывать тождества, решать тригонометрические уравнения, заменяя одну функцию другой и так далее.
Пример. Найдите (5sin,α), если (cos,α=frac{2sqrt{6}}{5}) и (α∈(frac{3π}{2};2π)).
Решение. Нам известен косинус, найти надо синус. А что связывает синус и косинус? Основное тригонометрическое тождество:
(sin^2α+cos^2α=1).
Подставим вместо косинуса его значение:
(sin^2α+)((frac{2sqrt{6}}{5}))(^2=1)
(sin^2α+)(frac{4cdot 6}{25})(=1)
(sin^2α+)(frac{24}{25})(=1)
(sin^2α=1-)(frac{24}{25})
(sin^2α=)(frac{1}{25})
(sinα=±)(frac{1}{5})
Внимание! Последняя строчка – место, где теряется огромное количество баллов на ЕГЭ! Это одна из самых популярных ошибок – забыть отрицательный корень. Пожалуйста, раз и навсегда запомните, что у неполного квадратного уравнения вида (x^2=a) (при (a>0)) два корня (x_1=sqrt{a}) и (x_2=-sqrt{a}). Пусть двойка над иксом (та которая «квадрат») будет вам вечным маяком, сигнализирующим: «тут ДВА корня! Два! Не забудь!»
Вернемся к задаче. Получилось, что синус может иметь значение (frac{1}{5}), а может (-)(frac{1}{5}). И какое значение нам надо выбрать — с минусом или плюсом? Тут нам на помощь приходит информация, что (α∈(frac{3π}{2};2π)). Давайте нарисуем числовую окружность и отметим отрезок ((frac{3π}{2};2π)).
Обратите внимание – в этой четверти синус принимает только отрицательные значения (можно провести перпендикуляры до оси синусов и убедиться, что это так).
Значит, в нашем случае (sin,α=-frac{1}{5}) т.е. (5sin,α=5cdot(-frac{1}{5})=-1).
Ответ: (-1).
Пример.Найдите (tg,α), если (cos,α=)(frac{sqrt{10}}{10}) и (α∈(frac{3π}{2};2π)).
Решение. Есть 2 пути решения этой задачи:
— напрямую вычислить тангенс через формулу (tg^2α+1=)(frac{1}{cos^2α});
— сначала с помощью тождества (sin^2α+cos^2α=1) найти (sin,α), а потом через формулу (tg,α=)(frac{sin,α}{cos,α}) получить тангенс.
В учебниках обычно идут первым путем, поэтому мы пойдем вторым.
Вычисляем синус:
(sin^2α+)((frac{sqrt{10}}{10})^2)(=1)
(sin^2α+)(frac{10}{100})(=1)
(sin^2α+)(frac{1}{10})(=1)
(sin^2α=1-)(frac{1}{10})
(sin^2α=)(frac{9}{10});
(sin,α=±)(frac{3}{sqrt{10}})
Опять (α∈(frac{3π}{2};2π)), значит в итоге синус может быть только отрицательным. То есть, (sin,α=-)(frac{3}{sqrt{10}}).
А теперь вычисляем тангенс: (tg,α=-)(frac{3}{sqrt{10}})(:)(frac{sqrt{10}}{10})(=)(-frac{3}{sqrt{10}}cdotfrac{10}{sqrt{10}})(=-)(frac{30}{10})(=-3).
Ответ: (-3).
Пример. Известно, что (tg,α=-frac{3}{4}) и (frac{π}{2}<α<π). Найдите значения трех других тригонометрических функций угла (α).
Решение. Проще всего из тангенса найти котангенс:
(ctg, α=)(frac{1}{tg, α})
(ctg,α=1:(-frac{3}{4})=1cdot(-frac{4}{3})=-frac{4}{3}).
Теперь вычислим косинус по упомянутой выше формуле:
(tg^2 α+1=)(frac{1}{cos^2α})
((-)(frac{3}{4}))(^2+1=)(frac{1}{cos^2α})
(frac{9}{16})(+1=)(frac{1}{cos^2α})
(frac{9+16}{16})(=)(frac{1}{cos^2α})
(frac{25}{16})(=)(frac{1}{cos^2α})
(cos^2α=)(frac{16}{25})
(cosα=±)(frac{4}{5})
Опять перед нами стоит выбор плюс или минус. Отметим отрезок ((frac{π}{2};π)) на тригонометрической окружности и посмотрим какие значения принимает косинус в этой четверти, чтобы определится со знаком.
Очевидно, что косинус отрицателен в этой четверти, а значит (cos,α=-)(frac{4}{5}).
Осталось найти синус:
(sin^2α+cos^2α=1)
(sin^2α+(-)(frac{4}{5})()^2=1)
(sin^2α+)(frac{16}{25})(=1)
(sin^2α=1-)(frac{16}{25})
(sin^2α=)(frac{9}{25})
(sin,α=±)(frac{3}{5})
Опять используем круг, чтобы определить знак.
Получается, что (sin,α=)(frac{3}{5}).
Ответ: (ctg,α=-)(frac{4}{3}); (cos,α=-)(frac{4}{5}); (sin,α=)(frac{3}{5}).
Пример (ЕГЭ). Найдите (tg^2 α), если (5 sin^2α+13 cos^2α=6).
Решение. Давайте пойдем от того, что известно. В равенстве (5 sin^2α+13 cos^2α=6) синус заменим на косинус:
(5(1-cos^2α)+13 cos^2α=6)
(5-5 cos^2α+13 cos^2α=6)
(5+8 cos^2α=6)
(8 cos^2α=1)
(cos^2α=)(frac{1}{8})
Поняли почему именно синус заменили на косинус, а не наоборот? И почему не надо извлекать корень, досчитывая до «чистого» косинуса? Потому что для нахождения (tg^2α) хорошо подходит формула (tg^2α+1=)(frac{1}{cos^2α}) :
(tg^2 α+1=1:)(frac{1}{8})
(tg^2 α+1=1cdot)(frac{8}{1})
(tg^2 α+1=8)
(tg^2 α=7)
Ответ: (7).
Теперь еще одна задача из ЕГЭ, для наглядности мы ее решение оформили картинкой.
Пример. Упростите выражение (frac{1}{sin^2 α})(-ctg^2 α-cos^2 β).
Решение.
(frac{1}{sin^2 α})(-ctg^2 α-cos^2 β) |
Самое очевидное, что можно сделать – это представить котангенс как отношение косинуса к синусу. |
|
(=)(frac{1}{sin^2 α})(-)(frac{cos^2α}{sin^2 α})(-cos^2 β=) |
Приводим дроби к общему знаменателю. |
|
(=)(frac{1-cos^2α}{sin^2 α})(-cos^2 β=) |
(1-cos^2α) можно заменить на (sin^2 α). |
|
(=)(frac{sin^2 α}{sin^2 α})(-cos^2 β=) |
Сокращаем синусы. |
|
(=1-cos^2 β=sin^2 β). |
Пример. Докажите тождество (frac{cos^4α-sin^4α}{(1-sinα)(1+sinα)})(+2tg^2 α=)(frac{1}{cos^2 α}).
Решение.
(frac{cos^4α-sin^4α}{(1-sinα)(1+sinα)})(+2tg^2 α=)(frac{1}{cos^2 α}) |
Чтобы доказать это тождество, будем преобразовывать левую часть, пытаясь свести ее к правой. Поехали. Разложим числитель левой дроби по формуле разности квадратов, а знаменатель, наоборот, соберем по ней же. |
|
(frac{(cos^2α-sin^2α )(cos^2 α+sin^2α)}{1-sin^2α})(+2tg^2 α=)(frac{1}{cos^2 α}) |
Очевидно, что вторая скобка числителя равна (1) (по основному тригонометрическому тождеству), а знаменатель можно заменить на (cos^2 α). |
|
(frac{cos^2α-sin^2α}{cos^2 α})(+2tg^2 α=)(frac{1}{cos^2 α}) |
Теперь разложим тангенс по формуле (tg, α=)(frac{sin,α}{cos,α}). |
|
(frac{cos^2α-sin^2α}{cos^2 α})(+2)(frac{sin^2α}{cos^2α})(=)(frac{1}{cos^2 α}) |
Приводим дроби к общему знаменателю. |
|
(frac{cos^2α-sin^2α+2 sin^2α}{cos^2 α})(=)(frac{1}{cos^2 α}) |
Приводим подобные слагаемые. |
|
(frac{cos^2α+sin^2α}{cos^2 α})(=)(frac{1}{cos^2 α}) |
И вновь нас выручает основное тригонометрическое тождество |
|
(frac{1}{cos^2 α}) (=)(frac{1}{cos^2 α}) |
Левая часть полностью идентична правой, то есть тождество доказано.
Как доказать все формулы связи
Содержание:
Пусть в прямоугольном треугольнике гипотенуза равна с, один из острых углов равен
Определения синуса, косинуса, тангенса и котангенса острого угла
Определение. Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе:
Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе:
Определение. Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему:
Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему:
Пример:
Угол К в равен 90° (рис. 7).
Тогда:
Для угла N катет МК — противолежащий, а катет NK — прилежащий (см. рис. 7, с. 11). Поэтому согласно определениям получаем:
Можно заметить, что синус острого угла а прямоугольного треугольника и косинус другого острого угла этого треугольника, содержащего равны, т. е.
. Так же
Например,
А теперь выполните Тест 1 и Тест 2.
Значение синуса острого угла, а также косинуса, тангенса и котангенса зависит только от величины угла и не зависит от размеров и расположения прямоугольного треугольника с указанным острым углом.
Это следует из того, что прямоугольные треугольники с равным острым углом подобны, а у подобных треугольников соответствующие стороны пропорциональны. Так, в (рис.
Значения синуса, косинуса, тангенса и котангенса углов 30°, 45°, 60°
Рассмотрим прямоугольный треугольник АВС, у которого (рис. 9). Так как катет, лежащий против угла в 30°, равен половине гипотенузы, то АВ = 2. По теореме Пифагора
Тогда:
Так как (см. рис. 9), то
Рассмотрим равнобедренный прямоугольный треугольник АВС, у которого (рис. 10). По теореме Пифагора
Тогда:
Составим таблицу значений синусов, косинусов, тангенсов и котангенсов для углов 30°, 45° и 60°.
Нахождение значений тригонометрических функций
Значения синуса, косинуса, тангенса и котангенса данного угла можно приближенно находить при помощи специальных тригонометрических таблиц* либо калькулятора.
Например, с помощью калькулятора, компьютера или мобильного телефона (смартфона) находим: sin45° = 0,707106… . Приближенное значение тригонометрических функций при решении задач будем брать с округлением до четырех знаков после запятой: sin45° = 0,7071.
Итак, точное значение sin 45° равно . а приближенное — 0,7071.
Таблицы и калькулятор также позволяют находить величину острого угла по значению синуса, косинуса или тангенса. Например, найдем острый угол, синус которого равен 0,4175. Выбрав на компьютере вид калькулятора «инженерный», далее «градусы», нужно ввести последовательно . На экране появится ответ: 24,676… . Округлим его до десятых долей градуса и получим 24,7°. Учитывая, что 1° содержит 60 угловых минут, получим: 0,7° = 0,7 • 60′ = 42′. Искомый угол, синус которого 0,4175, приближенно равен 24°42′.
А теперь выполните Тест 3.
Тригонометрические функции острого угла
Синус, косинус, тангенс и котангенс являются функциями угла, так как каждому острому углу соответствует единственное значение синуса, косинуса, тангенса и котангенса. Они называются тригонометрическими функциями и записываются так:
Поскольку в прямоугольном треугольнике катет меньше гипотенузы, то для острого угла справедливо:
следовательно синус и косинус острого угла положительны и меньше 1.
Тангенс и котангенс острого угла могут принимать любое положительное значение. Например, tg85° ~ 11,4.
С увеличением острого угла синус и тангенс возрастают, а косинус и котангенс убывают (рис. 11), то есть если то
но
(cm. c. 28, задачу 2*). Это гарантирует, что синус (косинус, тангенс и котангенс) острого угла определяют этот угол однозначно.
Пример №1
В прямоугольном треугольнике АВС, где , катет ВС равен 8 см, гипотенуза АВ равна 17 см. Найти косинус угла А (рис. 12).
Решение:
По теореме Пифагора найдем катет (см). Косинус острого угла прямоугольного треугольника равен от ношению прилежащего катета к гипотенузе. Тогда
Ответ:
Пример №2
Гипотенуза АВ прямоугольного треугольника АВС равна 20 см, (рис. 13). Найти площадь треугольника.
Решение:
Так как Обозначим
По теореме Пифагора
Тогда
ВС = 4 • 4 = 16(см),
Ответ: 96
Пример №3
При помощи циркуля и линейки построить угол, синус которого равен
Решение:
Идея решения. Построим прямоугольный треугольник с катетом, равным 4 единицы, и гипотенузой, равной 5 единиц. Синус угла, противолежащего указанному катету, будет равен
Построение. 1) Строим прямой угол С (рис. 14), для чего проводим произвольную прямую отмечаем на ней точку С и строим прямую
проходящую через точку С перпендикулярно прямой
(вспомните по рисунку алгоритм построения). 2) На прямой
от точки С откладываем последовательно четыре равных отрезка. Получаем отрезок ВС, который содержит 4 единицы. 3) Строим окружность с центром в точке В радиусом, равным пяти единицам. В пересечении этой окружности и прямой
получаем точку А.
Угол ВАС — искомый.
Доказательство:
Из находим
Алгоритм решения прямоугольного треугольника
Под решением прямоугольного треугольника понимают нахождение его неизвестных сторон и углов по некоторым элементам, определяющим этот треугольник. Рассмотрим три задачи:
- нахождение катета по гипотенузе и острому углу;
- нахождение катета по другому катету и острому углу;
- нахождение гипотенузы по катету и острому углу.
Пример №4
Гипотенуза прямоугольного треугольника равна 6, острый угол равен 32° (рис. 23). Найти катет, прилежащий к данному углу. Ответ округлить до 0,1.
Решение:
Примем длину искомого катета за
Ответ: 5,1.
Пример №5
Катет прямоугольного треугольника равен 2,5, а прилежащий к нему угол равен 68° (рис. 24). Найти другой катет. Ответ округлить до 0,1.
Решение:
Примем длину неизвестного катета за
Ответ: 6,2.
Пример №6
Катет прямоугольного треугольника равен 4,2, противолежащий ему угол равен 29° (рис. 25). Найти гипотенузу треугольника. Ответ округлить до 0,1.
Решение:
Примем длину гипотенузы за
Ответ: 8,7.
Правила решения прямоугольного треугольника
Преобразуем формулы синуса, косинуса, тангенса и котангенса и запишем результаты для треугольника на рисунке 26:
Удобно пользоваться следующими правилами:
- Катет равен гипотенузе, умноженной на синус противолежащего или на косинус прилежащего угла (рис. 27, а).
- Гипотенуза равна катету, деленному на синус противолежащего или на косинус прилежащего угла (рис. 27, б).
- Катет равен другому катету, умноженному на тангенс противолежащего или на котангенс прилежащего к первому катету угла (рис. 27, в).
Пример №7
В известно:
(рис. 28).
Полезно запомнить!
Если в прямоугольном треугольнике с углом 30° (или 60°) дан меньший катет а, то больший
катет (рис. 29, а). А если дан больший катет
то меньший катет
(рис. 29, б).
Если в прямоугольном треугольнике с углом 45° дан катет а,
то гипотенуза (рис. 30, а), а если дана гипотенуза с, то катет
(рис. 30, б).
Пример №8
В прямоугольном треугольнике АВС известно: — высота, проведенная к гипотенузе (рис. 31). Найти проекцию НВ катета ВС на гипотенузу.
Решение:
Заметим, что так как эти углы дополняют
Из
Из
Ответ:
Пример №9
В равнобедренной трапеции ABCD меньшее основание ВС равно 7, боковая сторона АВ равна 10, sinA = 0,8. Найти площадь трапеции.
Решение:
Площадь трапеции находится по формуле Найдем большее основание и высоту трапеции. Проведем в трапеции высоты ВН и СК (рис. 32). Так как НВСК — прямоугольник (все углы — прямые), то НК = ВС = 7. Из равенства прямоугольных треугольников АНВ и DKC (по катету и гипотенузе) АН = KD. Из прямоугольного треугольника АНВ находим:
откуда АН = 6 (пифагорова тройка 6, 8, 10). Тогда
Ответ: 104.
Тригонометрические формулы
Используя формулы где
и
— катеты, с — гипотенуза прямоугольного треугольника, можно получить формулы, связывающие значения тригонометрических функций острого угла.
1. Основное тригонометрическое тождество
Доказательство:
По теореме Пифагора
Тогда
Следствие:
Так как синус и косинус острого угла а положительны, то
2. Выражение тангенса и котангенса через синус и косинус
Доказательство:
a) б)
Следствие:
Проверим справедливость основного тригонометрического тождества.
Верно ли, например, что Да, это верно, так как
3. Основная задача
Дано: — острый угол.
Найти:
Решение:
Способ 1. Используем основное тригонометрическое тождество: Так как косинус острого угла больше нуля, то
откуда
Способ 2. Изобразим прямоугольный треугольник с катетом 5 и гипотенузой 13 (рис. 41). Синус угла, противолежащего данному катету, равен Поэтому этот угол равен
По теореме Пифагора другой катет равен
Тогда
Способ 3. Пусть катет, противолежащий углу равен 5х, тогда гипотенуза равна
По теореме Пифагора прилежащий катет равен
Отсюда
Ответ:
Пример №10
В параллелограмме ABCD (рис. 42) сторона ВС = 50 см, высота ВК = 30 см, . Найти периметр параллелограмма.
Решение:
Из треугольника АВК находим: Из основного тригонометрического тождества следует:
(так как угол А — острый, то sinA > 0). Тогда
(см )
Ответ: 168 см.
Пример №11
Доказать, что при увеличении угла от 0° до 90°:
а) синус угла увеличивается от 0 до 1, а косинус — уменьшается от 1 до 0;
б) тангенс угла увеличивается от О до бесконечности.
Решение:
а) Рассмотрим прямоугольные треугольники с гипотенузой, равной 1. Для этого опишем радиусом ОМ, равным 1, четверть окружности — дугу МК (рис. 43). Пусть Опустим из точки А перпендикуляр АВ на ОМ. Тогда
При повороте радиуса ОМ вокруг центра О против часовой стрелки, начиная от ОМ и заканчивая ОК, угол
будет увеличиваться от 0° до 90° (образуя указанные на чертеже углы:
и т. д.). Величина катета АВ, противолежащего углу
будет увеличиваться от 0 до 1. А величина катета ОВ, наоборот, будет уменьшаться от 1 до 0. Таким образом, при увеличении угла от 0° до 90° его синус увеличивается от 0 до 1, а косинус уменьшается от 1 до 0.
Из формулы также следует (учитывая положительность синуса и косинуса острого угла), что с увеличением синуса от 0 до 1 косинус уменьшается от 1 до 0.
б) Для определения изменения тангенса угла удобно рассматривать треугольники, у которых прилежащий катет не изменяется и остается равным 1, а противолежащий катет изменяется. Рассмотрим прямоугольный треугольник АОМ, у которого отрезок ОМ = 1, (рис. 44). По определению
Угол
станем изменять, перемещая точку А по прямой MN, начиная от точки М и проходя через точки
и т. д. При этом угол
и его тангенс начнут возрастать. Таким образом, когда угол
при движении точки А вверх будет стремиться к углу КОМ, равному 90°, то тангенс этого угла будет неограниченно возрастать.
К такому же выводу можно прийти, рассматривая формулу При увеличении угла
от 0° до 90° числитель дроби будет увеличиваться от 0 до 1, а знаменатель — уменьшаться от 1 до 0, значит, вся дробь будет увеличиваться от 0 до бесконечности. Таким образом, при увеличении угла от 0° до 90° его тангенс увеличивается от 0 до бесконечности.
Пример №12
В основании прямоугольного параллелепипеда лежит квадрат, диагональ которого
см. Диагональ
боковой грани составляет с ребром основания
угол
(рис. 46). Найдите объем параллелепипеда.
Решение:
Объем прямоугольного параллелепипеда находится по формуле , где а, b и с — его измерения. Так как ABCD — квадрат, то
. Из прямоугольного треугольника
находим
. Искомый объем
.
Ответ: 576 см3.
Синус, косинус, тангенс и котангенс тупого угла
1. Определение значений для любого угла а от 0° до 180°
Ранее мы дали определения синуса, косинуса, тангенса и котангенса острого угла через отношение сторон прямоугольного треугольника. Сделаем теперь это для углов от 0° до 180°.
Рассмотрим полуокружность с центром в начале координат и радиусом, равным 1 (рис. 48). От положительной полуоси против часовой стрелки отложим острый угол
сторона которого пересекает полуокружность в точке
. Из прямоугольного треугольника OMN, где ОМ = 1, ON = х, MN = у, получаем:
то есть синус, косинус,
тангенс и котангенс острого угла а выражаются через координаты точки
Точно так же определяются значения
и
для любого угла а из промежутка
Таким образом, синусом угла а называется ордината
косинусом — абсцисса
тангенсом — отношение ординаты к абсциссе
а котангенсом — отношение абсциссы к ординате
точки М единичной полуокружности.
Например, для тупого (рис. 48), где
получим:
Для любого положения точки на единичной полуокружности верно равенство
(докажите самостоятельно). Поэтому для углов
где
верно основное тригонометрическое тождество
Также верны тождества:
Нахождение синуса, косинуса, тангенса и котангенса тупых углов
Пусть откуда
(рис. 49). Так как
по гипотенузе и острому углу, то
Точки
имеют координаты:
и
Тогда
то есть для углов от 0° до 180° справедливы равенства:
Можно пользоваться следующим правилом:
Синус тупого угла равен синусу смежного с ним острого угла.
Косинус тупого угла равен косинусу смежного с ним острого угла, взятому со знаком «минус».
Пример 1.
Разделив почленно равенство на равенство
а затем наоборот, получим равенства:
Можно пользоваться следующим правилом:
Тангенс (котангенс) тупого угла равен тангенсу (котангенсу) смежного с ним острого угла, взятому со знаком «минус».
Пример 2.
Указанные формулы и правила позволяют находить значения тригонометрических функций тупого угла через значения тригонометрических функций острого угла, который дополняет данный тупой угол до 180°: синусы углов, дополняющих друг друга до 180°, равны между собой, а косинусы, тангенсы и котангенсы — противоположны. Так как синус, косинус, тангенс и котангенс острого угла положительные, то синус тупого угла положительный, а косинус, тангенс и котангенс — отрицательные.
Значения тригонометрических функций для углов 0°, 90°, 180°
Если луч ОМ совпадет с лучом (рис. 50), то будем считать, что
Тогда:
а) значение
не определено, так как деление на нуль невозможно;
б) значение
не определено, так как деление на нуль невозможно; в)
значение
не определено, так как деление на нуль невозможно.
Поскольку проекции радиуса, равного 1, на оси координат меньше либо равны 1, то для углов справедливы неравенства:
Пример №13
Найти если
— тупой угол.
Решение:
Способ 1. Так как то
Поскольку угол
— тупой, то его косинус отрицательный. Поэтому
Тогда
Способ 2. Синус острого угла смежного с данным тупым углом
равен также
Построим прямоугольный треугольник со сторонами 3, 4 и 5 (рис. 52). В нем
Так как косинусы смежных углов противоположны, то
. Аналогично,
Ответ:
Формулы площади треугольника и площади параллелограмма
Тригонометрические функции позволяют получить формулы для вычисления площади треугольника и площади параллелограмма. Сформулируем их в виде двух теорем.
Теорема. Площадь треугольника равна половине произведения двух его сторон на синус угла между ними, т. е.
Доказательство:
Пусть в треугольнике — острый,
— высота (рис. 56, а).
Из прямоугольного треугольника Тогда
Если угол тупой (рис. 56,
то
— острый. Из прямоугольного треугольника АКС следует, что
Так как
то
Если то
— прямоугольный с катетами
Учитывая, что
получим:
Теорема доказана.
Теорема. Площадь параллелограмма равна произведению двух его соседних сторон на синус угла между ними, т. е.
Используя рисунок 57, докажите эту теорему самостоятельно.
Замечание. Если то параллелограмм является прямоугольником. Его площадь
так как
Таким образом, формула площади прямоугольника
— частный случай формулы площади параллелограмма
Известно, что слово «синус» в переводе с латинского имеет множество значений: изгиб, дуга, пазуха, бухта, впадина, залив, хорда, забота и нежная любовь. При помощи Интернета выясните:
а) какое из значений подходит к математическому понятию «синуса»;
б) какие из значений относятся к медицине и почему насморк врачи иногда называют синуситом.
Пример №14
Дан параллелограмм ABCD, площадь которого 40 см2, а периметр 36 см. Найти стороны параллелограмма, если его угол D равен 150° (рис. 58).
Решение:
Полупериметр параллелограмма равен 18 см. Если см, то
см.
Тогда
Так как то
По условию Составим и решим уравнение:
По теореме Виета (обратной)
— корни.
Если CD = 8 см, то AD = 10 см, если CD = 10 см, то AD = 8 см.
Ответ: 8 см, 10 см.
Пример №15
Доказать, что площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними, т.е.
Доказательство:
Пусть диагонали и
четырехугольника ABCD (рис. 59) пересекаются в точке О,
Докажем, что
Обозначим Заметим, что
как вертикальные,
по свойству смежных углов. Поэтому
По формуле площади треугольника
у получим:
Утверждение доказано
Среднее пропорциональное (среднее геометрическое) в прямоугольном треугольнике
Если для положительных чисел выполняется пропорция
то число
называется средним пропорциональным чисел а и с (между числами а и с). Из указанной пропорции
откуда
В такой форме записи число
еще называют средним геометрическим чисел а и с.
Пример №16
Число 4 является средним пропорциональным, или средним геометрическим чисел 2 и 8, так как = или
В прямоугольном треугольнике АВС, где , проведем высоту СК (рис. 61). Отрезок АК является проекцией катета АС на гипотенузу, а отрезок ВК — проекцией катета ВС на гипотенузу. Катеты, гипотенуза, высота и проекции катетов на гипотенузу связаны отношениями, которые мы сформулируем в виде следующей теоремы.
Теорема (о среднем пропорциональном в прямоугольном треугольнике).
а) Высота прямоугольного треугольника, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу, т. е. (см. рис. 61).
б) Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу, т. е.
Доказательство:
а)3аметим, что если то
(эти углы дополняют
до 90°) (рис. 62). Из
из
Отсюда
б) Из , из
откуда
Аналогично доказывается, что Теорема доказана.
Обозначив катеты гипотенузу с, высоту
проекции катетов на гипотенузу
(рис. 63), получим следующие формулы:
Пример №17
Найти площадь прямоугольного треугольника, если проекции катетов на гипотенузу равны 2 см и 8 см.
Решение:
Пусть СН — высота прямоугольного треугольника АВС АН = 2 см — проекция катета АС на гипотенузу, НВ = 8 см —
проекция катета СВ на гипотенузу (рис. 64). Так как высота СН есть среднее геометрическое между проекциями катетов на гипотенузу, то
Ответ: 20 см2.
Пример №18
В прямоугольном треугольнике АВС из вершины прямого угла С проведена высота см, АК = 12 см (рис. 65). Найти гипотенузу АВ.
Решение:
Пусть см, тогда
см.
Катет есть среднее пропорциональное между гипотенузой и проекцией катета на гипотенузу. Поэтому т. е.
По теореме Виета (обратной)
По смыслу задачи
Значит, КВ = 3 см, АВ = 15 см.
Ответ: 15 см.
Пример №19
При помощи циркуля и линейки построить отрезок, равный среднему геометрическому отрезков т и п .
Решение:
Пусть даны отрезки т и п . Необходимо построить отрезок
Построение.
1) На произвольной прямой откладываем данные отрезки:
2) На отрезке АВ как на диаметре строим полуокружность, для чего находим середину О отрезка АВ, откуда ОА — радиус данной окружности.
3) Из точки К восстанавливаем перпендикуляр к прямой АВ до пересечения с полуокружностью в точке М (рис. 66).
Отрезок — среднее пропорциональное отрезков
Доказательство:
— прямой как вписанный угол, опирающийся на диаметр. В прямоугольном треугольнике АМВ высота МК является средним пропорциональным проекций катетов AM и МВ на гипотенузу
Повторение*
В 8-м классе мы доказали следующую теорему:
Теорема (о касательной и секущей). Если из одной точки к окружности проведены касательная и секущая, то квадрат отрезка касательной, соединяющего данную точку и точку касания, равен произведению отрезков се кущей, соединяющих данную точку и точки пересечения секущей с окружностью, т. е. (рис. 70).
Как видим, отрезок является средним пропорциональным между отрезками
секущей. Глядя на рисунок 70, вспомните идею доказательства теоремы.
Теорема о площадях треугольников с общим (равным) углом
Площади треугольников, имеющих общий угол (или равный угол), относятся как произведения сторон, заключающих этот угол (рис. 75),
т.е.
Доказательство:
Следствие: Верно:
Пример №20
Площадь треугольника АВС равна 16, АК : КС = 3 :1 , AM : МВ = 1 :2 (рис. 76). Найти
Решение:
Способ 1. По следствию из теоремы о площадях треугольников с общим углом получаем:
Способ 2.
Ответ: 4.
Теорема Менелая
Если дан треугольник АВС и прямая пересекает стороны ВС, АВ и продолжение стороны АС в точках
соответственно (рис. 79), то
Доказательство:
Проведем отрезок Так как
и
(по двум углам), то
и
Перемножив почленно указанные пропорции, получим
откуда
Замечание. При составлении произведения трех отношений теоремы Менелая можно начинать с любой из шести точек (трех вершин треугольника и трех точек пересечения прямой с прямыми, содержащими стороны треугольника) и двигаться по контуру либо по часовой, либо против часовой стрелки. При этом вершины треугольника и точки пересечения должны чередоваться.
Пример №21
В треугольнике АВС на сторонах АВ и АС взяты соответственно точки М и К, такие, что AM : МВ = 2 :1 , АК : КС = 3 :2 . Отрезки СМ и ВК пересекаются в точке О. Найти ВО : ОК.
Решение:
Способ 1 (теорема Менелая). Рассмотрим (рис. 80). Прямая
пересекает две его стороны АВ и ВК соответственно в точках М и О и продолжение третьей стороны АК в точке С. По теореме Менелая
откуда
Способ 2 (теорема Фалеса обобщенная). Проведем (рис. 81). По теореме Фалеса
Тогда АЕ — три части, ЕМ — две части, AM — пять частей, откуда
Но Отсюда
Для
по теореме Фалеса
Ответ:
Пример №22
Дан равнобедренный треугольник АВС (АВ = ВС), площадь которого равна 80. Точка К делит высоту ВН в отношении 1 : 3, считая от основания. Прямая АК пересекает сторону ВС в точке М. Найти площадь четырехугольника НКМС (рис. 82).
Решение:
1) (ВН — высота и медиана треугольника АВС).
2) Применим теорему Менелая к треугольнику НВС.
Прямая AM пересекает его стороны ВН и ВС соответственно в точках К и М и продолжение стороны НС в точке Тогда
Откуда
3)
4)
Ответ: 22.
Неравенство Коши
Среднее арифметическое двух неотрицательных чисел больше либо равно их среднему геометрическому, т. е.
Например, Действительно,
Алгебраическое доказательство указанного неравенства таково. Рассмотрим разность левой и правой частей неравенства Получим:
Так как
при всех допустимых
, то
Следовательно, неравенство
верно.
Неравенство где
называется неравенством Коши по имени известного французского математика и часто используется при решении олимпиадных задач.
Приведем геометрическое доказательство указанного неравенства. Изобразим окружность с диаметром АВ и центром в точке О (рис. 87). На диаметре возьмем точку К (для определенности левее центра О). Пусть Из точки К восстановим перпендикуляр КС, где точка С принадлежит окружности. Проведем радиус ОС. Так как вписанный угол, опирающийся на диаметр, прямой, то
прямоугольный, СК — его высота, проведенная к гипотенузе. По теореме о среднем пропорциональном в прямоугольном треугольнике
. Но радиус ОС равен половине диаметра АВ, т. е.
. В
катет меньше гипотенузы, т. е.
так как катет меньше гипотенузы. Отсюда
Равенство левой и правой частей неравенства достигается, когда точка К совпадает с точкой О и становится равнобедренным и прямоугольным. Поэтому справедливо неравенство
т. е
ЗАПОМИНАЕМ
2. Значения тригонометрических функций углов 30 45°, 60°:
3. Тригонометрические формулы (тождества):
Примеры:
4. Формулы площади треугольника и параллелограмма:
5. Среднее пропорциональное в прямоугольном треугольнике:
- Сумма углов треугольника
- Внешний угол треугольника
- Свойство точек биссектрисы угла
- Свойство катета прямоугольного треугольника, лежащего против угла в 30°
- Угол — определение, виды, как обозначают с примерами
- Перпендикулярные прямые в геометрии
- Признаки равенства треугольников
- Признаки равенства прямоугольных треугольников
Итак, в прошлый раз мы с вами успешно познакомились с тригонометрическими функциями — синусом, косинусом, тангенсом и котангенсом. И чётко уяснили себе следующее:
1. Синус, косинус, тангенс и котангенс — это просто какие-то безразмерные числа. Отношения сторон в прямоугольном треугольнике. Для каждого конкретного угла — свои.
2. Тригонометрические функции крепко-накрепко связаны с углом. Знаем угол — знаем и все его тригонометрические функции. И наоборот.
Если не уяснили эти простые вещи, то добро пожаловать по ссылочке, пока не поздно. А мы продолжаем.
То, что между этой великолепной четвёркой существует тесная связь, не вызывает никаких сомнений. Всякая связь в математике задаётся, чаще всего, формулами. В тригонометрии формул — огромное количество. Это и формулы приведения, и формулы сложения, двойного угла, понижения степени и многие-многие другие.
В этом же уроке мы рассмотрим лишь самые главные из них. Они так и называются — основными тригонометрическими формулами. Их всего шесть.
Вот они:
Здесь «альфа» — какой-то угол.
Эти шесть формул — краеугольный камень всей тригонометрии. То, чего не знать нельзя. Если вы не знаете, чему равен, скажем, косинус тройного угла — не проблема. Никто вас не осудит. Но если вы не знаете, что sin2x+cos2x = 1, то будьте готовы получить заслуженную двойку. Вот так вот.
Сразу предупреждаю, что три последних формулы (4-6) очень часто выпадают из памяти. Почему-то… Можно, конечно, легко вывести эти формулы из первых трёх, но в тревожной боевой обстановке ЕГЭ, когда на карту поставлена ваша дальнейшая судьба… сами понимаете.) Но не переживайте, совсем скоро я вам покажу простой и наглядный способ вывести все эти формулы просто и безошибочно!
Из этих формул сразу видно, что они неразрывно связывают между собой синус, косинус, тангенс и котангенс одного и того же угла. Именно эти формулы нам позволяют находить все тригонометрические функции одного и того же угла, если известна хотя бы одна из них. Причём (важно!) не находя сам угол! Такие задания очень популярны как сами по себе, так и могут быть промежуточным этапом в более серьёзных заданиях. В тригонометрических уравнениях, к примеру. И особенно в высшей математике, в тех же пределах, интегралах, дифференциальных уравнениях и прочих крутых темах.
Кстати говоря, хочу обратить ваше внимание на один частый ляп в неправильном написании тригонометрических функций в степенях — в квадрате, в кубе и так далее.
Например, выражение квадрат синуса (или синус в квадрате) в тригонометрии пишется вот так:
sin2x
Двойка (т.е. степень) в этом случае пишется между углом и названием функции. Эта запись как раз и говорит нам о том, что в квадрат возводится именно сама функция (т.е. в нашем случае — синус).
А вот запись
sin x2
будет говорить уже о том, что в квадрат возводится, не синус угла, а только сам угол! Почувствуйте разницу, что называется.)
Во избежание путаницы, ещё раз (и навсегда!) всё то же самое, но со скобочками:
sin2x = (sin x)2
sin x2 = sin(x2)
Конечно, заниматься возведением углов в квадрат мы в школьной тригонометрии вряд ли будем. За ненадобностью.) Зато возведением функций в квадрат — постоянно. Так что привыкаем, не путаемся и пишем правильно.
Ну что, посмотрим на вывод основных формул? Чтобы всё встало на свои места. Зачем и почему? Да потому, что любая формула запоминается гораздо проще, если есть возможность её «пощупать» в реале, а не механически зазубривать и бездумно принимать на веру, как само собой разумеющееся.) Тем более что это не просто, а очень просто!
Вывод и смысл основных тригонометрических формул.
Первым делом, я снова нарисую наш старый добрый прямоугольный треугольник. Не обязательно по линеечке, по клеточкам, а просто схематично. От руки.
Как-то вот так:
Что нам понадобится ещё для дальнейшей работы?
1. Теорема Пифагора:
a2 + b2 = c2
2. Определения тригонометрических функций:
sin α = a/c
cos α = b/c
tg α = a/b
ctg α = b/a
3. Тождественные преобразования уравнений.
Всё. Вот и все инструменты.
А вот теперь начинается самое весёлое. Сейчас я беру нашу горячо любимую теорему Пифагора a2 + b2 = c2 и… начинаю всячески над ней издеваться, подвергая её всевозможным пыткам.) Результатами пыток станут целых три формулы из нашего списка!
Итак, пытка №1. Берём теорему Пифагора
a2 + b2 = c2
и делим обе части на квадрат гипотенузы. На с2. А чего? Имеем полное право! Любая формула — это тоже уравнение! И к любой формуле применимы все те же тождественные преобразования (перенос вправо/влево, умножение/деление), которые мы проделываем для «обычных» уравнений с иксом.
Что получим:
А вот теперь соображаем, уже из тригонометрии, что же такое a/c? Правильно, синус альфа! Противолежащий катет (a) к гипотенузе (c). А b/c? Косинус альфа! А дробь с2/с2 — это… это… единичка! Как и любое число, делённое само на себя, да. Элементарно, Ватсон!)
Так у нас с вами рождается на свет формула №1:
Эта формула — самая популярная во всей тригонометрии! По-другому её ещё называют основным тригонометрическим тождеством.
Она же, но записанная слегка по-другому (в зависимости от того, что именно надо выразить):
sin2α = 1 — cos2α
cos2α = 1 — sin2α
Эти две модификации формулы №1 весьма и весьма часто применяются в примерах по тригонометрии! Именно они позволяют легко перевращать синусы в косинусы (и наоборот). Имеет смысл запомнить.
А теперь продолжаем мучить теорему Пифагора дальше.) А что если в этот раз поделить обе части не на c2, а, скажем, на b2? Ну разве b2 чем-то хуже?!
Давайте поделим и посмотрим:
И снова соображаем из тригонометрии (и нашего рисунка), что же такое a/b. Верно, тангенс альфа! А c/b? Так сразу и не скажешь… Стоп! Но ведь что такое b/c — это же нам ясно! Это косинус альфа! У нас же в формуле стоит тот же косинус, только перевёрнутый вверх ногами — c/b. Значит, справа в скобках у нас стоит величина, обратная косинусу: 1/cos α.
Итого имеем следующее:
Переписываем в привычном виде и рождаем формулу №5:
А если поделить всё на a2? Верно! Получится шестая формула!
Попробуйте получить самостоятельно, очень полезно.)
Вторая, третья и четвёртая формулы выводятся совсем элементарно, исходя только из определения тригонометрических функций и элементарных действий с дробями. Теорема Пифагора здесь не нужна.
Что, например, у нас получится, если мы просто поделим синус на косинус?
Делим и получаем:
И все дела.) С котангенсом — аналогично.
А если перемножить тангенс и котангенс? Ну-ка, ну-ка…
Вот и вся премудрость. Убедились, насколько всё просто?)
Решение простейших заданий по тригонометрии.
Теория теорией, но нам ведь опыт наращивать надо, верно? Так что пора приступать к задачкам. Всё как всегда — от совсем простых и безобидных до вполне себе серьёзных.
Ну что, приступим?
1. Вычислить значение tg x, если ctg x = 1,25.
Здесь, ясное дело, надо искать формулу, связывающую тангенс и котангенс. Это четвёртая формула. Самое главное — сообразить, что вместо «альфа» можно писать любую другую букву. Лишь бы везде одна и та же была. Для нашего задания будет:
tg x · ctg x = 1
Можно прямо в эту формулу подставить значение ctg x = 1,25:
tg x · 1,25 = 1
Осталось лишь решить это простенькое уравнение. Да-да. Ещё раз подчёркиваю, что любая формула, любое соотношение, соединённое знаком равенства («=»), — это всегда уравнение! А там, где уравнение, там автоматически и тождественные преобразования уравнений, да…
Наше соотношение — это тоже уравнение. Где роль неизвестного играет tg x. Прошу заметить, не икс, а именно весь тангенс целиком! Вас же не смущает уравнение, скажем, y·1,25 = 1? Что вы обычно делаете в таких случаях? Правильно, делите обе части на 1,25, чтобы слева остался чистый игрек. Вот и здесь тоже делим обе части на 1,25, добиваясь слева чистого тангенса.
Делим и получаем:
tg x = 0,8
И все дела. Это и есть верный ответ.
Можно поступить иначе. Сначала выразить из общей формулы тангенс:
tg x = 1/ctg x
А уже теперь подставить вместо ctg x его значение 1,25. Получим то же самое. И так и эдак можно. Разницы — никакой. Но… если осознать смысл этой формулы поглубже, то можно получить очень простой и очень полезный практический приём.
Запоминаем:
Если единицу разделить на котангенс, то получим тангенс. И наоборот, единица, делённая на тангенс, даёт котангенс. Эти две функции взаимно обратны!
Что? Не знаете, как разделить единичку на число? Ну, это вопрос не к тригонометрии. Вопрос к шестому классу, к дробям… Как разделить? Да просто перевернуть это самое число и все дела!
Например:
— если tg x = 3/4, то ctg x = 4/3;
— если ctg x = 2, то tg x = 1/2;
— если tg x = 0,7 = 7/10, то ctg x = 10/7;
— если ctg x = 0,25 = 1/4, то tg x = 4.
И так далее и тому подобное. В общем, вы поняли…)
Продолжаем развлекаться?)
Например, классика жанра:
2. Известно, что β — острый угол в прямоугольном треугольнике.
Найти sinβ, если cosβ = 0,6.
Ищем формулу, связывающую синус и косинус. Это самая первая формула:
sin2β+cos2β = 1
Подставляем в неё известную нам величину 0,6 вместо косинуса:
sin2β+0,62 = 1
И считаем, как обычно:
sin2β+0,36 = 1
sin2β = 1 — 0,36
sin2β = 0,64
Вот, практически, и всё. У нас есть квадрат синуса. А нужен сам синус. Для этого осталось всего лишь извлечь корень и — ответ готов! Корень из 0,64 будет 0,8.
sinβ = 0,8
Задачка почти элементарная. Но словечко «почти» я здесь употребил не случайно. Почему? Дело всё в том, что ответ -0,8 тоже вполне себе подходит: (-0,8)2 тоже будет 0,64.
Два разных ответа получается. А нужен один. Второй — неправильный. Что делать? Да всё как обычно! Внимательно прочитать задание! Там зачем-то сказано: «… если β — острый угол…» А лишних слов в заданиях, как правило, не бывает, да… Именно эти слова — и есть дополнительная информация к решению.
Что такое острый угол? Это угол меньше 90 градусов. А у таких углов все тригонометрические функции (в том числе и синус, да…) всегда положительные. То есть, отрицательный ответ мы здесь просто отбрасываем. Имеем полное право.
Ответ: sinβ = 0,8
Собственно, на данном этапе нам такие тонкости особо не нужны. Пока… Ибо сейчас мы работаем только с прямоугольными треугольниками, где углы могут быть только острые. И не знаем, счастливые, что бывают и отрицательные углы, и углы в 1000 градусов… И у всех этих жутких углов тоже есть свои тригонометрические функции! С плюсом и с минусом. Всё от конкретного угла зависит.
А вот старшеклассникам без учёта знака — никак. К сожалению… Но не будем бежать впереди паровоза. Всему своё время.)
Решаем следующую задачку. Покруче.
Определить косинус острого угла β в прямоугольном треугольнике, если ctgβ = 4/3.
На первый взгляд, всё просто. Но попробуем найти в нашем списке формулу, связывающую котангенс и косинус. Ищем и… Вы правы! Такой формулы нету.) Надо как-то выкручиваться…
Можно работать с шестой формулой:
Подставим в эту формулу значение котангенса и преобразуем:
Выразим из этой пропорции (т.е. тоже уравнения!) квадрат синуса:
sin2β = 9/25
Итак, квадрат синуса у нас есть. Теперь его легко можно превратить в квадрат косинуса по первой формуле:
cos2β = 1 — sin2β
Извлекаем корень и определяем сам косинус:
Читаем ещё раз задание и вспоминаем, что у острого угла все тригонометрические функции всегда положительны. Отбрасываем отрицательное значение и получаем окончательный ответ:
cosβ = 4/5
Это был один способ. Можно решать и по-другому, через пятую формулу:
Для этого нам надо:
1) Превратить котангенс в тангенс по формуле №4;
2) Подставить значение тангенса в формулу;
3) Преобразовать выражение и выразить из него квадрат косинуса;
4) Извлечь корень и получить два значения косинуса;
5) Сообразить (из условия задания), что в прямоугольном треугольнике все тригонометрические функции всегда положительны. Отбросить отрицательный ответ и получить косинус.
Как видим, хрен редьки не слаще, да.) Но это ещё не всё. Для такого решения надо ещё вспомнить эти формулы! А если забыли? Собственно, в этом-то и кроется главная проблема в их применении. Да ещё и куча вычислений… В общем, не подарок…
Без паники! Для таких задачек есть очень простой и, главное, наглядный способ решения! Геометрический.) Читаем, вникаем и запоминаем.
Итак, нам дано: ctgβ = 4/3.
Нарисуем этот котангенс!
Да-да! Схематично. Как? Очень просто! Берём черновик и рисуем любой прямоугольный треугольник. Кривовато, от руки, даже не соблюдая пропорций. У нас не ИЗО и не черчение с вами.) Выбираем любой острый угол и обозначаем его «бета».
Вот так:
Вспоминаем теперь, что котангенс — это отношение прилежащего катета к противолежащему. И ставим на соответствующих катетах их длины. Какие? А какие в нашем котангенсе записаны! 4 и 3. Противолежащий катет a = 3, а прилежащий b = 4.
Кстати, прошу заметить, что реальные размеры треугольника нас совершенно не интересуют! Мы говорим сами себе: «Допустим, прилежащий к углу катет будет 4, а противолежащий — 3″. Тогда котангенс нашего угла β будет как раз 4/3, как и в задании.
Чего ещё нам не хватает для полного счастья? Гипотенузы нам не хватает! Не беда: Пифагор ещё никого не подводил.)
Считаем:
c2 = a2 + b2
c2 = 42 + 32 = 25
c = 5
Итак, гипотенуза равна пяти. Подписываем на картинке.)
А теперь считаем косинус прямо по заклинанию: отношение прилежащего катета к гипотенузе.
cosβ = b/c = 4/5
Всё! Быстро, правда?) Вот такой красивый графический способ-лайт. Безо всяких формул.) Ну… почти. Ведь теорему Пифагора всяко надо знать, да.)
Следующее задание.
Упростите выражение:
Что, внушает? В таких замороченных примерах необходимо понимать, что синусы и косинусы никоим образом не отменяют всей остальной математики. И подчиняются тем же самым общим правилам, что и обычные числа и буквы в алгебре! А именно — разложение на множители, формулы сокращённого умножения, раскрытие скобок, приведение подобных, сокращение дробей и т.п.
Вас же никак не смущает дробь
правда ведь? Хотя кого-то она, возможно, тоже смущает, да…
Естественно, к основным правилам алгебры добавляется ещё и специфика самой тригонометрии, от этого никуда не денешься. Собственно, с этой целью и разбираем соответствующий пример, да.)
Начнём с числителя нашей здоровенной дроби. Забудем на минутку про тригонометрию и прикинем, что там можно сделать, основываясь на обычных правилах алгебры. Да хотя бы вынести один синус за скобки! Верно, давайте вынесем:
sin3x·cos x + sin x·cos3x = sin x (sin2x·cos x+cos3x)
Ой, ещё и косинус вынести можно!
sin x (sin2x·cos x+cos3x) = sin x·cos x (sin2x+cos2x)
Вот так. Самые грамотные вообще сразу целиком вынесут произведение sin x·cos x за скобку. Знания и наблюдательность иногда очень помогают. Если они есть.)
А вот теперь и тригонометрия в дело вступает! Что у нас в скобочках? Да! В скобочках у нас — чистая формула №1. Или основное тригонометрическое тождество:
sin2x+cos2x = 1
От умножения на единичку выражение не меняется. Значит, числитель нашей дроби будет не что иное, как просто sin x·cos x.
Всё. Числитель упростили до упора. Работаем со знаменателем:
(1–sin x)(1+sin x)
А здесь что? Разность ква… Точно! Разность квадратов! Такая родная и знакомая формула:
(a—b)(a+b) = a2 — b2
Под буквой «a» здесь скрывается единичка, а под буквой «b» — выражение sin x. Ну и что? Важно понимать, что под буквами в алгебраических выражениях может скрываться всё что угодно! И числа, и синусы, и логарифмы, и степени — любые сложные выражения! Алгебре все выражения по плечу. Иначе она не была бы алгеброй, да…)
Вот и срабатываем прямо по формуле разности квадратов:
(1–sin x)(1+sin x) = 12 — (sin x)2 = 1 — sin2x
А вот теперь соображаем, уже из тригонометрии, что
1 — sin2x = cos2x
Вставляем упрощённые числитель и знаменатель в нашу дробь, сокращаем что сокращается и получаем:
Казалось бы, всё. В рамках алгебры 7-го класса такая дробь дальнейшему упрощению уже не поддаётся, но алгебра в этом примере и так постаралась на славу. Зато в рамках тригонометрии эта дробь вполне себе упрощается! Что же такое синус поделить на косинус? Тангенс, конечно же! Чистая формула №2.
Вот теперь всё. Значит, окончательный результат упрощения вот такой:
Эффект потрясающий, правда?
Запоминаем:
В тригонометрии очень популярны задания, где надо использовать алгебру 7-го класса. А именно — разложение на множители, формулы сокращённого умножения, раскрытие скобок, приведение подобных, сокращение дробей и т.п. Проверяем замороченные примеры на алгебру 7-го класса!
Ещё из той же оперы:
Докажите тождество:
Напоминаю, что страшная фраза «доказать тождество» всего лишь означает, что надо упростить обе части предлагаемого равенства (или какую-то одну, более сложную) и убедиться, что слева и справа стоит одно и то же выражение.
Вот и пробуем добраться до одинакового выражения! Начинаем с левой части. Превращаем тангенс в отношение синуса к косинусу по второй формуле:
Выражение в скобках превращаем в квадрат косинуса по первой формуле:
Подставляем, сокращаем косинусы и получаем:
Ну вот. Левая часть упрощена по максимуму. С правой частью аналогично — формулы №1 и №3 нам в помощь:
Вот и всё! Слева и справа мы получили совершенно одинаковые выражения! А именно — sinα·cosα. Что и требовалось доказать.)
Итак, самое главное.
Чётко уясняем: тригонометрические функции (синус, косинус, тангенс и котангенс) одного угла неразрывно связаны между собой основными тригонометрическими формулами. Если нам известна хотя бы одна из функций — значит, можно (при наличии необходимой дополнительной информации) вычислить и все остальные!
А теперь порешаем, как обычно.
Простенькие задачки:
1. Косинус острого угла равен 7/25. Найдите синус этого угла.
2. Известно, что β — угол в прямоугольном треугольнике. Найти tgβ, если sinβ = 15/17.
3. Найдите косинус острого угла A, если известно, что ctg A = 2,4.
Покруче:
4. Найдите значение выражения 4cos213° — 4 + 4sin213°.
5. Упростите выражение и найдите его значение, если sinβ = 1:
И совсем круто:
6. Известно, что tg y = 3. Найдите значение выражения:
Что, страшно? Мы такого не решали? Да, не решали. Но и самим поразмышлять тоже иногда полезно, да.) Подсказка: основное свойство дроби вам в помощь! Ну и формула №2 для тангенса, само собой.)
Ответы (в традиционном беспорядке):
Соотношения между тригонометрическими функциями с одинаковыми значениями аргумента
tanz=sinz/cosz ,(cosz)2+(sinz)2=1 ,
tan z =sin z /cos z ;,
qquad
(cos z)^2 +(sin z)^2 =1 ;,
1+(tanz)2=(cosz)−2 ,1+(tanz)−2=(sinz)−2 .
1 +(tan z)^2 =(cos z)^{-2} ;,
qquad
1 +(tan z)^{-2} =(sin z)^{-2} ;.
Формулы b), c) и d) позволяют выразить через любую из трех функций cosxcos x, sinxsin x, tanxtan x две другие данные функции с точностью до знака:
cosz=±1−(sinz)2=±11+(tanz)2=±1/tanz1+(1/tanz)2 ,
cos z =pm sqrt{1 -(sin z)^2}
=pm frac{1}{ sqrt{1 +(tan z)^2} }
=pm frac{1/tan z}{ sqrt{1 +(1/tan z)^2} } ;,
sinz=±1−(cosz)2=±tanz1+(tanz)2=±11+(1/tanz)2 ,
sin z =pm sqrt{1 -(cos z)^2}
=pm frac{tan z}{ sqrt{1 +(tan z)^2} }
=pm frac{1}{ sqrt{1 +(1/tan z)^2} } ;,
tanz=±1−(cosz)2cosz=±sinz1−(sinz)2 .
tan z =pm frac{ sqrt{1 -(cos z)^2} }{cos z}
=pm frac{sin z}{ sqrt{1 -(sin z)^2} } ;.
Формулы приведения
Следующие соотношения представляют собой частные случаи форул сложения (см. пункт 3); они позволяют выражать значения тригонометрических функций для любого значения аргумента zz, учитывая четность и периодичность соответствующей функции, через значения тригонометрических функций от аргумента z′z’, удовлетворяющего условию 0≤Rez′<π/40le text{Re} z'< pi/4. В частности, значения тригонометрических функций от произвольного действительного аргумента могут быть выражены через значения функций от аргумента, заключенного между 00 и π/4pi/4.
cos(π+z)=−cosz ,sin(π+z)=−sinz ,
cos(pi +z) =-cos z ;,qquad
sin(pi +z) =-sin z ;,
cos(π/2−z)=sinz ,sin(π/2−z)=cosz ,
cos(pi/2 -z) =sin z ;,qquad
sin(pi/2 -z) =cos z ;,
tan(π/2−z)=1/tanz .
tan(pi/2 -z) =1/tan z ;.
С помощью данных формул можно составить таблицу формул приведения (см. таблицу 1).
Таблица 1. Формулы приведения для тригонометрических функций
z′=π/2±zz’ =pi/2 pm z | z′=π±zz’ =pi pm z | z′=(3/2) π±zz’ =(3/2) ,pi pm z | z′=2π±zz’ =2pi pm z | |
---|---|---|---|---|
cosz′cos z’ | ∓sinzmp sin z | −cosz-cos z | ±sinzpm sin z | coszcos z |
sinz′sin z’ | coszcos z | ∓sinzmp sin z | −cosz-cos z | ±sinzpm sin z |
tanz′tan z’ | ∓1/tanzmp 1/tan z | ±tanzpm tan z | ∓1/tanzmp 1/tan z | ±tanzpm tan z |
Формулы сложения для тригонометрических функций
cos(z1+z2)=cosz1⋅cosz2−sinz1⋅sinz2 ,
cos(z_1 +z_2) =cos z_1 cdot cos z_2 -sin z_1 cdot sin z_2 ;,
cos(z1−z2)=cosz1⋅cosz2+sinz1⋅sinz2 ,
cos(z_1 -z_2) =cos z_1 cdot cos z_2 +sin z_1 cdot sin z_2 ;,
sin(z1+z2)=sinz1⋅cosz2+cosz1⋅sinz2 ,
sin(z_1 +z_2) =sin z_1cdot cos z_2 +cos z_1 cdot sin z_2 ;,
sin(z1−z2)=sinz1⋅cosz2−cosz1⋅sinz2 ,
sin(z_1 -z_2) =sin z_1 cdot cos z_2 -cos z_1 cdot sin z_2 ;,
tan(z1+z2)=tanz1+tanz21−tanz1⋅tanz2 ,
tan(z_1 +z_2) =frac{ tan z_1 +tan z_2 }{ 1 -tan z_1 cdot tan z_2 } ;,
tan(z1−z2)=tanz1−tanz21+tanz1⋅tanz2 .
tan(z_1 -z_2) =frac{tan z_1 -tan z_2 }{ 1 +tan z_1 cdot tan z_2 } ;.
Если z1=x2z_1=x_2 и z2=x2z_2=x_2 – действительные переменные, то формулы сложения для косинуса и синуса легко получить приравнивая действительные и мнимые части соотношения
cos(x1+x2)+i⋅sin(x1+x2)==(cosx1+i⋅sinx1)⋅(cosx2+i⋅sinx2) .
cos(x_1+x_2) + icdot sin(x_1+x_2) =
\
=bigl(cos x_1 + icdot sin x_1bigr)cdot
bigl(cos x_2 +icdot sin x_2bigr) ;.
(которое следует из равентсва exp(i (x1+x2))=exp(i x1)⋅exp(i x2)expbigl(i,(x_1 +x_2)bigr) =exp(i,x_1)cdot exp(i,x_2)). С помощью принципа аналического продолжения результат обобщается на случай произвольных ограниченных комплексных значений z1z_1 и z2z_2.
Если u(z)=α cosz+β sinzu(z) =alpha ,cos z +beta ,sin z, где αalpha, β=constbeta =text{const}, и u′(z)=(d/dz) u(z)u'(z) =(d/d z) ,u(z), то
u(z1+z2)=u(z1)⋅cosz2+u′(z1)⋅sinz2 ,u(z_1 +z_2) = u(z_1)cdot cos z_2 +u'(z_1)cdot sin z_2 ;,
u(z1−z2)=u(z1)⋅cosz2−u′(z1)⋅sinz2 .
u(z_1 -z_2) = u(z_1)cdot cos z_2 -u'(z_1)cdot sin z_2 ; ;.
Дополнительные формулы сложения для тангенса:
tan(z1+z2)=sin(2 z1)+sin(2 z2)cos(2 z1)+cos(2 z2) ,
tan(z_1 +z_2) = frac{sin(2 ,z_1) +sin(2 ,z_2)}{cos(2 ,z_1) +cos(2 ,z_2)} ;,
tan(z1+z2)=cos(2 z2)−cos(2 z1)sin(2 z1)−sin(2 z2) .
tan(z_1 +z_2) = frac{cos(2 ,z_2) -cos(2 ,z_1)}{sin(2 ,z_1) -sin(2 ,z_2)} ;.
Данные формулы можно использовать при определении действительной и мнимой частей функций tanztan z и 1/tanz1/tan z комплексного аргумента.
Формулы e) и f) можно получить следующим образом:
tan(z1+z2)=sin(z1+z2)cos(z1+z2)=2 sin(z1+z2)⋅cos(z1−z2)2 cos(z1+z2)⋅cos(z1−z2)=… ,
tan(z_1 +z_2) =frac{sin(z_1 +z_2)}{cos(z_1 +z_2)}
=frac{2 ,sin(z_1 +z_2)cdot cos(z_1 -z_2)}{2 ,cos(z_1 +z_2)cdot cos(z_1 -z_2)} =… ;,
tan(z1+z2)=sin(z1+z2)cos(z1+z2)=2 sin(z1+z2)⋅sin(z1−z2)2 cos(z1+z2)⋅sin(z1−z2)=… ,
tan(z_1 +z_2) =frac{sin(z_1 +z_2)}{cos(z_1 +z_2)}
=frac{2 ,sin(z_1 +z_2)cdot sin(z_1 -z_2)}{2 ,cos(z_1 +z_2)cdot sin(z_1 -z_2)} =… ;,
откуда следует необходимый результат.
Тригонометрические функции двойного и половинного аргумента
cos(2z)=(cosz)2−(sinz)2=1−(tanz)21+(tanz)2 ,
cos(2 z) =(cos z)^2 -(sin z)^2 =frac{1 -(tan z)^2}{1 +(tan z)^2 } ;,
sin(2z)=2 sinz cosz=2 tanz1+(tanz)2 ,
sin(2 z) =2,sin z ,cos z =frac{2,tan z}{1 +(tan z)^2} ;,
tan(2z)=2 tanz1−(tanz)2 ,
tan(2 z) =frac{2,tan z}{1 -(tan z)^2} ;,
2 (cos(z/2))2=1+cosz ,
2,bigl(cos(z/2)bigr)^2 =1 +cos z ;,
2 (sin(z/2))2=1−cosz ,
2,bigl(sin(z/2)bigr)^2 =1 -cos z ;,
tan(z/2)=sinz1+cosz=1−coszsinz .
tan(z/2) =frac{sin z}{1 +cos z} =frac{1 -cos z}{sin z} ;.
Если f(z)f(z) – рациональная или дробно-рациональная функция от coszcos z и sinzsin z, то с помощью формул a) и b) ее можно представить в виде дробно-рациональной функции одной переменной ξ=tan(z/2)xi=tan(z/2). Поэтому при решении уравнения f(z)=0f(z)=0 часто оказывается целесообразной замена независимой переменной по формуле ξ=tan(z/2)xi=tan(z/2). Аналогичная замена переменной может применяться при интегрировании функции f(z)f(z).
Формулы для кратных значений аргумента
Пусть mm – целое положительное число.
cos(mz)=Tm(cosz) ,sin(mz)=1m sinz⋅Tm′(cosz) ,
cos(m z) =T_m (cos z) ;,qquad
sin(m z) =frac{1}{m} ,sin z cdot T’_m (cos z) ;,
где Tm(ξ)T_m(xi) и Tm′(ξ)T’_m(xi) – полиномы Чебышева и их производные.
cos(m z)=∑k=0m/2(−1)k Cm2k⋅(cosz)m−2k⋅(sinz)2k
cos(m ,z) = sum_{k=0}^{m/2}
(-1)^k ,C_m^{2 k}cdot bigl(cos zbigr)^{m -2 k}cdot bigl(sin zbigr)^{2 k}
=(cosz)m−Cm2⋅(cosz)m−2⋅(sinz)2
= (cos z)^m -C_m^2 cdot (cos z)^{m-2}cdot (sin z)^2
+Cm4⋅(cosz)m−4⋅(sinz)4−… ;
+C_m^4 cdot (cos z)^{m-4}cdot (sin z)^4 -… ;;
sin(m z)=∑k=0(m−1)/2(−1)k Cm2k+1⋅(cosz)m−2k−1⋅(sinz)2k+1
sin(m,z) = sum_{k=0}^{(m-1)/2}
(-1)^k ,C_m^{2 k +1}cdot (cos z)^{m -2 k -1}cdot (sin z)^{2 k +1}
=Cm1⋅(cosz)m−1⋅sinz−Cm3⋅(cosz)m−3⋅(sinz)3
= C_m^1 cdot (cos z)^{m-1}cdot sin z
-C_m^3 cdot (cos z)^{m-3}cdot (sin z)^3
+Cm5⋅(cosz)m−5⋅(sinz)5−… ;
+C_m^5 cdot (cos z)^{m-5}cdot (sin z)^5 -… ;;
tan(m z)=∑k(−1)k Cm2k+1⋅(tanz)2k+1∑k(−1)k Cm2k⋅(tanz)2k
tan(m ,z)
= frac{ sum_k (-1)^k ,C_m^{2 k +1}cdot (tan z)^{2 k +1} }
{ sum_k (-1)^k ,C_m^{2 k}cdot (tan z)^{2 k} }
=Cm1⋅tanz−Cm3⋅(tanz)3+Cm5⋅(tanz)5−…1−Cm2⋅(tanz)2+Cm4⋅(tanz)4−… .
= frac{ C_m^1 cdot tan z -C_m^3 cdot (tan z)^3 +C_m^5 cdot (tan z)^5 -… }
{ 1 -C_m^2 cdot (tan z)^2 +C_m^4 cdot (tan z)^4 -… } ;.
Если z=xz=x – действительная переменная, то формулы для кратных значений аргумента косинуса и синуса легко получить приравнивая действительные и мнимые части соотношения
cos(m x)+i sin(m x)=(cosx+i sinx)m
cos(m,x) + i,sin(m,x)
=bigl(cos x + i,sin xbigr)^m
=∑k=0mCmk⋅(cosx)m−k⋅(i sinx)k .
=sum_{k=0}^{m} C_m^k cdot (cos x)^{m-k}cdot (i,sin x)^k ;.
(которое следует из равентсва eimx=(eix)me^{imx}=bigl(e^{ix}bigr)^m). Спомощью принципа аналического продолжения результат обобщается на случай произвольного ограниченного комплексного значения zz.
Степени тригонометрических функций
a) Если mm – нечетное положительное число, то
(cosz)m=(1/2)m−1 ∑k=0(m−1)/2Cmk⋅cos((m−2k) z) ,(sinz)m=(−1)(m−1)/2⋅(1/2)m−1 ∑k=0(m−1)/2(−1)k Cmk⋅sin((m−2k) z) .
(cos z)^m = (1/2)^{m-1} ,sum_{k=0}^{(m-1)/2}
C_m^k cdot cosbigl((m -2 k) ,zbigr) ;,
\
(sin z)^m = (-1)^{(m-1)/2}cdot (1/2)^{m-1} ,sum_{k=0}^{(m-1)/2}
(-1)^k ,C_m^k cdot sinbigl((m -2 k) ,zbigr) ;.
b) Если mm – четное неотрицательное число, то
(cosz)m=(1/2)m−1 ∑k=0(m−2)/2Cmk⋅cos((m−2k) z)+(1/2)m⋅Cmm/2 ,
(cos z)^m = (1/2)^{m-1} ,sum_{k=0}^{(m-2)/2}
C_m^k cdot cosbigl((m -2 k) ,zbigr)
+(1/2)^m cdot C_m^{m/2} ;,
(sinz)m=(−1)m/2⋅(1/2)m−1 ∑k=0(m−2)/2(−1)k⋅Cmk⋅cos((m−2k) z)
(sin z)^m = (-1)^{m/2}cdot (1/2)^{m-1} ,sum_{k=0}^{(m-2)/2}
(-1)^k cdot C_m^k cdot cosbigl((m -2 k) ,zbigr)
+(1/2)m⋅Cmm/2 .
+(1/2)^m cdot C_m^{m/2} ;.
Выражение сумм тригонометрических функций через произведения некоторых других тригонометрических функций
Обозначим
ξ≡(z1+z2)/2иη≡(z1−z2)/2 .
xi equiv (z_1 +z_2)/2 quadtext{и} quad eta equiv (z_1 -z_2)/2 ;.
Тогда
Формулы для косинусов и синусов:
cosz1+cosz2=2 cosξ⋅cosη ,
cos z_1 +cos z_2 = 2 ,cos xi cdot cos eta ;,
cosz1−cosz2=−2 sinξ⋅sinη ,
cos z_1 -cos z_2 = -2 ,sin xi cdot sin eta ;,
sinz1+sinz2=2 sinξ⋅cosη ,
sin z_1 +sin z_2 = 2 ,sin xi cdot cos eta ;,
sinz1−sinz2=2 cosξ⋅sinη .
sin z_1 -sin z_2 = 2 ,cos xi cdot sin eta ;.
Формулы для линейной комбинации косинуса и синуса: если u(z)=α cosz+β sinzu(z) =alpha ,cos z +beta ,sin z, где αalpha, β=constbeta =text{const}, и u′(z)=(d/dz) u(z)u'(z) =(d/d z) ,u(z), то
u(z1)+u(z2)=2 u(ξ)⋅cosη ,
u(z_1) +u(z_2) = 2 ,u(xi)cdot cos eta ;,
u(z1)−u(z2)=2 u′(ξ)⋅sinη .
u(z_1) -u(z_2) = 2 ,u'(xi)cdot sin eta ;.
Формулы для тангенсов:
tanz1+tanz2=sin(z1+z2)cosz1⋅cosz2 ,
tan z_1 +tan z_2 = frac{ sin(z_1 +z_2) }{ cos z_1 cdot cos z_2 } ;,
tanz1+1/tanz2=cos(z1−z2)cosz1⋅sinz2 ,
tan z_1 +1/tan z_2 = frac{ cos(z_1 -z_2) }{ cos z_1 cdot sin z_2 } ;,
1/tanz1+1/tanz2=sin(z1+z2)sinz1⋅sinz2 .
1/tan z_1 +1/tan z_2 = frac{ sin(z_1 +z_2) }{ sin z_1 cdot sin z_2 } ;.
Выражение произведений тригонометрических функций через суммы некоторых других тригонометрических функций
Произведения двух функций:
2 cosz1 cosz2=cos(z1+z2)+cos(z1−z2) ,
2 ,cos z_1 ,cos z_2 =cos(z_1 +z_2) +cos(z_1 -z_2) ;,
2 sinz1 sinz2=cos(z1−z2)−cos(z1+z2) ,
2 ,sin z_1 ,sin z_2 =cos(z_1 -z_2) -cos(z_1 +z_2) ;,
2 cosz1 sinz2=sin(z1+z2)−sin(z1−z2) .
2 ,cos z_1 ,sin z_2 =sin(z_1 +z_2) -sin(z_1 -z_2) ;.
Данные формулы удобно использовать, в частности, при интегрировании.
Произведения трех функций:
4 cosz1 cosz2 cosz3=cos(z1+z2+z3)+cos(z1+z2−z3)
4 ,cos z_1 ,cos z_2 ,cos z_3
=cos(z_1 +z_2 +z_3) +cos(z_1 +z_2 -z_3)
+cos(z2+z3−z1)+cos(z3+z1−z2) ,
+cos(z_2 +z_3 -z_1) +cos(z_3 +z_1 -z_2) ;,
4 cosz1 cosz2 sinz3=sin(z1+z2+z3)−sin(z1+z2−z3)
4 ,cos z_1 ,cos z_2 ,sin z_3
=sin(z_1 +z_2 +z_3) -sin(z_1 +z_2 -z_3)
+sin(z2+z3−z1)+sin(z3+z1−z2) ,
+sin(z_2 +z_3 -z_1) +sin(z_3 +z_1 -z_2) ;,
4 cosz1 sinz2 sinz3=−cos(z1+z2+z3)+cos(z1+z2−z3)
4 ,cos z_1 ,sin z_2 ,sin z_3
=-cos(z_1 +z_2 +z_3) +cos(z_1 +z_2 -z_3)
−cos(z2+z3−z1)+cos(z3+z1−z2) ,
-cos(z_2 +z_3 -z_1) +cos(z_3 +z_1 -z_2) ;,
4 sinz1⋅sinz2⋅sinz3=−sin(z1+z2+z3)+sin(z1+z2−z3)
4 ,sin z_1 cdot sin z_2 cdot sin z_3
=-sin(z_1 +z_2 +z_3) +sin(z_1 +z_2 -z_3)
+sin(z2+z3−z1)+sin(z3+z1−z2) .
+sin(z_2 +z_3 -z_1) +sin(z_3 +z_1 -z_2) ;.
Дополнительные соотношения:
cos(z1+z2)⋅cos(z1−z2)=(cosz2)2−(sinz1)2 ,
cos(z_1 +z_2)cdot cos(z_1 -z_2) =(cos z_2)^2 -(sin z_1)^2 ;,
sin(z1+z2)⋅sin(z1−z2)=(cosz2)2−(cosz1)2 .
sin(z_1 +z_2)cdot sin(z_1 -z_2) =(cos z_2)^2 -(cos z_1)^2 ;.
Неравенства
sinx≤x≤tanx(0≤x≤2π/4) ,
sin x le x le tan x
qquad (0 le x le 2pi/4) ;,
cosx≤x−1⋅sinx≤1(0≤x≤π) ,
cos x le x^{-1}cdot sin x le 1
qquad (0 le x le pi) ;,
x−1⋅sin(x⋅π/2)>1(−1≤x≤1) ,
x^{-1}cdot sinbigl(xcdot pi/2bigr) > 1
qquad (-1 le x le 1 ) ;,
π<x−1(1−x)−1⋅sin(π x)≤4(0≤x≤1) ,
pi < x^{-1}(1-x)^{-1}cdot sin(pi ,x) le 4
qquad (0 le x le 1) ;,
1−cosx<x2/2<1/cosx−1(∣x∣<π/2 , x≠0) ,
1-cos x < x^2/2 < 1/cos x -1
qquad (|x|< pi/2 ;,; xne 0) ;,
∣sinh(Im z)∣≤∣cosz∣≤∣cosh(Im z)∣ ,
|sinh(text{Im}, z)| le |cos z| le |cosh(text{Im}, z)| ;,
∣sinh(Im z)∣≤∣sinz∣≤∣cosh(Im z)∣ .
|sinh(text{Im}, z)| le |sin z| le |cosh(text{Im}, z)| ;.