Как найти собственные числа матрицы примеры

Нахождение собственных чисел и собственных
векторов матриц

        Теорема
19.1   Собственными
числами матрицы
являются
корни уравнения

и только они.

        Доказательство.    
Пусть столбец
 —
собственный вектор матрицы
с
собственным числом
.
Тогда, по определению,
.
Это равенство можно переписать в виде
.
Так как для единичной матрицы
выполнено
,
то
.
По свойству матричного умножения
и
предыдущее равенство принимает вид

(19.4)

Допустим, что определитель матрицы
отличен
от нуля,
.
Тогда у этой матрицы существует обратная
.
Из равенства (19.4)
получим, что
,
что противоречит определению собственного
вектора. Значит, предположение, что
,
неверно, то есть все собственные числа
должны являться корнями уравнения
.

Пусть
 —
корень уравнения
.
Тогда базисный минор матрицы
не
может совпадать с определителем матрицы
и поэтому
,
 —
порядок матрицы
.
Уравнение (19.4)
является матричной записью однородной
системы линейных уравнений с неизвестными
,
являющимися элементами матрицы-столбца
.
По  теореме
15.3
число решений в фундаментальной
системе решений равно
,
что больше нуля. Таким образом,
система (19.4)
имеет хотя бы одно ненулевое решение,
то есть числу
соответствует
хотя бы один собственный вектор матрицы
.
    

Определитель
является
многочленом степени
от
переменного
,
так как при вычислении определителя
никаких арифметических действий кроме
сложения, вычитания и умножения выполнять
не приходится.

        Определение
19.5   Матрица
называется
характеристической матрицей матрицы
,
многочлен
называется
характеристическим многочленом матрицы
,
уравнение
называется
характеристическим уравнением матрицы
.
        

        Пример 19.10
  Найдите собственные числа и
собственные векторы матрицы

Решение. Составляем характеристическую
матрицу
:

Находим характеристический многочлен

Решим характеристическое уравнение

Подбором находим, что один корень
уравнения равен
.
Есть теорема, которая говорит, что если
число
является
корнем многочлена
,
то многочлен
делится
на разность
,
то есть
,
где
 —
многочлен. В соответствии с этой теоремой
многочлен
должен
делиться на
.
Выделим в характеристическом многочлене
этот множитель
:

Находим корни трехчлена
.
Они равны
и
3. Таким образом,

 —
корень кратности 2 17.7 b,
 —
простой корень. Итак, собственные числа
матрицы
равны
,
.
Найдем соответствующие им собственные
векторы.

Пусть
,
тогда для собственного вектора
получаем
матричное уравнение

что соответствует системе уравнений

Решаем ее методом Гаусса (раздел «Алгоритм
нахождения решений произвольной системы
линейных уравнений (метод Гаусса)»
).
Выписываем расширенную матрицу системы

Первую строку, умноженную на числа
и
прибавляем
соответственно ко второй и третьей
строкам

Меняем местами вторую и третью строки

Возвращаемся к системе уравнений

Базисный минор матрицы
находится
в первых двух столбцах и первых двух
строках, ранг равен 2. Поэтому фундаментальня
система содержит только одно решение.
Переменные
и
оставляем
в левой части, а переменное
переносим
в правую часть

Полагаем
,
находим
,
.
Итак, собственному числу
соответствует
собственный вектор
.

Пусть
,
тогда для собственного вектора
получаем
матричное уравнение

что соответствует системе уравнений

Решаем ее методом Гаусса. Выписываем
расширенную матрицу

Первую строку умножаем на числа 2 и 3 и
прибавляем соответственно ко второй и
третьей строкам

Вторую строку умножаем на
и
прибавляем к третьей

Возвращаемся к системе уравнений

Базисный минор матрицы
находится
в первых двух столбцах и первых двух
строках, ранг равен 2. Поэтому фундаментальная
система содержит только одно решение.
Переменные
и
оставляем
в левой части, а переменное
переносим
в правую часть

Полагаем
,
находим
,
.
Итак, собственному числу
соответствует
собственный вектор
.
Чтобы избавиться от дроби, умножим
собственный вектор на 2, получим
собственный вектор с тем же самым
собственным числом. В итоге собственному
числу
соответствует
собственный вектор
.

Ответ: Собственные числа:
,
,
соответствующие собственные векторы:
,
.
        

Соседние файлы в папке Анал_Геом

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Математический портал

Nav view search

Navigation

Search

  • Вы здесь:
  • Home
  • Векторная алгебра.
  • Собственные числа и вектора матриц. Методы их нахождения

Собственные числа и вектора матриц. Методы их нахождения.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Пусть число $lambda$ и вектор $xin L, xneq 0$ таковы, что $$Ax=lambda x.qquadqquadqquadqquadqquad(1)$$ Тогда число $lambda$ называется собственным числом линейного оператора $A,$ а вектор $x$ собственным вектором этого оператора, соответствующим собственному числу $lambda.$

В конечномерном пространстве $L_n$ векторное равенство (1) эквивалентно матричному равенству $$(A-lambda E)X=0,,,,, Xneq 0.qquadqquadquadquad (2)$$

Отсюда следует, что число $lambda$ есть собственное число оператора $A$ в том и только том случае, когда детерминант $det(A-lambda E)=0,$ т. е. $lambda$ есть корень многочлена $p(lambda)=det(A-lambda E),$ называемого характеристическим многочленом оператора $A.$ Столбец координат $X$ любого собственного вектора соответствующего собственному числу $lambda$ есть нетривиальное решение однородной системы (2).

Примеры.

Найти собственные числа и собственные векторы линейных операторов, заданных своими матрицами.

Решение.

Найдем собственные вектора заданного линейного оператора. Число $lambda$ есть собственное число оператора $A$ в том и только том случае, когда $det(A-lambda E)=0.$ Запишем характеристическое уравнение:

$$det(A-lambda E)=begin2-lambda&-1&2\5&-3-lambda&3\-1&0&-2-lambdaend=$$ $$=(2-lambda)(-3-lambda)(-2-lambda)+3+2(-3-lambda)+5(-2-lambda)=$$ $$=-lambda^3-3lambda^2+4lambda+12+3-6-2lambda-10-5lambda=-lambda^3-3lambda^2-3lambda-1=0.$$

Решим найденное уравнение, чтобы найти собственные числа.

$$lambda^3+3lambda^2+3lambda+1=(lambda^3+1)+3lambda(lambda+1)=$$ $$=(lambda+1)(lambda^2-lambda+1)+3lambda(lambda+1)=(lambda+1)(lambda^2-lambda+1+3lambda)=$$ $$=(lambda+1)(lambda^2+2lambda+1)=(lambda+1)^3=0Rightarrow lambda=-1.$$

Собственный вектор для собственного числа $lambda=-1$ найдем из системы $$(A-lambda E)X=0, Xneq 0, Rightarrow (A+E)X=0, Xneq 0$$

Решим однородную систему уравнений:

Вычислим ранг матрицы коэффициентов $A=begin3&-1&2\5&-2&3\-1&0&-1end$ методом окаймляющих миноров:

Фиксируем минор отличный от нуля второго порядка $M_2=begin3&-1\5&-2end=-6+5=-1neq 0.$

Таким образом ранг матрицы $A$ равен двум.

Выберем в качестве базисного минор $M=begin3&-1\5&-2end=-1neq 0.$ Тогда, полагая $x_3=c,$ получаем: $$left<begin3x_1-x_2+2с=0\ 5x_1-2x_2+3с=0endright.Rightarrowleft<begin3x_1-x_2=-2c\5x_1-2x_2=-3cendright.$$

По правилу Крамера находим $x_1$ и $x_2:$

Таким образом, общее решение системы $X(c)=begin-c\-c\cend.$

Из общего решения находим фундаментальную систему решений: $E=X(1)=begin-1\-1\1end.$

С использованием фундаментальной системы решений, общее решение может быть записано в виде $X(c)=cE.$

Ответ: $lambda=-1;$ $X=cbegin-1\-1\1end, cneq 0.$

Решение.

Найдем собственные вектора заданного линейного оператора. Число $lambda$ есть собственное число оператора $A$ в том и только том случае, когда $det(A-lambda E)=0.$ Запишем характеристическое уравнение:

$$det(A-lambda E)=begin-lambda&-1&0\1&1-lambda&-2\1&-1&-lambdaend=$$ $$=-lambda(1-lambda)(-lambda)+2-lambda+2lambda=$$ $$=-lambda^3+lambda^2+lambda+2=0.$$

Решим найденное уравнение, чтобы найти собственные числа.

Собственный вектор для собственного числа $lambda=2$ найдем из системы $$(A-lambda E)X=0, Xneq 0, Rightarrow (A-2E)X=0, Xneq 0$$

Решим однородную систему уравнений:

Вычислим ранг матрицы коэффициентов $A=begin-2&-1&0\1&-1&-2\1&-1&-2end$ методом окаймляющих миноров:

Фиксируем минор отличный от нуля второго порядка $M_2=begin-2&-1\1&-1end=2+1=3neq 0.$

Таким образом ранг матрицы $A$ равен двум.

Выберем в качестве базисного минор $M=begin-2&-1\1&-1end=3neq 0.$ Тогда, полагая $x_3=c,$ получаем: $$left<begin-2x_1-x_2=0\ x_1-x_2-2с=0endright.Rightarrowleft<begin-2x_1-x_2=0\x_1-x_2=2cendright.$$

По правилу Крамера находим $x_1$ и $x_2:$

Таким образом, общее решение системы $X(c)=beginfrac<2c><3>\-frac<4c><3>\cend.$

Из общего решения находим фундаментальную систему решений: $E=X(1)=beginfrac<2><3>\-frac<4><3>\1end.$

С использованием фундаментальной системы решений, общее решение может быть записано в виде $X(c)=cE.$ Переобозначив постоянную, $alpha=3c,$ получаем собственный вектор $X=alphabegin2\-4\3end, alphaneq 0.$

Домашнее задание.

Найти собственные числа и собственные векторы линейных операторов, заданных своими матрицами.

Ответ: $lambda=2;$ $X=c_1begin1\2\0end+c_2begin0\0\1end, $c_1$ и $ c_2$ не равны одновременно нулю.

VMath

Инструменты сайта

Основное

Навигация

Информация

Действия

Содержание

Характеристический полином, собственные числа, собственные векторы матрицы

В настоящем разделе $ n_<> $ означает порядок квадратной матрицы $ A_<> $.

Характеристический полином

определяется для произвольной квадратной матрицы $ A_<> $ как 1) $ det (A_<>-lambda E) $, где $ E_<> $ – единичная матрица одинакового с $ A_<> $ порядка.

Пример. Для $ n=2_<> $:

Теорема 1.

Пример. Характеристический полином матрицы Фробениуса

$$ mathfrak F= left( begin 0 & 1 & 0 & 0 & dots & 0 & 0 \ 0 & 0 & 1 & 0 & dots & 0 & 0 \ 0 & 0 & 0 & 1 & dots & 0 & 0 \ vdots& &&&ddots & & vdots \ 0 & 0 & 0 & 0 & dots & 0 & 1 \ a_n & a_ & a_ & & dots & a_2 & a_1 end right)_ $$ равен $ (-1)^n(lambda^n-a_1lambda^-dots-a_) $.

Характеристический полином линейного оператора

определяется как характеристический полином матрицы этого оператора в произвольном базисе линейного пространства, в котором этот оператор задан. Подробнее ☞ ЗДЕСЬ.

Характеристический полином линейного однородного разностного уравнения

$ n_<> $-го порядка $$ x_=a_1 x_+ dots+ a_n x_K, quad a_n ne 0, $$ определяется как $$ lambda^n — a_1 lambda^ — dots — a_n . $$ Подробнее ☞ ЗДЕСЬ.

Свойства

Теорема 2. Характеристический полином матрицы не меняется

1. при ее транспонировании: $$ det (A-lambda E) = det (A^<top>-lambda E_<>) , ;$$ 2. при переходе к подобной матрице: если $ B=C^<-1>AC^<> $ при произвольной неособенной матрице $ C_<> $, то $$ det (A-lambda E) equiv det (B-lambda E_<>) , . $$

Теорема 3. Пусть матрица $ A_<> $ имеет порядок $ mtimes n_<> $, а $ B_<> $ — порядок $ ntimes m_<> $. Тогда эти матрицы допускают умножение в любом порядке, т.е. определены $ AB_<> $ и $ BA_<> $ и оба произведения будут квадратными матрицами — порядков $ m_<> $ и $ n_<> $ соответственно. Тогда характеристические полиномы этих произведений различаются лишь на степень $ lambda_<> $:

$$ lambda^n det (AB — lambda E_)equiv lambda^m det (BA — lambda E_) . $$

Если матрицы $ A_<> $ и $ B_<> $ — квадратные одинакового порядка, то характеристические полиномы матриц $ AB_<> $ и $ BA_<> $ тождественны.

Теорема 4. Если характеристический полином матрицы $ A_<> $ равен

$$ f(lambda)=(-1)^n lambda^n+a_1lambda^+dots+a_lambda+a_n $$ и $ a_ ne 0 $, то характеристический полином матрицы $ A^<-1>_<> $ равен $$ f^<ast>(lambda)=frac<(-lambda)^n> f(1/lambda) = frac<(-1)^n> left[ (-1)^n+a_1 lambda + dots+ a_lambda^+a_nlambda^ right] . $$

Теорема Гамильтона-Кэли

Теорема 5. Результатом подстановки в характеристический полином $ det (A_<>-lambda E) $ самой матрицы $ A_<> $ будет нулевая матрица:

$$ det (A-lambda E)= (-1)^n lambda^n +a_1 lambda^+dots+a_lambda+ a_n Rightarrow $$ $$ Rightarrow (-1)^n A^n +a_1 A^+dots+a_A+ a_n E = <mathbb O>_ . $$

матрица является корнем своего характеристического полинома.

Доказательство ☞ ЗДЕСЬ.

Пример. Для $ n_<>=2 $:

$$ left(begin a_ <11>& a_ <12>\ a_ <21>& a_ <22>end right)^2 — (a_<11>+a_<22>)left(begin a_ <11>& a_ <12>\ a_ <21>& a_ <22>end right) + (a_<11>a_<22>-a_<12>a_<21>) left(begin 1 & 0 \ 0 & 1 end right) = left(begin 0 & 0 \ 0 & 0 end right) . $$

Собственное число

определяется для квадратной матрицы $ A_<> $ как произвольный корень ее характеристического полинома $ det (A_<>-lambda E) $. Набор всех собственных чисел матрицы $ A_<> $ (с учетом их кратностей) называется спектром матрицы (таким образом спектр матрицы $ A_<> $ порядка $ n_<> $ всегда состоит из $ n_<> $ чисел, часть из которых могут быть одинаковыми). Максимальный из модулей собственных чисел матрицы $ A_<> $ называется ее спектральным радиусом, он иногда обозначается $ rho(A) $.

Пример. Найти спектр матрицы

$$ A= left(begin 0&1&2&3\ -1&0&4&7\ -2&-4&0&2\ -3&-7&-2&0 endright). $$ Решение. Характеристический полином $$ det (A-lambda E)=left|begin -lambda&1&2&3\ -1&-lambda&4&7\ -2&-4&-lambda&2\ -3&-7&-2&-lambda endright|=lambda^4+ 83lambda^2 $$ имеет корни $ lambda_1=0, lambda_2 = <mathbf i>sqrt<83>, lambda_3 = — <mathbf i>sqrt <83>$, причем $ lambda_ <1>$ — второй кратности.

Ответ. Спектр матрицы $ A_<> $: $ <0,0, <mathbf i>sqrt<83>,- <mathbf i>sqrt <83>> $. Спектральный радиус матрицы $ A_<> $: $ rho(A)= sqrt <83>$.

Теорема 6. Если $ <lambda_<1>,lambda_<2>,dots,lambda_ > $ — спектр матрицы $ A_<> $, то

$$ lambda_1+lambda_<2>+dots+lambda_n = operatorname(A)=a_<11>+a_<22>+dots+a_, $$ $$ lambda_1cdotlambda_<2>times dots times lambda_n = (-1)^ndet (A) . $$

Доказательство следует из представления характеристического полинома через миноры матрицы и формул Виета. ♦

Для того, чтобы матрица $ A_<> $ была неособенной необходимо и достаточно, чтобы среди ее собственных чисел не было нулевого.

Теорема 7. Пусть $ g(x)=b_<0>x^m+dots+b_m in <mathbb C>[x] $ — произвольный полином. Вычислим полином от матрицы $ A_<> $: $ g(A)=b_<0>A^m+dots+b_m E $. Тогда если $ <lambda_<1>,dots,lambda_ > $ — спектр матрицы $ A_<> $, то $ ),dots,g(lambda_n) > $ — спектр матрицы $ g(A_<>) $.

Результат теоремы обобщается и на более широкий класс функций $ g_<>(x) $ — фактически на любую функцию, которая может быть определена на спектре матрицы $ A_<> $. В частности, если $ det A_<> ne 0 $, то спектр матрицы $ A^<-1>_<> $ совпадает с $ <1/lambda_j>_^n $.

Имеет место следующее равенство, связывающее степени матрицы $ A_<> $ с суммами Ньютона ее характеристического полинома:

$$ operatorname(A^k)=lambda_1^k+dots+lambda_n^k . $$ Здесь $ operatorname_<> $ обозначает след матрицы (т.е. сумму ее диагональных элементов). Утверждение остается справедливым и для отрицательных показателей $ k_<> $ при условии, что $ det A_<> ne 0 $.

Имеет место следующее равенство:

$$ det g(A) = (-1)^ <mathcal R>(f,g_<>) , $$ где $ <mathcal R>(f,g_<>) $ означает результант полиномов $ f(x) =det (A-x_<> E) $ и $ g_<>(x) $.

Теорема 8. Собственные числа вещественной симметричной матрицы $ A_<> $ все вещественны.

Доказательство ☞ ЗДЕСЬ.

Теорема 9. Собственные числа вещественной кососимметричной матрицы $ A_<> $ все мнимы, за исключением, возможно, $ lambda_<> = 0 $.

Доказательство ☞ ЗДЕСЬ.

Теорема 10. Собственные числа вещественной ортогональной матрицы все равны $ 1_<> $ по абсолютной величине (модулю). Характеристический полином ортогональной матрицы является возвратным если $ +1 $ не является его корнем или является корнем четной кратности. Хотя бы одно собственное число ортогональной матрицы нечетного порядка равно $ +1 $ или $ (-1) $.

Доказательство ☞ ЗДЕСЬ.

Теорема 11. Спектр циклической матрицы

$$ left(begin a_1 & a_2 & a_3 & dots & a_n \ a_n & a_1 & a_2 & dots & a_ \ a_ & a_n & a_1 & dots & a_ \ vdots & & & & vdots \ a_2 & a_3 & a_4 & dots & a_1 end right) . $$ совпадает с набором чисел $$ ) > ,$$ при $$ f(x)=a_<1>+a_2x+a_3x^2+dots+a_nx^ $$ и $$ varepsilon_k=cos frac<2,pi k> + <mathbf i>sin frac<2,pi k> $$ — корне n-й степени из единицы.

Доказательство ☞ ЗДЕСЬ.

Локализация собственных чисел

Теорема 12. [1]. Собственные числа матрицы являются непрерывными функциями ее элементов. Иначе: пусть

$$A=left[a_ right]_^n quad , quad B=left[b_ right]_^n . $$ Обозначим $$M= max_> left <|a_|, |b_ | right> quad , quad delta = frac<1>sum_^n |a_ — b_ | . $$ Тогда любому собственному числу $ lambda_<ast>^<> $ матрицы $ A_<> $ можно поставить в соответствие такое собственное число $ mu_<ast>^<> $ матрицы $ B_<> $, что $$ |lambda_<ast>-mu_ <ast>| le (n+2) M sqrt[n] <delta> . $$

Собственно факт непрерывной зависимости собственных чисел от элементов матрицы следует из представления характеристического полинома из теоремы ☞ ПУНКТА — коэффициенты этого полинома полиномиально (и, следовательно, непрерывно) зависят от элементов матрицы. Далее используем теорему о непрерывной зависимости корней полинома от его коэффициентов.

Выясним теперь на примере, насколько малым может быть возмущение элементов матрицы чтобы сохранились хотя бы количество вещественных корней ее характеристического полинома.

Пример [Уилкинсон] [2]. Найти собственные числа матрицы

$$ A= left( begin 20 & 20 & & & & \ & 19 & 20 & & & \ & & 18 & 20 & & \ & & & ddots & ddots & \ & & & & 2 & 20 \ <colorvarepsilon > & & & & & 1 \ end right)_ <20times 20>$$ при $ <colorvarepsilon >=10^ <-10>$ (все неуказанные элементы матрицы считаются равными нулю).

Решение. Характеристический полином $$ det(A-lambda E) = prod_^ <20>(j-lambda) — 20^ <19> <colorvarepsilon > = $$ $$ =lambda^<20>-<scriptstyle 210>,lambda^<19>+<scriptstyle 20615>,lambda^<18>-<scriptstyle 1256850>, lambda^ <17>+<scriptstyle 53327946>, lambda^<16>-<scriptstyle 1672280820>, lambda^<15>+ <scriptstyle 40171771630>, lambda^<14>-<scriptstyle 756111184500>, lambda^<13>+ $$ $$ +<scriptstyle 11310276995381>, lambda^ <12>- <scriptstyle 135585182899530>, lambda^ <11>+<scriptstyle 1307535010540395>, lambda^<10>-<scriptstyle 10142299865511450>, lambda^9 + $$ $$ +<scriptstyle 63030812099294896>, lambda^8 — <scriptstyle 311333643161390640>, lambda^7+<scriptstyle 1206647803780373360>, lambda^6 -<scriptstyle 3599979517947607200>, lambda^5 +<scriptstyle 8037811822645051776>, lambda^4- $$ $$ -<scriptstyle 12870931245150988800>, lambda^3 +<scriptstyle 13803759753640704000>, lambda^2 -<scriptstyle 8752948036761600000>,lambda + <scriptstyle 2432377720176640000>$$ очень похож на полином из другого ☞ ПРИМЕРА Уилкинсона. Он имеет корни $$ lambda_1=0.995754, lambda_2=2.109241, lambda_3=2.574881, $$ $$ lambda_<4,5>=3.965331pm 1.087735, mathbf i, lambda_<6,7>=5.893977pm 1.948530 , mathbf i, $$ $$ lambda_<8,9>=8.118073 pm 2.529182 , mathbf i, lambda_<10,11>=10.5pm 2.733397 , mathbf i, $$ $$ lambda_<12,13>=12.881926pm 2.529182 , mathbf i, lambda_<14,15>=15.106022 pm 1.948530 , mathbf i, $$ $$ lambda_<16,17>=17.034669pm 1.087735 , mathbf i, $$ $$ lambda_<18>=18.425118, lambda_<19>=18.890758, lambda_<20>=20.004245 . $$ Итак, нановозмущение 2) в одном-единственном элементе матрицы приводит к существенному изменению спектра: из $ 20 $ вещественных собственных чисел «остаются в живых» только $ 6_<> $; кроме того, у образовавшихся мнимых корней оказываются достаточно большими мнимые части. В данном примере допустимые возмущения для $ <colorvarepsilon > $, т.е. такие, при которых сохранится свойство вещественности всех корней характеристического полинома, находятся в пределах 3) $$ -8.636174times 10^<-14> ♦

Теорема 13 [Гершгорин]. 4) Обозначим $ mathbb D_ $ круг на комплексной плоскости $ mathbb C_<> $ с центром в точке $ a_^<> $ и радиуса

$$ r_j=sum_<ell=1 atop ellne j>^n left|a_right| .$$ Тогда спектр матрицы $ A_<> $ лежит внутри объединения этих кругов: $$ <lambda_1,dots, lambda_n >subset bigcup_^n mathbb D_j . $$ Иными словами: любое собственное число матрицы должно удовлетворять хотя бы одному из неравенств $$ |z- a_ |

Если все главные миноры $ A_1,A_2,dots,A_ $ симметричной матрицы $ A_<> $ отличны от нуля, то число положительных собственных чисел матрицы $ A_<> $ равно числу знакопостоянств, а число отрицательных собственных чисел — числу знакоперемен в ряду $ 1,A_1,dots,A_n $:

$$ operatorname < det (A-lambda E) =0 | lambda>0 > = <mathcal P>(1,A_1,dots,A_n), $$ $$ operatorname < det (A-lambda E) =0 | lambda ненулевойстолбец $$ X_<ast>= left( begin x_<1>^ <ast>\ vdots \ x_^ <ast>end right) in mathbb^n $$ такой, что $$ AX_<ast>=lambda_ <ast>X_ <ast>quad iff quad (A -lambda_<ast>E) X_ <ast>= mathbb O_ . $$ По определению собственного числа, $ det (A^<> -lambda_<ast>E) = 0 $ и, следовательно, система однородных уравнений $ (A -lambda_<ast>E) X^<> = mathbb O $ всегда имеет нетривиальное решение; более того, этих решений бесконечно много. Таким образом, одному и тому же собственному числу матрицы принадлежит бесконечное множество собственных векторов. Эту бесконечность можно описать с помощью фундаментальной системы решений (ФСР).

Пример. Найти собственные векторы матрицы

Решение. Спектр матрицы найден выше. $$(A-0 cdot E)X=mathbb O quad Longrightarrow mbox< ФСР>= left< <mathfrak X>_1=left(begin 4 \ -2 \ 1 \ 0 endright), <mathfrak X>_2=left(begin 7 \ -3 \ 0 \ 1 end right) right>.$$ Любой вектор вида $ alpha_ <1><mathfrak X>_1 + alpha_2 <mathfrak X>_2 $ будет собственным, принадлежащим $ lambda_<>=0 $. $$ begin (A- mathbf i, sqrt <83>E)X=mathbb O \ \ Downarrow \ \ <mathfrak X>_3= left(begin 1- mathbf i , sqrt <83>\ 8-2, mathbf i , sqrt <83>\ 12 \ 17+mathbf i , sqrt <83>endright) end qquad begin (A+mathbf i sqrt <83>E)X=mathbb O \ \ Downarrow \ \ <mathfrak X>_4= left(begin 1+mathbf i , sqrt <83>\ 8+2mathbf i , sqrt <83>\ 12 \ 17- mathbf i ,sqrt <83>endright) end . $$ ♦

Еще один способ нахождения собственного вектора основан на теореме Гамильтона-Кэли.

Теорема 15. Пусть $ lambda_<ast>^<> $ — собственное число матрицы $ A_<> $. Обозначим частное от деления характеристического полинома на линейный множитель $ lambda_<> — lambda_ <ast>$ через $ f_<ast>(lambda)^<> $:

$$ f_<ast>(lambda) equiv f(lambda) / (lambda-lambda_<ast>) . $$ Тогда любой ненулевой столбец матрицы $ f_<ast>(A)^<> $ является собственным вектором, принадлежащим $ lambda_<ast>^<> $.

Доказательство следует из равенства $$(A-lambda_ <ast>E)f_<ast>(A)=mathbb O_ . $$ На основании определения любой ненулевой столбец $ f_<ast>(A)^<> $ должен быть собственным вектором матрицы $ A_<> $. ♦

Пример. Найти собственные векторы матрицы

$$ A=left( begin 9 & 22 & -6 \ -1 &-4 & 1 \ 8 & 16 & -5 end right) . $$

Решение. $$ det (A-lambda E)=-lambda^3+ 7, lambda + 6 equiv -(lambda_<>-3) (lambda+2)(lambda+1) , .$$ Пренебрегая знаком – , имеем: $$ begin f_1(lambda)=lambda^2+3lambda+2 & u & f_1(A)= left( begin 40 & 80 & -20 \ 0 &0 & 0 \ 40 & 80 & -20 end right) , \ f_2(lambda)=lambda^2-2lambda-3 & u & f_2(A)= left( begin -10 & -30 & 10 \ 5 &15 & -5 \ 0 & 0 & 0 end right) , \ f_3(lambda)=lambda^2-lambda-6 & u & f_3(A)= left( begin -4 & -8 & 4 \ 4 & 8 & -4 \ 8 & 16 & -8 end right) . end $$

Если $ lambda_<ast>^<> $ является простым корнем характеристического полинома 5) , то ненулевые столбцы $ f_<ast>(A)^<> $ будут пропорциональными. Или, что то же, $ operatorname f_<ast>(A)^<> = 1 $.

Тогда очевидно, что и строки матрицы $ f_<ast>(A)^<> $ тоже должны быть пропорциональны!

Доказать, что любая ненулевая строка матрицы $ f_<ast>(A)^<> $ является собственным вектором матрицы $ A^<^<top>>_<> $, принадлежащим $ lambda_<ast>^<> $. Доказать, что собственный вектор матрицы $ A_<> $ ортогонален собственному вектору матрицы $ A^<top>_<> $, если эти векторы принадлежат различным собственным числам 6) .

На практике вычисление полинома $ f_<ast>(lambda)^<> $ может быть осуществлено с помощью схемы Хорнера.

Пример. Вычислить собственный вектор матрицы

$$ A=left( begin 23 & 75 & -92 \ 6 & 74 & 72 \ 37 & -23 & 87 end right) , $$ принадлежащий ее вещественному собственному числу.

Решение. Характеристический полином $$ f(lambda)= -lambda^3+184,lambda^2-14751,lambda+611404 $$ имеет единственное вещественное собственное число $ lambda_ <ast>approx 96.8817 $. Составляем схему Хорнера $$ begin & -1 & 184 & -14751 & 611404 \ hline 96.8817 & -1 & 87.1183 & -6310.8310 & -0.0352 end $$ За счет ошибок округления мы получили ненулевое значение для $ f(lambda_<ast>) $. В качестве частного от деления $ f(lambda) $ на $ lambda-lambda_ <ast>$ берем $$ f_<ast>(lambda)= -lambda^2 + 87.1183, lambda — 6310.8310 . $$ Подставляем в него матрицу $ A_<> $ и вычисляем первый столбец матрицы $$ -A^2+87.1183,A -6310, E = left( begin -1882.1101 & * & * \ -2723.2902 & * & * \ -708.6229 & * & * end right) .$$ Проверяем: $$ left( begin 23 & 75 & -92 \ 6 & 74 & 72 \ 37 & -23 & 87 end right) left( begin -1882.1101 \ -2723.2902 \ -708.6229 end right) — 96.8817 left( begin -1882.1101 \ -2723.2902 \ -708.6229 end right)= left( begin 0.0356 \ 0 \ -0.0002 end right) . $$ ♦

Можно развить последний метод далее: найти универсальную формулу для собственного вектора как функции ее собственного числа. Действительно, найдем частное от деления характеристического полинома $$ f(lambda) =a_0lambda^n+a_0lambda^+dots+ a_n, quad a_0=(-1)^n $$ на линейный полином $ lambda- lambda_ <ast>$, где $ lambda_ <ast>$ — произвольное число из $ mathbb C $. С помощью той же схемы Хорнера, получаем $$ q(lambda)=a_0lambda^+(a_0lambda_<ast>+a_1)lambda^+(a_0lambda_<ast>^2+a_1lambda_<ast>+a_2)lambda^+dots+ (a_0lambda_<ast>^+a_1lambda_<ast>^+dots+a_) , . $$ Если $ lambda_ <ast>$ является собственным числом матрицы $ A_<> $, то любой ненулевой столбец матрицы $$ q(A)= a_0A^+(a_0lambda_<ast>+a_1)A^+(a_0lambda_<ast>^2+a_1lambda_<ast>+a_2)A^+dots+ (a_0lambda_<ast>^+a_1lambda_<ast>^+dots+a_)E $$ будет собственным вектором, принадлежащим $ lambda_ <ast>$.

Пример. Найти представление всех собственных векторов матрицы

$$ A=left( begin 9 & 22 & -6 \ -1 &-4 & 1 \ 8 & 16 & -5 end right) $$ в виде функции ее собственных чисел.

Решение. Характеристический полином матрицы был вычислен выше: $ f(lambda)=-lambda^3+ 7, lambda + 6 $. Имеем, $$ q(lambda)=-lambda^2-lambda_<ast>lambda+(7-lambda_<ast>^2) $$ и $$ q(A)=-A^2-lambda_<ast>A+(7-lambda_<ast>^2)E= left(begin -lambda_<ast>^2-9lambda_<ast>-4 & -22lambda_<ast>-14 & 6lambda_<ast>+2 \ lambda_<ast>-3 & -lambda_<ast>^2+4lambda_<ast>-3 & -lambda_<ast>+3 \ -8lambda_<ast>-16 & -16lambda_<ast>-32 & -lambda_<ast>^2+5lambda_<ast>+14 end right) , . $$ Берем произвольный столбец этой матрицы, например, первый: $$ X_<ast>(lambda_<ast>)= left(begin -lambda_<ast>^2-9lambda_<ast>-4 \ lambda_<ast>-3 \ -8lambda_<ast>-16 end right) , . $$ Утверждается, что $ X_ <ast>(lambda_<ast>) $ — универсальное представление всех собственных векторов матрицы. Действительно, $$ X_<ast>(-1) = left(begin 4 \ -4 \ -8 end right), X_<ast>(-2) = left(begin 10 \ -5 \ 0 end right), X_<ast>(3) = left(begin -40 \ 0 \ -40 end right) , . $$ ♦

Теорема 16. Пусть $ g(x)=b_0x^m+dots+b_ in <mathbb C>[x] $ – произвольный полином. Если $ X_<ast>in mathbb C^ $ — собственный вектор матрицы $ A_<> $, соответствующий собственному числу $ lambda_<ast>^<> $, то он же будет собственным и для матрицы $ g(A)^<> $, принадлежащим собственному числу $ g(lambda_<ast>)^<> $.

Доказательство. Домножим равенство $ A<mathfrak X>_<ast>=lambda_<ast>^<><mathfrak X>_ <ast>$ слева на матрицу $ A_<> $: $$ A^2<mathfrak X>_<ast>=lambda_<ast>A<mathfrak X>_<ast>=lambda_<ast>^2<mathfrak X>_ <ast>.$$ По индукции доказывается и общее равенство: $$ A^k<mathfrak X>_<ast>=lambda_<ast>^k<mathfrak X>_ <ast>.$$ Домножим его на $ b_^<> $ и просуммируем по $ k_<> $ от $ 0_<> $ до $ m_<> $: $$ g(A)<mathfrak X>_<ast>=g(lambda_<ast>)<mathfrak X>_ <ast>,$$ что и доказывает утверждение теоремы. ♦

Если матрица $ A $ невырождена, то теорема остается справедливой и для произвольного полинома от $ A^ <-1>$. В частности, собственные векторы $ A^ <-1>$ совпадают с собственными векторами матрицы $ A $.

Теорема 17. Собственные векторы, принадлежащие различным собственным числам матрицы $ A_<> $, линейно независимы.

Теорема 18. Собственные векторы, принадлежащие различным собственным числам вещественной симметричной матрицы $ A_<> $, ортогональны, т.е. если $ mathfrak X_1 $ принадлежит собственному числу $ lambda_ <1>$, а $ mathfrak X_2 $ принадлежит собственному числу $ lambda_ <2>$ и $ lambda_1 ne lambda_2 $, то

$$ langle mathfrak X_1, mathfrak X_2 rangle =0 , $$ где $ langle , rangle $ означает скалярное произведение, определяемое стандартным образом: $ langle X,Y rangle =x_1y_1+dots+x_ny_n $.

Доказательство ☞ ЗДЕСЬ.

Теорема Перрона-Фробениуса

Теорема 19 [Перрон, Фробениус]. Для положительной матрицы $ A_<> $ существует положительное собственное число $ lambda_ <+>$ такое, что все остальные собственные числа этой матрицы меньше $ lambda_ <+>$ по абсолютной величине (модулю). Соответствующий этому собственному числу собственный вектор может быть выбран положительным:

$$ exists mathfrak X_ <+>> mathbb O: quad A mathfrak X_ <+>= lambda_ <+>mathfrak X_ <+> . $$

Число $ lambda_ <+>$ из теоремы называется собственным числом Перрона или собственным числом Перрона-Фробениуса матрицы $ A_<> $, а соответствующий ему произвольный положительный собственный вектор — собственным вектором Перрона-Фробениуса матрицы $ A_<> $.

Спектральный радиус положительной матрицы $ A_<> $ совпадает с ее собственным числом Перрона-Фробениуса:

Пример. Найти собственное число и вектор Перрона-Фробениуса для матрицы

$$ A= left(begin 2 & 7 & 18 & 28 \ 1 & 8 & 2 & 8 \ 3 & 1 & 4 & 1 \ 5 & 9 & 26 & 5 end right) , . $$

Решение. Характеристический полином матрицы $ A_<> $ $$ det(A-lambda E)=lambda^4-19, lambda^3-175, lambda^2-285, lambda+10390 $$ имеет корнями $$ lambda_ <1,2>approx -6.260463 pm 5.452465 mathbf i, lambda_3 approx 5.878976, lambda_4 approx 25.641950 . $$ Числом Перрона-Фробениуса является $ lambda_4 $, а соответствующий ему собственный вектор Перрона-Фробениуса можно взять равным $$ left( begin 1 \ 0.365240 \ 0.184802 \ 0.634244 end right) quad mbox < или >quad left( begin 2.737922 \ 1 \ 0.505974 \ 1.736510 end right) quad mbox < или >left( begin 5.411185 \ 1.976383 \ 1 \ 3.432010 end right) quad mbox < или >quad left( begin 1.576681 \ 0.575868 \ 0.291374 \ 1 end right) quad mbox < или >quad left( begin 0.798133 \ 0.291510 \ 0.147496\ 0.506210 end right) quad mbox < или >dots $$ (напоминаю: собственный вектор определяется с точностью до ненулевого сомножителя!). Последний вектор имеет длину равную $ 1_<> $. ♦

1. Собственное число Перрона-Фробениуса всегда простое для характеристического полинома матрицы $ A_<> $. Отсюда следует, что собственный вектор Перрона-Фробениуса определяется единственным образом — с точностью до домножения на положительный скаляр.

2. Любой собственный вектор положительной матрицы $ A_<> $, не соответствующий собственному числу Перрона-Фробениуса, не может состоять исключительно только из положительных элементов. Иными словами, хотя бы одна компонента такого вектора должна быть либо отрицательной либо мнимой.

3. Для собственного числа Перрона-Фробениуса справедливо неравенство $$ min_> sum_^n a_ le lambda_ <+>le max_> sum_^n a_ . $$

4. Собственное число Перрона-Фробениуса матрицы $ A_<> $ совпадает с собственным числом Перрона-Фробениуса матрицы $ A^ <top>$.

Какие из перечисленных свойств можно распространить на случай неотрицательных матриц ? Каждую такую матрицу можно рассматривать как предел последовательности (строго) положительных матриц. Воспользовавшись теоремой о непрерывной зависимости собственных чисел матрицы от ее элементов, можем сделать вывод, о том, что для неотрицательной матрицы $ A_<> $ всегда найдется вещественное неотрицательное собственное число, которое будет являться максимальным по модулю среди всех собственных чисел матрицы. Другое дело, что в данном случае — в отличие от случая положительных матриц — такое мажорирующее собственное число может оказаться не единственным.

Пример. Спектр неотрицательной матрицы

$$ A=left( begin 0 & 1 \ 1 & 0 end right) $$ состоит из чисел $ lambda_1=+1 $ и $ lambda_1=-1 $ одинакового модуля. ♦

Однако, по-прежнему, хотя бы одно неотрицательное вещественное число $ lambda_ <+>$ со свойством $ rho(A) = lambda_ <+>$ существовать будет; более того, ему будет соответствовать неотрицательный собственный вектор $ mathfrak X ge mathbb O $. Это число (вектор) по-прежнему называются числом (вектором) Перрона-Фробениуса 7) матрицы $ A_<> $.

Частным случаем неотрицательных матриц являются стохастические матрицы, т.е. неотрицательные матрицы, в которых сумма элементов каждой строки равна $ 1_<> $: $$ P=left[p_right]_^n, \ge 0 >_^n, sum_^n p_ = 1 npu quad j in <1,2,dots,n> . $$

Теорема 20. Собственное число Перрона-Фробениуса стохастической матрицы равно $ 1_<> $. Этому собственному числу соответствует собственный вектор $ X=[1,1,dots,1]^ <top>$.

Доказательство существования собственного числа равного $ 1_<> $ и соответствующего ему собственного вектора $ X=[1,1,dots,1]^ <top>$ следует из равенства $$ P left( begin 1 \ 1 \ vdots \ 1 end right) = left( begin 1 \ 1 \ vdots \ 1 endright) . $$ Далее, из теоремы Гершгорина следует, что любое собственное число $ lambda_<>in mathbb C $ стохастической матрицы должно удовлетворять неравенству $$|lambda — p_|le sum_ |p_|=1-p_ $$ хотя бы при одном $ j_<> $. Воспользовавшись следствием к неравенству треугольника получаем: $$|lambda| — |p_|le |lambda — p_| le 1-p_ Rightarrow |lambda| le 1 . $$ ♦

Методы вычисления характеристического полинома

Вычисление коэффициентов характеристического полинома матрицы $ A_<> $ непосредственным разложением определителя $ det (A-lambda_<> E) $ на $ n!_<> $ слагаемых — крайне неэффективно. Элементами этого разложения являются выражения, полиномиально зависящие от параметра $ lambda_<> $. На каждом этапе вычислений мы получаем проблему символьных вычислений: хранения таких полиномов и действий над ними.

Основной метод вычисления числовых определителей — метод Гаусса — также неэффективен в приложении к вычислению определителя, элементы которого зависят от параметра. Источником вычислительных проблем является неудобное расположение переменной $ lambda_<> $ — на главной диагонали матрицы. Первый же шаг метода Гаусса приводит к делению на элемент $ a_ <11>- lambda $, и, в дальнейшем, элементы преобразованной матрицы будут уже не полиномами, а рациональными функциями относительно $ lambda_<> $. Следующие шаги метода приводят к возрастанию степеней знаменателей. Необходимость в организации хранения рациональных функций и программировании действий с ними кажется тем более неоправданной, если вспомнить, что окончательный ответ — выражение для $ det (A-lambda_<> E) $ — должно быть полиномом по $ lambda_<> $; т.е. знаменатели дробей в конечном ответе сократятся.

А в качестве усугубляющего положение обстоятельства «на заднем плане» маячит проблема точности вычислений коэффициентов характеристического полинома — чувствительность его корней к возмущению его коэффициентов бывает весьма высокой.

Какой выход предлагается? — Предварительно преобразовать определитель $ det (A-lambda_<> E) $ к виду, когда переменная $ lambda_<> $ оказывается «выметенной» с диагонали на крайний ряд (в столбец или в строку). При этом допускается увеличение размеров (порядка) определителя. Такое представление дает возможность разложения определителя по этому исключительному ряду, и, тем самым, позволяет свести задачу к вычислению числовых определителей — а уж для этой задачи применение метода Гаусса вполне эффективно.

Метод Леверье

Метод основан на формуле (см. следствие к теореме $ 7 $ ☞ ЗДЕСЬ ): $$ operatorname (A^k)=lambda_1^k+dots+lambda_n^k=s_k , $$ т.е. след $ k_<> $-й степени матрицы $ A_<> $ равен $ k_<> $-й сумме Ньютона ее характеристического полинома $ f(lambda)=det (A-lambda E ) $. Вычисляем последовательные степени матрицы $ A_<> $: $$s_1=operatorname (A), s_2=operatorname (A^2), dots, s_n=operatorname (A^n) .$$ Неизвестные коэффициенты $ f(lambda)=(-1)^n(lambda^n+a_1lambda^+ dots+a_n) $ находим по рекурсивным формулам Ньютона: $$ a_1=-s_1, a_2=-(s_2+a_1s_1)/2, $$ $$ a_k=-(s_+a_1s_+a_2s_+dots+a_s_1)/k npu k le n. $$ Очевидно, что не имеет смысла вычислять все элементы матрицы $ A^ $ — достаточно обойтись лишь элементами ее главной диагонали.

Пример [Леверье]. Найти характеристический полином матрицы

$$ A=left(begin -5.509882&1.870086&0.422908&0.008814 \ 0.287865&-11.811654&5.711900&0.058717 \ 0.049099&4.308033&-12.970687&0.229326 \ 0.006235&0.269851&1.397369&-17.596207 end right) . $$

Решение. $$ A^2=left(begin 30.91795128&-30.56848188&2.878480155&0.0031325713\ -4.705449283&164.6764010&-141.3504639&-0.4143169528\ 0.3341843103&-106.6094396&193.1869924& -6.756396001\ 0.0022236138&-1.904168948&-41.16923134& 309.9628536 end right), $$ $$ A^3=left(begin -179.0125092&431.2849919&-198.8601505& -0.9173897610\ 66.38829278&-2562.954533& 2771.458834& -15.49709921\ -23.08728044&2090.291485&-3124.010318& 156.9329019\ -0.649145142&-71.21907809&956.2502143& -5463.723497 end right), $$ $$ A^4=left(begin 1100.720103& ast& ast& ast \ ast& 42332.23816& ast& ast \ ast& ast& 52669.62534& ast \ ast& ast& ast& 96355.91518 end right) . $$ Вычисляем следы матриц: $$s_1=-47.888430, s_2=698.7441983, s_3=-11329.70086, s_4= 192458.4988 ,$$ и по формулам Ньютона получаем: $$a_1= 47.888430, a_2 = 797.278764_ <displaystyle 8>, a_3 = 5349.45551_<displaystyle 3>, a_4 = 12296.550_ <displaystyle 68> . $$ ♦

После нахождения коэффициентов характеристического полинома можно найти его корни каким-либо 8) методом. Если $ lambda_<ast>^<> $ — одно из собственных чисел, то для нахождения соответствующего собственного вектора воспользуемся алгоритмом из ☞ ПУНКТА. Предположив дополнительно, что это собственное число простое 9) , обозначим $$ f_<ast>(lambda)= f(lambda)/(lambda-lambda_<ast>)=(-1)^n(lambda^ +p_1lambda^+dots+p_lambda+p_) $$ т.е. частное от деления $ f(lambda_<>) $ на $ lambda-lambda_ <ast>$. Тогда любой ненулевой столбец матрицы $ f_<ast>(A)^<> $ будет собственным вектором, принадлежащим $ lambda_<ast>^<> $. Как правило, собственным вектором можно взять комбинацию

Степени матрицы $ A_<> $ уже нами посчитаны при вычислении коэффициентов характеристического полинома.

Пример. Для приведенного выше примера находим собственные числа:

$$ lambda_1=-17.86326, lambda_2=-17.15242, lambda_3=-7.57404, lambda_4= -5.29869 . $$ Коэффициенты $ f_1(lambda) $ можно определить по схеме Хорнера: $$ begin &1 & 47.888430 & 797.2787648 & 5349.455513 & 12296.55068 \ hline -17.86326 & 1 & underbrace<30.025170>_>& underbrace<260.9313465>_> &underbrace<688.371028>_>& approx 0 \ end $$ Собственным вектором, принадлежащим $ lambda_ <1>$, будет $$left[ -0.0256_<displaystyle 67>, 0.21938_<displaystyle 0>, -0.24187_<displaystyle 1>, 1.044526 right]^<^<top>> .$$ ♦

Теорема 21. Характеристический полином явно выражается через суммы Ньютона с помощью следующего представления:

$$ f(lambda)=frac<1>left| begin s_1 &1 & & & &\ s_2&s_1& 2 & &mathbb O & \ s_3&s_2&s_1&3& & \ vdots& & & ddots &ddots & \ s_n&s_& s_ & dots &s_1&n \ lambda^n&lambda^&lambda^& dots &lambda&1 end right|_ <(n+1)times (n+1)> . $$

Биографические заметки о Леверье ☞ ЗДЕСЬ.

Метод Крылова

Рассмотрим произвольный ненулевой столбец $ Y_0=left[ y_<1>^<[0]>,dots,y_^ <[0]>right]^<^<top>> in mathbb C^n $. Cоставим итерационную векторную последовательность $$ Y_1=Acdot Y_0, Y_2=Acdot Y_1, dots, Y_=Acdot Y_ . $$

Теорема 22. Определитель

$$ det left[begin Y_0&Y_<1>&dots&Y_&Y_\ 1& lambda&dots&lambda^&lambda^n end right]_ <(n+1)times (n+1)>$$ совпадает — с точностью до постоянного множителя — с характеристическим полиномом матрицы $ A_<> $. Здесь $ |_<> $ означает конкатенацию.

Доказательство. Легко видеть, что $$ Y_K=A^KY_0 quad npu quad K in <1,dots,n> . $$ Если $$ f(lambda)=det(A-lambda E) =(-1)^n lambda^n+a_1 lambda^+a_2 lambda^+dots+a_n , $$ то по теореме Гамильтона-Кэли: $$ (-1)^n A^n+a_1A^+dots+a_nE=mathbb O_ . $$ Это равенство останется справедливым и после умножения его на произвольный вектор, в том числе на $ Y_ <0>$: $$ (-1)^n A^ncdot Y_0+a_1A^ cdot Y_0 +dots+a_ncdot Y_0=mathbb O_ iff $$ $$ iff quad (-1)^n Y_n+a_1Y_ +dots+a_nY_0=mathbb O . $$ Последнее равенство представляет линейную систему относительно неизвестных коэффициентов характеристического полинома. Можно решать ее по формулам Крамера, но мы пойдем другим путем. Дополним эту систему тождеством $ f(lambda)=(-1)^n lambda^n+a_1 lambda^+a_2 lambda^+dots+a_n $. Рассмотрим получившуюся систему как линейную однородную относительно столбца $ left[ a_n,a_,dots,a_1,1right]^ <top>$. Поскольку эта система имеет нетривиальное решение, то ее определитель должен равняться нулю: $$ 0=det left[begin Y_0&Y_<1>&dots&Y_&(-1)^nY_\ 1& lambda&dots&lambda^&(-1)^nlambda^n-f(lambda) end right]= $$ (представляем последний столбец в виде суммы двух столбцов и используем свойство 5 определителя) $$ =det left[begin Y_0&Y_<1>&dots&Y_&(-1)^nY_\ 1& lambda&dots&lambda^&(-1)^nlambda^n end right]-f(lambda) det left[begin Y_0&Y_<1>&dots&Y_ end right] . $$ Таким образом, $$ f(lambda)=(-1)^n frac<det left[begin Y_0&Y_<1>&dots&Y_&Y_\ 1& lambda&dots&lambda^&lambda^n end right]><det left[begin Y_0&Y_<1>&dots&Y_ end right]> , $$ если только знаменатель в этой дроби не обратится в нуль. ♦

Пример. Найти характеристический полином матрицы примера Леверье

$$ A=left(begin -5.509882&1.870086&0.422908&0.008814 \ 0.287865&-11.811654&5.711900&0.058717 \ 0.049099&4.308033&-12.970687&0.229326 \ 0.006235&0.269851&1.397369&-17.596207 end right) . $$

Решение. Возьмем $ Y_0=left[ 1,0,0,0 right]^ <top>$. Имеем $$ begin Y_1=A Y_0= & Y_2=AY_1= & Y_3=AY_2= & Y_4=AY_3= \ left(begin -5.509882\ 0.287865 \ 0.049099 \ 0.006235 end right), & left(begin 30.917951\ -4.705449 \ 0.334184 \ 0.002223 end right), & left(begin -179.012509\ 66.388293 \ -23.087280\ -0.649145 end right), & left(begin 1100.720101\ -967.597333\ 576.522644\ -4.040153 end right) . end $$ $$ det left[begin Y_0&Y_<1>&Y_2& Y_<3>& Y_<4>\ 1& lambda&lambda^2 &lambda^<3>&lambda^4 end right]= left| begin 1 & -5.509882 & 30.917951 & -179.012509 & 1100.720101 \ 0 & 0.287865 & -4.705449 & 66.388293 & -967.597333\ 0 & 0.049099 & 0.334184 & -23.087280 & 576.522644\ 0 & 0.006235 & 0.002223 & -0.649145 & -4.040153 \ 1 & lambda & lambda^2 & lambda^3 & lambda^4 end right|= $$ $$ =0.348621 lambda^4+16.694915lambda^3+277.948166lambda^2+1864.932835lambda+4286.836454 = $$ $$ =0.348621 left(lambda^4+47.888430lambda^3+797.27876_<displaystyle 3>lambda^2+5349.4555_<displaystyle 0>lambda+12296.550_ <displaystyle 5>right) . $$ ♦

После нахождения характеристического полинома можно найти его корни каким-либо 10) методом. Пусть $ lambda_<ast>^<> $ — одно из собственных чисел, и оно — простое; тогда для нахождения соответствующего собственного вектора можно воспользоваться тем же приемом, что был задействован в предыдущем ПУНКТЕ. Вычислим 11) частное от деления $ f(lambda_<>) $ на $ lambda-lambda_ <ast>$ $$ f_<ast>(lambda)= f(lambda)/(lambda-lambda_<ast>)=(-1)^n(lambda^ +p_1lambda^+dots+p_lambda+p_) . $$ Тогда любой ненулевой столбец матрицы $ f_<ast>(A)^<> $ будет собственным вектором, принадлежащим $ lambda_<ast>^<> $. Но тогда и произвольная комбинация столбцов этой матрицы тоже будет собственным вектором (если только не обратится в нулевой вектор). В частности, это относится и к комбинации, записываемой в матричном виде $$ (-1)^n f_<ast>(A) Y_0 = A^Y_0 +p_1A^Y_0+dots+p_Y_0=Y_+p_1Y_+dots+p_Y_0 . $$ А комбинируемые векторы уже посчитаны.

Теперь обсудим исключительные случаи. При неудачном выборе $ Y_ <0>$ определитель $$ det left[begin Y_0&Y_<1>&dots&Y_ end right] $$ может обратиться в нуль. Эта неприятность обязательно произойдет если, например, наш выбор пал на вектор $ Y_0 $, совпадающий с собственным вектором матрицы $ A_<> $. Вероятность такого события — нулевая. В общем же случае, трудно ожидать, чтобы $ n_<> $ почти произвольных столбцов $ Y_0,Y_<1>,dots,Y_ $ оказались линейно зависимыми — если только сама матрица $ A_<> $ не обладает «скрытым дефектом» — типа рассмотренного в следующем примере.

Пример. Найти характеристический полином матрицы

Решение. При любом выборе $ Y_0 $ векторы $ $ оказываются линейно зависимыми: $$ Y_0= left(begin 1\ 0\ 0 end right), Y_1= left(begin 2\ 1\ 1 end right), Y_2= left(begin 6\ 5\ 5 end right),dots ; Y_0= left(begin 1\ 1\ 1 end right), Y_1= left(begin 4\ 4\ 4 end right),dots $$ Объяснение этого феномена состоит в том, что для матрицы $ A_<> $ ее аннулирующий полином имеет степень меньшую ее порядка: $$ A^2-5 A+4 E = mathbb O . $$ Домножение этого равенства на произвольный столбец $ Y_0 $ и доказывает линейную зависимость системы $ $. ♦

Такая ситуация возможна только в случае, когда характеристический полином матрицы $ A_<> $ имеет кратные корни (в рассмотренном выше примере $ lambda_<>=1 $ являлся двойным корнем $ det (A-lambda_<> E) $); она исключительно редко встречается на практике.

Поиск всех собственных чисел

Существуют методы нахождения спектра матрицы, не требующие предварительного построения характеристического полинома.

QR-алгоритм

Этот алгоритм основан на QR-разложении матрицы $ A $.

Теорема 23. Спектр матрицы $ A $ совпадает со спектром матрицы $ P^ <top>A P $ при произвольной ортогональной матрице $ P $.

Доказательство. $$ det (P^ <top>A P-lambda E)=det (P^ <top>A P- lambda P^ <top>E P)=det P^ <top>(A -lambda E ) P = det (A -lambda E ) P P^ <top>= det (A -lambda E ) , . $$ ♦

Пусть QR-разложение матрицы $ A $ имеет вид $$ A=Q_1R_1 , , $$ где $ Q_1 $ — ортогональная, а $ R_1 $ — верхнетреугольная матрицы. Тогда матрица $$ A_2=R_1Q_1 $$ имеет тот же спектр, что и матрица $ A $. Действительно, поскольку $$ A_2=Q_1^ <top>A Q_1 , $$ то сработает предыдущая теорема. Вычислим QR-разложение матрицы $ A_2 $ $$ A_2=Q_2R_2 $$ и переставим местами матрицы этого произведения: $$ A_3=R_2Q_2 , . $$ Матрица $$ A_3= Q_2^ <top>A_2 Q_2=Q_2^ <top>Q_1^ <top>A Q_1 Q_2 $$ продолжаем иметь те же собственные числа, что и матрица $ A $. Утверждается, что бесконечная последовательность матриц $$ Q_>_^ <infty>$$ как правило, сходится к матрице $ A_ <infty>$, которая будет верхнетреугольной.

Теорема 24 [4]. Если все собственные числа матрицы $ A $ различны по модулю, то матрица $ A_ <infty>$ является верхнетреугольной и на ее главной диагонали стоят собственные числа матрицы $ A $.

Пример. Найти все собственные числа матрицы $$ A=left(begin 2 & 3 &-1\ 7 & 3 & 3 \ -1 & -2 & 4 end right) , . $$

Решение. $$ A_1=Aapprox underbrace<left(begin 0.272165 & 0.759752 & 0.590511 \ 0.952579 & -0.299517 & -0.053683 \ -0.136083& -0.577119 & 0.805242 end right)>_ underbrace<left(begin 7.348469 & 3.946400 & 2.041241\ 0 & 2.534941 & -3.966781 \ 0 & 0 & 2.469409 end right)>_ $$ Теперь переставляем матрицы произведения местами и строим QR-разложение получившейся матрицы: $$ quad Rightarrow quad A_2 = R_1Q_1approx left(begin 5.481481 & 3.222957 & 5.771191 \ 2.954542 & 1.530046 & -3.3303021 \ -0.336044 & -1.425143 & 1.988472 end right)approx $$ $$ approxunderbrace<left(begin -0.878992 & 0.022595 & 0.476300\ 0.473781 & -0.154267 & -0.867026 \ 0.053886 & -0.987771 & 0.146304 end right)>_ underbrace<left(begin -6.236096& -3.634658 & -3.387848\ 0 & 1.244502 & -1.319999\ 0 & 0 & 5.927198 end right)>_ $$ Продолжим процесс: $$ quad Rightarrow quad A_3 = R_2Q_2approx left(begin 7.020952& 3.766220 & -0.314568\ -0.660752 & 1.111870 & -1.272137\ 0.319398 & -5.854713 & 0.867177 end right) approx $$ $$ approx underbrace<left(begin -0.994581 & -0.065879 & 0.080426 \ 0.093601 & -0.230749 & 0.968501 \ -0.045246 & 0.970780 & 0.235665 end right)>_ underbrace<left(begin -7.059205 & -3.376839 & 0.154554 \ 0 & -6.188319 & 1.156106 \ 0 & 0 & -1.053002 end right)>_ $$ Замечаем тенденцию убывания элементов матриц $ $, стоящих под главной диагональю. $$ Rightarrow dots Rightarrow A_ <10>approx left(begin mathbf<6.>_ <246022>& 2.758769 & -2.160057\ -0.0467437 & mathbf<4.4>_ <09292>& -5.341014\ 0.000018 &-0.005924 & mathbf<-1.6>_ <55314>end right) approx $$ $$ underbrace<left(begin -0.999972 & -0.007483 & 0.000007 \ 0.007483 & -0.999971 & 0.001339 \ -0.000003 & 0.001339 & 0.999999 end right)>_> underbrace<left(begin -6.246197 & -2.725694 & 2.120031\ 0 & -4.429817 & 5.354807 \ 0 & 0 & -1.662479 end right)>_> , . $$ Матрица $ Q_j $ уже близка к диагональной (с элементами $ pm 1 $), верхнетреугольность матрицы $ A_j $ также заметна, но точность приближения еще не достаточна. $$ Rightarrow dots Rightarrow A_ <20>approx left(begin mathbf<6.17>_ <5608>& 2.805821 & -2.020513 \ -0.001776 & mathbf<4.48>_ <4917>& -5.388407\ 0 & 0 & -mathbf <1.660525>end right) approx $$ Точность приближения минимильного собственного числа существенно выше точностей приближения остальных чисел. $$ Rightarrow dots Rightarrow A_ <30>approx left(begin mathbf<6.172>_ <778>& 2.807524 & -2.015076\ -0.000073 & mathbf<4.487>_ <747>& -5.390442\ 0 & 0 & -mathbf <1.660525>end right) , . $$ ♦

К сожалению условие теоремы достаточно ограничительно: собственные числа вещественной матрицы $ A $ могут оказаться и мнимыми, но тогда они одинаковы по модулю.

Как это обстоятельство сказывается на структуре матрицы $ A_ <infty>$ и дальнейшее развитие метода ☞ ЗДЕСЬ

Частичная проблема собственных чисел

Задача. Найти максимальное по модулю собственное число матрицы $ A_<> $.

Предположение . Будем считать сначала, что максимальное по модулю собственное число матрицы единственно.

Излагаемый ниже метод поиска этого собственного числа называется методом степенны́х итераций 12) .

Рассмотрим произвольный ненулевой столбец $ Y_0=left[ y_<1>^<[0]>,dots,y_^ <[0]>right]^<^<top>> in mathbb C^n $. Cоставим такую же итерационную векторную последовательность, как и в методе Крылова $$ Y_1=Acdot Y_0, Y_2=Acdot Y_1, dots, Y_=Acdot Y_,dots , $$ (только теперь, в отличие от метода Крылова, считаем ее неограниченно продолжающейся) и выделим последовательность первых элементов этих векторов: $$y_<1>^<[1]>,y_<1>^<[2]>,dots,y_<1>^<[K]>,dots $$

Теорема 25. Как правило, предел

$$ lim_frac^<[K+1]>>^<[K]>> $$ существует и он равен максимальному по модулю собственному числу матрицы $ A_<> $.

Доказательство. Перенумеруем собственные числа $ lambda_<1>,dots,lambda_n $ матрицы $ A_<> $ так, чтобы $ lambda_ <1>$ обозначило максимальное по модулю: $$|lambda_1|= max_> |lambda_j| , quad |lambda_1|>|lambda_j| quad npu quad jin <2,dots,n> . $$ Очевидно, $$ Y_=A^Kcdot Y_0 ; $$ отсюда следует, что любой элемент столбца $ Y_ $ может быть линейно выражен через $ lambda_<1>^K,dots,lambda_n^K $. В частности, это справедливо и для первого элемента: $$ y_<1>^<[K]>=C_1lambda_1^K+C_2lambda_2^K+dots+C_nlambda_n^K . $$ В этом представлении $ _^n $ — будут константами из $ mathbb C_<> $ в случае если все собственные числа являются простыми, и полиномами из $ mathbb C[K] $ в случае, если имеются кратные собственные числа. Действительно, в первом случае существует базис пространства $ mathbb C^n $, состоящий из собственных векторов матрицы $ A_<> $: $$ A<mathfrak X>_j=lambda_j<mathfrak X>_j quad npu quad jin <1,dots,n>. $$ Вектор $ Y_0 $ можно разложить по этому базису: $$Y_0=alpha_1<mathfrak X>_1+dots+alpha_n<mathfrak X>_n .$$ Тогда последовательным домножением на матрицу $ A_<> $ получаем : $$begin Y_1=AY_0&=& alpha_1 lambda_1<mathfrak X>_1+dots+alpha_nlambda_n<mathfrak X>_n, \ dots & & dots \ Y_K=A^KY_0&=& alpha_1 lambda_1^K<mathfrak X>_1+dots+alpha_nlambda_n^K<mathfrak X>_n end $$ откуда и следует доказываемое равенство.

Во втором случае — когда имеются кратные собственные числа матрицы $ A_<> $ — придется применять «тяжелую артиллерию» в виде жордановой нормальной формы; см. теорему $ 5 $ ☞ ЗДЕСЬ. Для простоты рассуждений, будем в оставшейся части доказательства считать все собственные числа матрицы различными. Имеем тогда $$ lim_ frac^<[K+1]>>^<[K]>>= lim_ frac <lambda_1^left[C_1+ C_2(lambda_2/lambda_1)^+dots+ C_n(lambda_n/lambda_1)^ right]> <lambda_1^left[C_1+C_2(lambda_2/lambda_1)^+dots+ C_n(lambda_n/lambda_1)^ right]> =lambda_1 $$ поскольку $$ lim_ left| frac<lambda_j> <lambda_1>right|^K = 0 quad npu quad jin <2,dots,n> . $$ Исключительным случаем является ситуация $ C_1=0 $, в этом случае утверждение теоремы может оказаться несправедливым 13) . ♦

Как правило, вектор

$$ left[1, lim_frac^<[K]>>^<[K]>>,dots, lim_frac^<[K]>>^<[K]>>right]^<^<top>> $$ будет собственным, принадлежащим максимальному по модулю собственному числу матрицы $ A_<> $.

Пример. Для матрицы

$$ A=left(begin 2 & 3 &-1\ 7 & 3 & 3 \ -1 & -2 & -4 end right) $$ найти максимальное по модулю собственное число и принадлежащий ему собственный вектор.

Решение. Возьмем в качестве стартового столбца $ Y_0=[1,0,0]^<^<top>> $. Имеем: $$ Y_1=AY_0=left( begin 2 \ 7 \ -1 end right), Y_2=AY_1=left( begin 26 \ 32 \ -12 end right), Y_3=AY_2=left( begin 160 \ 242 \ -42 end right),dots, $$ $$ Y_<19>=left( begin <scriptstyle 4259667747238636>\ <scriptstyle 6435097324667832>\ <scriptstyle -1571397155909260>end right), Y_<20>=AY_<19>=left( begin <scriptstyle 29396024624390028>\ <scriptstyle 44408774736946168>\ <scriptstyle -10844273772937260>end right) $$ Смотрим на отношения первых элементов векторов: $$ begin K & 1 & 2 & 3 & 4 & 5 & dots & 15 & dots & 19 \ hline y_<1>^<[K+1]>/y_<1>^ <[K]>& 2 & 13 & 6.153846 & 6.8 & 7.180147 & dots & 6.900726 & dots & mathbf<6.90101>_ <displaystyle 3>end $$ Далее, в соответствии со следствием, собственный вектор, принадлежащий найденному числу $$ approx left[1, frac^<[20]>>^<[20]>>,frac^<[20]>>^<[20]>>right]^<^<top>> approx left[1, 1.51070_<displaystyle 6>, -0.368902 right]^<^<top>> $$ ♦

Теперь обсудим исключительные случаи алгоритма.

1. Нарушение сходимости итерационного процесса за счет неудачного выбора стартового вектора. Если в качестве $ Y_ <0>$ оказался случайно взят собственный вектор $ mathfrak X_ <ast>$ матрицы $ A_<> $, принадлежащий произвольному ее собственному числу $ lambda_ <*>$, то предел последовательности из теоремы будет равен именно этому числу; если при этом $ |lambda_ <*>| ne max_ <1le j le n>| lambda_j | $, то мы выйдем за пределы смысла выражения «как правило». Понятно, что вероятность настолько плохого выбора нулевая, но и выбор $ Y_0 $ вблизи $ mathfrak X_ <ast>$ также может существенно замедлить скорость сходимости. Поэтому если возникает ситуация медленной «стабилизации» значащих цифр в десятичном приближении собственного числа, попробуйте сменить начальный вектор.

2. Нарушение условия предположения , выдвинутого в начале пункта: максимальное по модулю собственное число неединственно.

Пример. Найти максимальное по модулю собственное число матрицы примера Леверье

$$ A=left(begin -5.509882&1.870086&0.422908&0.008814 \ 0.287865&-11.811654&5.711900&0.058717 \ 0.049099&4.308033&-12.970687&0.229326 \ 0.006235&0.269851&1.397369&-17.596207 end right) . $$

Решение. Для столбца $ Y_0=[1,0,0,0]^<^<top>> $ имеем $$y_<1>^<[100]>/y_<1>^<[99]>=-17.8_ <displaystyle 3113> ,$$ т.е. на $ 100 $-й итерации получаем лишь $ 3_<> $ истинные десятичные цифры в представлении собственного числа. При этом компонентами векторов $ Y_ $ являются числа порядка $ 10^ <123>$. Если мы посмотрим на ответ примера Леверье, то увидим, что имеются два собственных числа матрицы, близких по модулю. ♦

К сожалению, вероятность того факта, что у случайно выбранной матрицы два ее собственных числа будут иметь одинаковый модуль становится ненулевой если эта матрица выбирается из множества вещественных матриц. Дело в том, что в этом случае ее характеристический полином будет иметь вещественные коэффициенты, а мнимые корни такого полинома всегда пáрные — для любого невещественного корня $ lambda_<ast>^<> $ полинома, комплексно сопряженное к нему число $ overline<lambda_<ast>> $ также будет корнем. При этом $ |lambda_<ast>|= |overline<lambda_<ast>> | $.

Пример. Для матрицы

Предположение 2 . Пусть два максимальных по модулю собственных числа матрицы разнесены по величине, например $$ |lambda_1| > | lambda_2 | > | lambda_ j | quad npu j in <2,dots, n >. $$

Обобщение степенного метода основывается на использовании последовательностей из каких-то двух компонент векторов $ Y_=AY_K $, например, наряду с уже использованной выше последовательностью первых компонент $$y_<1>^<[1]>,y_<1>^<[2]>,dots,y_<1>^<[K]>,dots $$ возьмем еще и аналогичную для вторых: $$y_<2>^<[1]>,y_<2>^<[2]>,dots,y_<2>^<[K]>,dots $$

Теорема 26 [Эйткен]. При практически любом выборе стартового вектора $ Y_0 ne mathbb O $ для последовательности

Доказательство. Построим квадратное уравнение $$ p_0x^2+p_1x+p_2 = 0 $$ имеющее корнями $ lambda_1 $ и $ lambda_2 $. Если существует базис рпостранства $ mathbb C^n $ $$Y_0=alpha_1<mathfrak X>_1+alpha_2<mathfrak X>_2+dots+alpha_n<mathfrak X>_n .$$ Тогда последовательным домножением на матрицу $ A_<> $ получаем : $$begin Y_K=& alpha_1 lambda_1^K<mathfrak X>_1 &+alpha_2 lambda_2^K<mathfrak X>_2+dots &+alpha_nlambda_n^K<mathfrak X>_n, \ Y_=& alpha_1 lambda_1^<mathfrak X>_1 &+alpha_2 lambda_2^<mathfrak X>_2+dots &+alpha_nlambda_n^<mathfrak X>_n,\ Y_=& alpha_1 lambda_1^<mathfrak X>_1 & +alpha_2 lambda_2^<mathfrak X>_2+dots &+alpha_nlambda_n^<mathfrak X>_n. end $$ Отбрасываем из правых частей равенств слагаемые порядков возрастания ниже, чем $ lambda_2^K, lambda_2^, lambda_2^ $ соответственно, домножаем получившиеся приближенные равенства $$begin Y_K & approx alpha_1 lambda_1^K<mathfrak X>_1 &+alpha_2 lambda_2^K<mathfrak X>_2, & color times p_2 \ Y_& approx alpha_1 lambda_1^<mathfrak X>_1 &+alpha_2 lambda_2^<mathfrak X>_2, & color times p_1\ Y_ & approx alpha_1 lambda_1^<mathfrak X>_1 & +alpha_2 lambda_2^<mathfrak X>_2, & color times p_0 end $$ и складываем: $$ p_2 Y_K + p_1Y_ + p_0 Y_ approx mathbb O , . $$ В получившемся векторном равенстве выбираем первые две компоненты: $$ left< begin p_2 y_1^ <[K]>+ p_1 y_1^ <[K+1]>+ p_0 y_1^ <[K+2]>approx 0 , , \ p_2 y_2^ <[K]>+ p_1 y_2^ <[K+1]>+ p_0 y_2^ <[K+2]>approx 0 , , end right. $$ которые и позволят определить приближенное значение набора $ p_0,p_1,p_2 $. С точностью до числового сомножителя, искомый полином можно представить в виде определителя $$ p_0x^2+p_1x+p_2 approx left|begin y_1^ <[K]>& y_1^ <[K+1]>& y_1^ <[K+2]>\ y_2^ <[K]>& y_2^ <[K+1]>& y_2^ <[K+2]>\ 1 & x & x^2 end right| , . $$ Формулы Виета завершат доказательство. ♦

При выполнении условия предположения 2 имеет место равенство

Пример. Для матрицы

$$ A=left(begin 2 & 3 &-1\ 7 & 3 & 3 \ -1 & -2 & 4 end right) $$ найти первые два по порядку убывания модулей собственных числа.

Задачи

Источники

[2]. Уилкинсон Дж.Х. Алгебраическая проблема собственных значений. М.Наука. 1970, с.93-94

[3]. Фаддеев Д.К., Фаддеева В.Н. Вычислительные методы линейной алгебры. М.ГИФМЛ. 1960

[4]. Хорн Р., Джонсон Ч. Матричный анализ. М.Мир.1989

источники:

http://vmath.ru/vf5/algebra2/charpoly

Содержание:

  1. Собственные числа и собственные векторы матрицы
  2. Линейная модель торговли
  3. Собственные векторы и собственные значения матрицы

Собственные числа и собственные векторы матрицы

Определение. Вектор Собственные значения матрицы  называется собственным вектором матрицы A, если найдется такое число λ, что
Собственные значения матрицы                                                              (2.36)
где число λ называется собственным значением матрицы A, которое соответствует вектору Собственные значения матрицы .
Запишем равенство (2.36) в матричной форме:
AX = λX,                                                                         (2.37)
где X — матрица-столбец из координат вектора Собственные значения матрицы .
Уравнение (2.37) распишем в координатной форме
Собственные значения матрицы                                                            (2.38)
Перепишем уравнение системы (2.38) так, чтобы в правых частях были нули:
Собственные значения матрицы                                                    (2.39)
Чтобы перейти к рассмотрению системы (2.39) докажем такую ​​теорему.

ТЕОРЕМА. Однородная система (n уравнений с n неизвестными)
Собственные значения матрицы                                                                                                                    (2.40)
имеет ненулевое решение тогда и только тогда, когда Собственные значения матрицы, т. е. когда матрица A является вырожденной.

Доказательство. Пусть система (2.40) имеет ненулевое решение. Покажем, что Собственные значения матрицы. Действительно, если бы это было не так, то есть Собственные значения матрицы,  то решая систему по правилу Крамера, мы бы получили единственное нулевое решение x = 0, а это противоречит условию.

Пусть Собственные значения матрицы,  покажем, что существует ненулевое решение системы. Для удобства рассмотрим систему двух уравнений.
Собственные значения матрицы                                                                        (2.41)
Собственные значения матрицы
Потому что Собственные значения матрицы, то и Собственные значения матрицы, то есть матрица  Собственные значения матрицы
есть вырожденной. Значит строки матрицы A являются линейно зависимыми, а это
означает, что и столбцы матрицы AT являются линейно зависимы. Указанные столбцы обозначим через Собственные значения матрицы   и  Собственные значения матрицы. При этом существуют такие числа k1 и  k2, не равные одновременно нулю, что выполняется равенство Собственные значения матрицы,  или в координатной форме:
Собственные значения матрицы

Итак, это значит, что система (2.41) имеет ненулевое решение. Теорема доказана.

Теперь вернемся к системе (2.39). На основании выше приведенной теоремы, система (2.39) имеет ненулевое решение тогда и только тогда, когда определитель системы равен нулю, то есть
Собственные значения матрицы                                (2.42)
Определитель (2.42) является многочленом n-й степени относительно λ. Этот многочлен называется характеристическим многочленом матрицы А, а уравнение (2.42) называется характеристическим уравнением матрицы А .

Пример 1. Найти собственные числа и собственные векторы матрицы

Собственные значения матрицы

Решение. Запишем систему типа (2.39) для нахождения собственных чисел и собственных векторов, а именно
Собственные значения матрицы                                                                      (2.43)
Как нам уже известно, для того, чтобы эта система имела ненулевые решения, нужно, чтобы определитель этой системы был равен нулю, то естьСобственные значения матрицы или 

λ2 – 5λ + 6 = 0. Корни этого квадратного уравнения — λ1 = 2, λ2 = 3.  Таким образом мы нашли собственные (характеристические) числа.

Теперь найдем собственные векторы, соответствующие найденным собственным числам.

Чтобы найти координаты собственного вектора, соответствующего собственному числу λ1 = 2,  подставляем λ1 = 2 в систему (2.43).
Получим Собственные значения матрицы  отсюда x1 = 2t , x2 = t при произвольном t ≠ 0, является решением этой системы. Итак, вектор Собственные значения матрицыt ≠ 0  является собственным вектором-столбцом матрицы A.

Для нахождения координат собственного вектора матрицы A, соответствующего собственному числу λ2 = 3, поступаем аналогично. Число λ2 = 3 подставляем в систему (2.43) и получим:
Собственные значения матрицы   отсюда x1 = x2

Значит, x1 =  t,  x2 =  t,  t ≠ 0, а вектор-столбец  Собственные значения матрицы является собственным вектором, соответствующим собственному числу λ2 = 3.

Линейная модель торговли

Одним из примеров экономических процессов, которые приводят к понятию собственного числа и собственного вектора матрицы, является процесс взаимных закупок товаров. Мы будем рассматривать линейную модель обмена, или как ее называют другими словами, модель международной торговли.

Пусть имеется n государств, S, S2 , …, Sn национальный доход которых равен соответственно x1, x2, …, xn. Долю национального дохода, которую государство Sj тратит на покупку товаров в государстве Si , обозначим коэффициентами aij . Будем считать, что весь национальный доход тратится на закупку товаров или внутри государства, или на импорт из других государств, то есть:
Собственные значения матрицы
Рассмотрим матрицу коэффициентов aij :
Собственные значения матрицы
Матрица А со свойством, что сумма элементов ее произвольного столбца равна 1, называется структурной матрицей торговли.
Для любого государства Si (i = 1, 2, …, n) общая выручка от внешней и внутренней торговли составляет
Собственные значения матрицы
Для сбалансированности торговли необходима бездефицитность торговли каждого государства, то есть выручка от торговли каждой государства не должна быть меньше ее национального дохода, то есть pi ≥ xi  (i = 1, 2, …, n) илиСобственные значения матрицы .В этом условии не может быть знака неравенства. Действительно, сложив все эти неравенства, когда i меняется от 1 до n , и сгруппировав, получим:
Собственные значения матрицы

Поскольку в скобках есть суммы элементов матрицы A по столбцам, которые равны 1, мы получили противоречивое неравенство. Следовательно, возможен только знак равенства.

Введем вектор национальных доходов Собственные значения матрицы  государств, получим матричное уравнение AX = X или (A – E) X = 0, где X — матрица-столбец из координат вектораСобственные значения матрицы .
Значит, задача свелась к нахождению собственного вектора матрицы A, отвечающего собственному значению λ = 1.

Пример 1. Структурная матрица торговли трех стран S, S2 , S3 имеет вид
A = Собственные значения матрицы .
Найти соотношение между национальными доходами стран, при котором будет торговля сбалансирована.

Решение. Находим собственный вектор Собственные значения матрицы, который отвечает собственному значению λ = 1, решив уравнение (A – E) X = 0 или систему уравнений
Собственные значения матрицы
Обозначим национальные доходы соответственно x1, x2, x3. Тогда будем искать собственный вектор   Собственные значения матрицы , отвечающий собственному значению λ = 1, решив уравнение (A – E) X = 0.
Поскольку ранг данной системы равен 2, то одна из переменных, например x3 = C является свободным неизвестным. Остальные неизвестные выразим через него. Решая данную систему, находим, что
Собственные значения матрицы  то есть Собственные значения матрицы
Полученный результат означает, что сбалансированность торговли трех стран достигается при векторе национального дохода Собственные значения матрицы то есть при соотношении доходов: Собственные значения матрицы  или 4: 9: 10.

Собственные векторы и собственные значения матрицы

Пусть Собственные значения матрицы —заданная квадратная матрица. Как мы увидим позже, иногда приходится рассматривать уравнение Собственные значения матрицы, (8.27) где Собственные значения матрицы — неизвестный числовой вектор, высота которого равна порядку Собственные значения матрицы, а Собственные значения матрицы — неизвестное число. При любом Собственные значения матрицы уравнение (8.27) обладает, в частности, тривиальным решением Собственные значения матрицы, однако нас будут интересовать только такие Собственные значения матрицы, при которых эта система имеет нетривиальные решения.

Эти значения Собственные значения матрицы называются собственными значениями матрицы Собственные значения матрицы, а нетривиальные решения Собственные значения матрицы уравнения (8.27) при таких Собственные значения матрицы — ее собственными векторами. Нетрудно проверить, что каждый собственный вектор матрицы Собственные значения матрицы отвечает ее единственному собственному значению.

Собственные значения и собственные векторы находятся следующим образом. Так как Собственные значения матрицы, то уравнение (8.27) можно переписать в виде Собственные значения матрицы. (8.28)

Сравнивая с формулой (8.25), видим, что получилась система из Собственные значения матрицы алгебраических однородных уравнений с Собственные значения матрицы неизвестными, где Собственные значения матрицы — порядок матрицы Собственные значения матрицы. Согласно п. 8.6 для наличия нетривиального решения необходимо и достаточно, чтобы определитель системы равнялся нулю, т. е. Собственные значения матрицы. (8.29) Это уравнение называется характеристическим уравнением матрицы Собственные значения матрицы, оно служит для разыскания собственных значений Собственные значения матрицы. Так, для матрицы (8.23) оно имеет вид Собственные значения матрицы. Раскрыв определитель, мы видим, что получается алгебраическое уравнение, степень которого равна порядку матрицы Собственные значения матрицы. В силу п. 6.8 заключаем, что матрица порядка Собственные значения матрицы имеет Собственные значения матрицы (вообще говоря, комплексных) собственных значений, среди которых, правда, могут быть совпадающие.

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Найдя какое-либо собственное значение, мы можем соответствующие собственные векторы найти из векторного уравнения (8.28) (переписанного в виде системы скалярных уравнений), как указано в п. 8.6.

Из уравнения (8.28) вытекает, что при зафиксированном Собственные значения матрицы сумма решений Собственные значения матрицы есть решение и произведение Собственные значения матрицы решения на число также является решением того же уравнения. Значит, совокупность всех собственных векторов, отвечающих заданному собственному значению (дополненная тривиальным решением Собственные значения матрицы), образует линейное подпространство (п. 7.18) пространства всех числовых векторов заданной высоты Собственные значения матрицы.

В наиболее важном случае, когда все собственные значения различные, каждое из этих подпространств одномерное, т. е. для каждого собственного значения соответствующий собственный вектор определен с точностью до числового множителя.

При этом имеются в виду комплексные собственные векторы, так как вещественное характеристическое уравнение (8.29) может иметь как вещественные, так и мнимые корни. Указанная одномерность вытекает из того, что ненулевые собственные векторы, отвечающие различным собственным значениям, обязательно линейно независимы, а в Собственные значения матрицы-мерном пространстве числовых векторов не может быть более Собственные значения матрицы линейно независимых векторов.

А эта линейная независимость проверяется так: если, например, собственные векторы Собственные значения матрицы отвечают различным собственным значениям Собственные значения матрицы, причем Собственные значения матрицы линейно независимы, а Собственные значения матрицы, то, помножив это равенство справа на Собственные значения матрицы, получаем Собственные значения матрицы, откуда, умножив первое равенство на Собственные значения матрицы и вычитая, выводим Собственные значения матрицы, чему противоречит линейная независимость Собственные значения матрицы и Собственные значения матрицы.

Если имеются совпадающие собственные значения, то можно проверить, что для каждого собственного значения Собственные значения матрицы кратности Собственные значения матрицы подпространство собственных векторов имеет размерность Собственные значения матрицы.

Если все Собственные значения матрицы, то, выбрав базис в каждом из этих подпространств, мы получаем базис в комплексном евклидовом пространстве Собственные значения матрицы, состоящий из собственных векторов матрицы Собственные значения матрицы, имеющей порядок Собственные значения матрицы (если все Собственные значения матрицы вещественные, получаем базис в Собственные значения матрицы). Если хотя бы одно Собственные значения матрицы, то базиса из собственных векторов матрицы Собственные значения матрицы указать нельзя.

Рассмотрим квадратные матрицы порядка Собственные значения матрицы. При умножении матрицы порядка Собственные значения матрицы на Собственные значения матрицы-мерный вектор в произведении получается Собственные значения матрицы-мерный вектор: Собственные значения матрицы.

Возможно вам будут полезны данные страницы:

Однако для любой матрицы существует набор особых векторов таких, что произведение матрицы на вектор из такого набора равносильно умножению этого вектора на определенное число.

Определение:

Число Собственные значения матрицы называется собственным значением матрицы Собственные значения матрицы порядка Собственные значения матрицы, если существует такой ненулевой вектор Собственные значения матрицы, что выполняется равенство: Собственные значения матрицы. (1.2) При этом вектор Собственные значения матрицы называется собственным вектором матрицы Собственные значения матрицы.

Уравнение (1.2) представлено в матричной форме. Группируя все слагаемые этого уравнения в левой части, его можно переписать в более удобном виде: Собственные значения матрицы, где Собственные значения матрицы и Собственные значения матрицы — соответственно единичная матрица и нулевой вектор. Если Собственные значения матрицы, и Собственные значения матрицы — элементы матрицы Собственные значения матрицы, то характеристическая матрица Собственные значения матрицы, согласно определениям умножения матрицы на число и суммы матриц, имеет вид:

Собственные значения матрицы.

Определение 8.39.

Число Собственные значения матрицы называется собственным значением квадратной матрицы Собственные значения матрицы, если найдется вектор Собственные значения матрицы такой, что Собственные значения матрицы. Вектор Собственные значения матрицы называется собственным вектором матрицы Собственные значения матрицы, соответствующим данному собственному значению. Теорема 8.19. Собственные значения матрицы Собственные значения матрицы являются решениями уравнения Собственные значения матрицы. Это уравнение называется характеристическим уравнением матрицы Собственные значения матрицы.

Теорема 8.20.

Число различных собственных значений квадратной матрицы не превосходит ее порядка. Собственные векторы, отвечающие различным собственным значениям, линейно независимы.

Собственные значения матрицы

Пример с решением

Пример 8.19.

Пусть дана матрица Собственные значения матрицы. Составим и решим характеристическое уравнение.

Собственные значения матрицы

Собственные значения матрицы

Собственные значения матрицы, где Собственные значения матрицы — любое число.

Вектор Собственные значения матрицы будет являться собственным вектором, соответствующим собственному значению 2.

Собственные значения матрицы

Вектор Собственные значения матрицы будет являться собственным вектором, соответствующим собственному значению 3. Векторы Собственные значения матрицы и Собственные значения матрицы линейно независимы. Так как они двухмерные, то они образуют базис пространства Собственные значения матрицы.

Собственные значения матрицы

Собственные значения матрицы

Лекции:

  • Решение разных задач методом гаусса
  • Связь между графиком функции и графиком ее производной
  • Предел последовательности. Свойства сходящихся последовательностей
  • Задача двойной интеграл. Определение. Основные свойства двойного интеграла
  • Метод вариации постоянных произвольных
  • Деление многочлена на многочлен
  • Правила дифференцирования
  • Теорема Пифагора
  • Производная экспоненты
  • Как решать дробные уравнения

Собственные векторы и собственные значения матрицы

Пусть A — числовая квадратная матрица n-го порядка. Матрица A-lambda E называется характеристической для A, а ее определитель Delta_{A}(lambda)=det(A-lambda E) характеристическим многочленом матрицы A:

A-lambda E=begin{pmatrix}a_{11}-lambda&cdots&a_{1n}\ vdots&ddots& vdots\ a_{n1}&cdots&a_{nn}-lambdaend{pmatrix}!,quad Delta_{A}(lambda)=det(A-lambda E)= begin{vmatrix} a_{11}-lambda&cdots&a_{1n}\ vdots&ddots&vdots\ a_{n1}&cdots&a_{nn}-lambdaend{vmatrix}!.

(7.12)

Характеристическая матрица — это λ-матрица. Ее можно представить в виде регулярного многочлена первой степени с матричными коэффициентами. Нетрудно заметить, что степень характеристического многочлена равна порядку n характеристической матрицы.

Пусть A — числовая квадратная матрица n-го порядка. Ненулевой столбец x=begin{pmatrix}x_1\vdots\x_nend{pmatrix}, удовлетворяющий условию

Acdot x=lambdacdot x,

(7.13)

называется собственным вектором матрицы A. Число lambda в равенстве (7.13) называется собственным значением матрицы A. Говорят, что собственный вектор x соответствует {принадлежит) собственному значению lambda.

Поставим задачу нахождения собственных значений и собственных векторов матрицы. Определение (7.13) можно записать в виде (A-lambda E)x=o, где E — единичная матрица n-го порядка. Таким образом, условие (7.13) представляет собой однородную систему n линейных алгебраических уравнений с n неизвестными x_1,x_2,ldots,x_n:

begin{cases}(a_{11}-lambda)x_1+a_{12}x_2+ldots+a_{1n}x_n=0,\ a_{21}x_1+(a_{22}-lambda)x_2+ldots+a_{2n}x_n=0,\ cdotscdotscdotscdotscdots\ a_{n1}x_1+a_{2n}x_2+ldots+(a_{nn}-lambda)x_n=0. end{cases}

(7.14)

Поскольку нас интересуют только нетривиальные решения (xne o) однородной системы, то определитель матрицы системы должен быть равен нулю:

det(A-lambda E)=begin{vmatrix}a_{11}-lambda&a_{12}&cdots&a_{1n}\ a_{21}&a_{22}-lambda&cdots&a_{2n}\ vdots&vdots&ddots&vdots\ a_{n1}&a_{n2}& cdots&a_{nn}-lambda end{vmatrix}=0.

(7.15)

В противном случае по теореме 5.1 система имеет единственное тривиальное решение. Таким образом, задача нахождения собственных значений матрицы свелась к решению уравнения (7.15), т.е. к отысканию корней характеристического многочлена Delta_{A}(lambda)=det(A-lambda E) матрицы A. Уравнение Delta_{A}(lambda)=0 называется характеристическим уравнением матрицы A. Так как характеристический многочлен имеет n-ю степень, то характеристическое уравнение — это алгебраическое уравнение n-го порядка. Согласно следствию 1 основной теоремы алгебры, характеристический многочлен можно представить в виде

Delta_{A}(lambda)= det(A-lambda E)= a_{n}(lambda-lambda_1)^{n_1}cdot (lambda-lambda_2)^{n_2}cdotldotscdot(lambda-lambda_k)^{n_k},

где lambda_1,lambda_2,ldots,lambda_k — корни многочлена кратности n_1,n_2,ldots,n_k соответственно, причем n_1+n_2+ldots+n_k=n. Другими словами, характеристический многочлен имеет п корней, если каждый корень считать столько раз, какова его кратность.


Теорема 7.4 о собственных значениях матрицы. Все корни характеристического многочлена (характеристического уравнения (7-15)) и только они являются собственными значениями матрицы.

Действительно, если число lambda — собственное значение матрицы A, которому соответствует собственный вектор xne o, то однородная система (7.14) имеет нетривиальное решение, следовательно, матрица системы вырожденная, т.е. число lambda удовлетворяет характеристическому уравнению (7.15). Наоборот, если lambda — корень характеристического многочлена, то определитель (7.15) матрицы однородной системы (7.14) равен нулю, т.е. operatorname{rg}(A-lambda E)&lt;n.В этом случае система имеет бесконечное множество решений, включая ненулевые решения. Поэтому найдется столбец xne o, удовлетворяющий условию (7.14). Значит, lambda — собственное значение матрицы A.


Свойства собственных векторов

Пусть A — квадратная матрица n-го порядка.

1. Собственные векторы, соответствующие различным собственным значениям, линейно независимы.

В самом деле, пусть s_1 и s_2 — собственные векторы, соответствующие собственным значениям lambda_1 и lambda_2, причем lambda_1ne lambda_2. Составим произвольную линейную комбинацию этих векторов и приравняем ее нулевому столбцу:

alpha_1cdot s_1+alpha_2cdot s_2=o.

(7.16)

Надо показать, что это равенство возможно только в тривиальном случае, когда alpha_1=alpha_2=0. Действительно, умножая обе части на матрицу A и подставляя As_1=lambda_1s_1 и As_2=lambda_2s_2 имеем

A(alpha_1s_1+alpha_2s_2)=oquad Leftrightarrowquad alpha_1As_1+ alpha_2As_2= oquad Leftrightarrowquad alpha_1 lambda_1s_1+alpha_2 lambda_2s_2=o.

Прибавляя к последнему равенству равенство (7.16), умноженное на (-lambda_2), получаем

alpha_1cdotlambda_1cdot s_1-alpha_2cdotlambda_2cdot s_2=oquad Leftrightarrowquad alpha_1cdot(lambda_1-lambda_2)cdot s_1=o.

Так как s_1ne o и lambda_1ne lambda_2, делаем вывод, что alpha_1=0. Тогда из (7.16) следует, что и alpha_2=0 (поскольку s_2ne o). Таким образом, собственные векторы s_1 и s_2 линейно независимы. Доказательство для любого конечного числа собственных векторов проводится по индукции.

2. Ненулевая линейная комбинация собственных векторов, соответствующих одному собственному значению, является собственным вектором, соответствующим тому же собственному значению.

Действительно, если собственному значению lambda соответствуют собственные векторы s_1,ldots,s_k, то из равенств S_i=lambda s_i, i=1,ldots,k, следует, что вектор s=alpha_1s_1+ldots+alpha_ks_k также собственный, поскольку:

As=A(alpha_1s_1+ldots+alpha_ks_k)= alpha_1lambda s_1+ldots+alpha_klambda s_k=lambda(alpha_1s_1+ldots+alpha_ks_k)=lambda s.

3. Пусть (A-lambda E)^{+} — присоединенная матрица для характеристической матрицы (A-lambda E). Если lambda_0 — собственное значение матрицы A, то любой ненулевой столбец матрицы (A-lambda E)^{+} является собственным вектором, соответствующим собственному значению lambda_0.

В самом деле, применяя формулу (7.7) имеем (A-lambda E)(A-lambda E)^{+}=Delta_k(lambda)cdot E. Подставляя корень lambda_0, получаем (A-lambda_0E)(A-lambda_0E)^{+}=O. Если s — ненулевой столбец матрицы (A-lambda_0E)^{+}, то (A-lambda_0E)s=oLeftrightarrow As=lambda_0s. Значит, s — собственный вектор матрицы A.


Замечания 7.5

1. По основной теореме алгебры характеристическое уравнение имеет п в общем случае комплексных корней (с учетом их кратностей). Поэтому собственные значения и собственные векторы имеются у любой квадратной матрицы. Причем собственные значения матрицы определяются однозначно (с учетом их кратности), а собственные векторы — неоднозначно.

2. Чтобы из множества собственных векторов выделить максимальную линейно независимую систему собственных векторов, нужно для всех раз личных собственных значений lambda_1,lambda_2, ldots,lambda_k записать одну за другой системы линейно независимых собственных векторов, в частности, одну за другой фундаментальные системы решений однородных систем

(A-lambda_1E)cdot x=o,quad (A-lambda_2E)cdot x=o,quad ldots,quad (A-lambda_kE)cdot x=o.

Полученная система собственных векторов будет линейно независимой в силу свойства 1 собственных векторов.

3. Совокупность всех собственных значений матрицы (с учетом их кратностей) называют ее спектром.

4. Спектр матрицы называется простым, если собственные значения матрицы попарно различные (все корни характеристического уравнения простые).

5. Для простого корня lambda=lambda_0 характеристического уравнения соответствующий собственный вектор можно найти, раскладывая определитель матрицы (A-lambda_0E) по одной из строк. Тогда ненулевой вектор, компоненты которого равны алгебраическим дополнениям элементов одной из строк матрицы (A-lambda_0E), является собственным вектором.


Нахождение собственных векторов и собственных значений матрицы

Для нахождения собственных векторов и собственных значений квадратной матрицы A n-го порядка надо выполнить следующие действия.

1. Составить характеристический многочлен матрицы Delta_A(lambda)=det(A-lambda E).

2. Найти все различные корни lambda_1,lambda_2,ldots,lambda_k характеристического уравнения Delta_A(lambda)=0 (кратности n_1,n_2,ldots,n_k (n_1+n_2+ldots+n_k=n) корней определять не нужно).

3. Для корня lambda-lambda_1 найти фундаментальную систему varphi_1,varphi_2,ldots,varphi_{n-r} решений однородной системы уравнений

(A-lambda_1E)cdot x=o, где r=operatorname{rg}(A-lambda_1E)

Для этого можно использовать либо алгоритм решения однородной системы, либо один из способов нахождения фундаментальной матрицы (см. пункт 3 замечаний 5.3, пункт 1 замечаний 5.5).

4. Записать линейно независимые собственные векторы матрицы A, отвечающие собственному значению lambda_1:

s_1=C_1varphi_1,quad s_2=C_2varphi_2,quad ldots,quad s_{n-r}=C_{n-r}varphi_{n-r},

(7.17)

где C_1,C_2,ldots,C_{n-r} — отличные от нуля произвольные постоянные. Совокупность всех собственных векторов, отвечающих собственному значению lambda_1, образуют ненулевые столбцы вида s=C_1varphi_1+C_2varphi_2+ldots+C_{n-r}varphi_{n-r}. Здесь и далее собственные векторы матрицы будем обозначать буквой s.

Повторить пункты 3,4 для остальных собственных значений lambda_1,lambda_2,ldots,lambda_k.


Пример 7.8. Найти собственные значения и собственные векторы матриц:

A=begin{pmatrix}1&-2\3&8end{pmatrix}!,quad B=begin{pmatrix}1&-4\ 1&1 end{pmatrix}!,quad C=begin{pmatrix}1&1&1\1&1&1\1&1&1end{pmatrix}!.

Решение. Матрица A. 1. Составляем характеристический многочлен матрицы

Delta_{A}(lambda)=begin{vmatrix}1-lambda&-2\3&8-lambdaend{vmatrix}= (1-lambda)(8-lambda)+6=lambda^2-9 lambda+8+6= lambda^2-9 lambda+14.

2. Решаем характеристическое уравнение: lambda^2-9 lambda+14=0~Rightarrow~! left[!begin{gathered}lambda_1=2,\ lambda_2=7.end{gathered}right..

3(1). Для корня lambda_1=2 составляем однородную систему уравнений (A-lambda_1E)x=o:

begin{pmatrix}1-2&-2\ 3&8-2 end{pmatrix}!cdot! begin{pmatrix}x_1\x_2 end{pmatrix}= begin{pmatrix}0\0end{pmatrix}quad Leftrightarrowquad begin{pmatrix}-1&-2\ 3&6 end{pmatrix}!cdot! begin{pmatrix}x_1\x_2 end{pmatrix}= begin{pmatrix}0\0 end{pmatrix}!.

Решаем эту систему методом Гаусса, приводя расширенную матрицу системы к упрощенному виду

begin{pmatrix}-1&-2!!&vline!!&0\ 3&6!!&vline!!&0end{pmatrix}sim begin{pmatrix}1&2!!&vline!!&0\ 3&6!!&vline!!&0end{pmatrix}sim begin{pmatrix}1&2!!& vline!!&0\ 0&0!!&vline!!&0end{pmatrix}!.

Ранг матрицы системы равен 1 (r=1), число неизвестных n=2, следовательно, фундаментальная система решений состоит из n-r=1 решения. Выражаем базисную переменную x_1 через свободную: x_1=-2x_2. Полагая x_2=1, получаем решение varphi_1= begin{pmatrix}-2\1end{pmatrix}.

4(1). Записываем собственные векторы, соответствующие собственному значению lambda_1=2colon~ s_1=C_1cdotvarphi_1, где C_1 — отличная от нуля произвольная постоянная.

Заметим, что, согласно пункту 5 замечаний 7.5, в качестве собственного вектора можно выбрать вектор, составленный из алгебраических дополнений элементов второй строки матрицы begin{pmatrix}-1&-2\3&6end{pmatrix}, то есть begin{pmatrix}2\-1 end{pmatrix}. Умножив этот столбец на (-1), получим varphi_1.

3(2). Для корня lambda_2=7 составляем однородную систему уравнений (A-lambda_2E)x=o:

begin{pmatrix}1-7&-2\ 3&8-7 end{pmatrix}!cdot! begin{pmatrix}x_1\x_2 end{pmatrix}= begin{pmatrix}0\0end{pmatrix}quad Leftrightarrowquad begin{pmatrix}-6&-2\ 3&1 end{pmatrix}!cdot! begin{pmatrix}x_1\x_2 end{pmatrix}= begin{pmatrix}0\0 end{pmatrix}!.

Решаем эту систему методом Гаусса, приводя расширенную матрицу системы к упрощенному виду

begin{pmatrix}-6&-2!!&vline!!&0\ 3&1!!&vline!!&0end{pmatrix}sim begin{pmatrix}3&1!!&vline!!&0\ -6&-2!!&vline!!&0end{pmatrix}sim begin{pmatrix}1&1/3!!& vline!!&0\ -6&-2!!&vline!!&0end{pmatrix}sim begin{pmatrix}1&1/3!!& vline!!&0\ 0&0!!&vline!!&0end{pmatrix}!.

Ранг матрицы системы равен 1 (r=1), число неизвестных n=2, следовательно, фундаментальная система решений состоит из n-r=1 решения. Выражаем базисную переменную x_1 через свободную: x_1=-frac{1}{3}x_2. Полагая x_2=1, получаем решение varphi_2=begin{pmatrix}-1/3\1end{pmatrix}.

4(2). Записываем собственные векторы, соответствующие собственному значению lambda_2=7colon~ s_2=C_2cdotvarphi_2, где C_2 — отличная от нуля произвольная постоянная.

Заметим, что, согласно пункту 5 замечаний 7.5, в качестве собственного вектора можно выбрать вектор, составленный из алгебраических дополнений элементов первой строки матрицы begin{pmatrix}-6&-2\3&1end{pmatrix}, т.е. begin{pmatrix}1\-3 end{pmatrix}. Поделив его на (- 3), получим varphi_2.

Матрица B. 1. Составляем характеристический многочлен матрицы

Delta_{B}(lambda)= begin{vmatrix}1-lambda&-4\1&1-lambdaend{vmatrix}= (1-lambda)^2+4=lambda^2-2 lambda+1+4= lambda^2-2 lambda+5.

2. Решаем характеристическое уравнение: lambda^2-2 lambda+5=0~Rightarrow~! left[! begin{gathered}lambda_1=1+2i,\ lambda_2=1-2i.end{gathered}right..

3(1). Для корня lambda_1=1+2i составляем однородную систему уравнений (B-lambda_1E)x=o

begin{pmatrix}1-(1+2i)&-4\ 1&8-1-(1+2i) end{pmatrix}!cdot! begin{pmatrix}x_1\x_2 end{pmatrix}= begin{pmatrix}0\0end{pmatrix}quad Leftrightarrowquad begin{pmatrix}-2i&-4\ 1&-2i end{pmatrix}!cdot! begin{pmatrix}x_1\x_2 end{pmatrix}= begin{pmatrix}0\0 end{pmatrix}!.

Решаем эту систему методом Гаусса, приводя расширенную матрицу системы к упрощенному виду

begin{pmatrix}-2i&-4!!&vline!!&0\ 1&-2i!!&vline!!&0end{pmatrix}sim begin{pmatrix} 1&-2i!!&vline!!&0\ -2i&-4!!&vline!!&0end{pmatrix}sim begin{pmatrix}1&-2i!!& vline!!&0\ 0&0!!&vline!!&0end{pmatrix}.

Ранг матрицы системы равен 1 (r=1), число неизвестных n=2, следовательно, фундаментальная система решений состоит из n-r=1 решения. Выражаем базисную переменную x_1 через свободную: x_1=2i,x_2. Полагая x_2=1, получаем решение varphi_1= begin{pmatrix}2i\1 end{pmatrix}.

4(1). Записываем собственные векторы, соответствующие собственному значению lambda_1= 1+2icolon~ s_1=C_1cdotvarphi_1, где C_1 — отличная от нуля произвольная постоянная.

Заметим, что, согласно пункту 5 замечаний 7.5, в качестве собственного вектора можно выбрать вектор, составленный из алгебраических дополнений элементов первой строки матрицы begin{pmatrix}-2i&-4\1&-2iend{pmatrix}, то есть begin{pmatrix}-2i\ -1 end{pmatrix}. Умножив этот столбец на (-1), получим varphi_1.

3(2). Для корня lambda_2=1-2i составляем однородную систему уравнений (B-lambda_2E)x=o:

begin{pmatrix}1-(1-2i)&-4\ 1&8-1-(1-2i) end{pmatrix}!cdot! begin{pmatrix}x_1\x_2 end{pmatrix}= begin{pmatrix}0\0end{pmatrix}quad Leftrightarrowquad begin{pmatrix}2i&-4\ 1&2i end{pmatrix}!cdot! begin{pmatrix}x_1\x_2 end{pmatrix}= begin{pmatrix}0\0 end{pmatrix}!.

Решаем эту систему методом Гаусса, приводя расширенную матрицу системы к упрощенному виду

begin{pmatrix}2i&-4!!&vline!!&0\ 1&2i!!&vline!!&0end{pmatrix}sim begin{pmatrix} 1&2i!!&vline!!&0\ 2i&-4!!&vline!!&0end{pmatrix}sim begin{pmatrix}1&2i!!& vline!!&0\ 0&0!!&vline!!&0end{pmatrix}.

Ранг матрицы системы равен 1 (r=1), число неизвестных n=2, следовательно, фундаментальная система решений состоит из n-r=1 решения. Выражаем базисную переменную x_1 через свободную: x_1=-2i,x_2. Полагая x_2=1, получаем решение varphi_2= begin{pmatrix}-2i\1 end{pmatrix}.

4(2). Записываем собственные векторы, соответствующие собственному значению lambda_2=1-2icolon~ s_2=C_2cdotvarphi_2, где C_2 — отличная от нуля произвольная постоянная.

Заметим, что, согласно пункту 5 замечаний 7.5, в качестве собственного вектора можно выбрать вектор, составленный из алгебраических дополнений элементов первой строки матрицы begin{pmatrix}2i&-4\1&2iend{pmatrix}, т.е. begin{pmatrix}2i\-1 end{pmatrix}. Умножив его на (-1), получим varphi_2.

Матрица C 1. Составляем характеристический многочлен матрицы

Delta_{C}(lambda)= det(C-lambda E)= begin{vmatrix}1-lambda&1&1\1&1-lambda&1\ 1&1&1-lambda end{vmatrix}= (1-lambda)^3+2-3(1-lambda)= -lambda^3+3 lambda^2.

2. Решаем характеристическое уравнение: -lambda^3+3 lambda^2=0~Rightarrow~! left[! begin{gathered}lambda_1=3,\ lambda_2=0end{gathered}right..

3(1). Для корня lambda_1=3 составляем однородную систему уравнений (C-lambda_1E)x=o:

begin{pmatrix}1-3&1&1\ 1&1-3&1\ 1&1&1-3end{pmatrix}!cdot! begin{pmatrix} x_1\x_2\x_3end{pmatrix}=begin{pmatrix}0\0\0end{pmatrix}quad Leftrightarrowquad begin{cases}-2x_1+x_2+x_3=0,\ x_1-2x_2+x_3=0,\ x_1+x_2-2x_3=0.end{cases}

Решаем эту систему методом Гаусса, приводя расширенную матрицу системы к упрощенному виду (ведущие элементы выделены полужирным курсивом):

begin{gathered}begin{pmatrix}C-lambda_1Emid oend{pmatrix}= begin{pmatrix} -2&1&1!!&vline!!&0\ 1&-2&1!!&vline!!&0\ 1&1&-2!!&vline!!&0 end{pmatrix}sim begin{pmatrix} 1&1&-2!!&vline!!&0\ -2&1&1!!&vline!!&0\ 1&-2&1!!&vline!!&0 end{pmatrix}sim\[2pt] simbegin{pmatrix} 1&1&-2!!&vline!!&0\ 0&3&-3!!&vline!!&0\ 0&-3&3!!&vline!!&0 end{pmatrix}sim begin{pmatrix} 1&1&-2!!&vline!!&0\ 0&1&-1!!&vline!!&0\ 0&0&0!!&vline!!&0 end{pmatrix}sim begin{pmatrix} 1&0&-1!!&vline!!&0\ 0&1&-1!!&vline!!&0\ 0&0&0!!&vline!!&0 end{pmatrix}!.end{gathered}

Ранг матрицы системы равен 2 (r=2), число неизвестных n=3, следовательно, фундаментальная система решений состоит из n-r=1 решения. Выражаем базисные переменные x_1,x_2 через свободную x_3colon begin{cases}x_1=x_3,\x_2=x_3,end{cases} и, полагая x_3=1, получаем решение varphi=begin{pmatrix}1\1\1end{pmatrix}.

4(1). Все собственные векторы, соответствующие собственному значению lambda_1=3, вычисляются по формуле s=C_1cdotvarphi, где C_1 — отличная от нуля произвольная постоянная.

Заметим, что, согласно пункту 5 замечаний 7.5, в качестве собственного вектора можно выбрать вектор, составленный из алгебраических дополнений элементов первой строки матрицы begin{pmatrix}-2&1&1\1&-2&1\1&1&-2end{pmatrix}, то есть begin{pmatrix}3\3\3end{pmatrix}, так как

A_{11}=(-1)^{1+1}begin{vmatrix} -2&1\1&-2 end{vmatrix} =3;quad A_{12}=(-1)^{1+2} begin{vmatrix} 1&1\1&-2 end{vmatrix}= 3;quad A_{13}=(-1)^{1+3}begin{vmatrix}1&-2\ 1&1 end{vmatrix}=3.

Разделив его на 3, получим varphi.

3(2). Для собственного значения lambda_2=0 имеем однородную систему Cx=o. Решаем ее методом Гаусса:

begin{pmatrix}Cmid oend{pmatrix}= begin{pmatrix}1&1&1!!&vline!!&0\ 1&1&1!!&vline!!&0\ 1&1&1!!&vline!!&0 end{pmatrix}sim begin{pmatrix}1&1&1!!& vline!!&0\ 0&0&0!!&vline!!&0\ 0&0&0!!&vline!!&0 end{pmatrix}!.

Ранг матрицы системы равен единице (r=1), следовательно, фундаментальная система решений состоит из двух решений (n-r=2). Базисную переменную x_1, выражаем через свободные: x_1=-x_2-x_3. Задавая стандартные наборы свободных переменных x_2=1,~x_3=0 и x_2=0,~ x_3=1, получаем два решения

varphi_1=begin{pmatrix}-1\1\0end{pmatrix}!,qquad varphi_2=begin{pmatrix}-1\0\1 end{pmatrix}!.

4(2). Записываем множество собственных векторов, соответствующих собственному значению lambda_2=0colon~ s=C_1varphi_1+C_2varphi_2, где C_1,C_2 — произвольные постоянные, не равные нулю одновременно. В частности, при C_1=0, C_2=-1 получаем s_1=begin{pmatrix}1&0&-1end{pmatrix}^T; при C_1=0,~C_2=-1colon s_2=begin{pmatrix}1&-1&0end{pmatrix}^T. Присоединяя к этим собственным векторам собственный вектор s_3=begin{pmatrix}1&1&1 end{pmatrix}^T, соответствующий собственному значению lambda_1=3 (см. пункт 4(1) при C_1=1), находим три линейно независимых собственных вектора матрицы C:

s_1=begin{pmatrix}1\0\-1end{pmatrix}!,qquad s_2=begin{pmatrix}1\-1\0 end{pmatrix}!,qquad s_3=begin{pmatrix}1\1\1end{pmatrix}!.

Заметим, что для корня lambda_2=0 собственный вектор нельзя найти, применяя пункт 5 замечаний 7.5, так как алгебраическое дополнение каждого элемента матрицы A равно нулю.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти свойства экрана в windows 10
  • Как исправить баг в insanity geometry dash
  • Как найти высоту в равностороннем треугольнике формулы
  • Как найти отрезок гипотенузы в прямоугольном треугольнике
  • Как найти сколько элементов в списке

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии