Как найти скорость по формуле ньютона

В статье обсуждаются несколько подходов к вычислению скорости по силе и массе, а также решенные проблемы. 

Чтобы вычислить скорость, мы должны понять, насколько далеко уходит масса объекта при приложении силы. Скорость объекта — это не что иное, как величина его вектора скорости. Вот почему мы можем рассчитать скорость по силе и массе, используя законы Ньютона, кинематическое уравнение движения и формулы работы-энергии.

Подробнее о том, как рассчитать массу по силе и расстоянию.

Как рассчитать скорость по силе и массе, используя второй закон Ньютона?

Давайте вычислим скорость по силе и массе, используя второй закон движения Ньютона. 

Второй закон Ньютона связывает скорость изменения скорости или ускорение с приложенной силой и массой. Вычислять скорость из второго закона Ньютона, нам сначала нужно понять разницу между скоростью и скоростью, а затем вычислить значение скорости из скорости изменения скорости. 

Согласно Второй закон Ньютона,

F = ma

]

F=m*[(vv0)/(тт0)

В то время как v0 — начальная скорость, v — конечная скорость.

Прежде чем рассчитывать скорость по закону Ньютона, давайте разберемся в разнице между скоростью и скоростью.

Как рассчитать скорость по силе и массе

Как рассчитать скорость
от силы и массы

Разница между скоростью и скоростью

Скорость Скорость
Это скалярная величина, связанная с расстоянием. Это векторная величина, связанная со смещением.
Это ненулевая величина, которая всегда положительна. Может быть нулевым, положительным и отрицательным.
Это может не быть равным скорости. Разные скорости одного и того же объекта обладают одинаковой скоростью.
Единица СИ — метр в секунду (м / сек). Единица СИ — километр / час (км / час).

Скорость против скорости
(Кредит: Shutterstock)

Когда автомобиль проехал определенное расстояние d за время t, мы называем его скорость v.

v=d/t

Как вы знаете, иногда нам нужно изменить направление во время движения из-за пробок или по другим причинам; в этом случае мы измеряем смещение вместо расстояния d в интервале времени t.

Уравнение (*) превращается в скорость v как,

Смещение — это кратчайшее расстояние между конечным и начальным расстоянием, но его величина меньше или равна общему расстоянию d. 

Как рассчитать скорость на расстоянии

Расстояние против смещения
(Кредит: Shutterstock)

Поскольку скорость не равна нулю или никогда не уменьшается со временем, величина скорости становится значением скорости, когда время приближается к нулю. 

Это означает скорость v говорит нам, насколько быстро машина. В то время как скорость v говорит нам как о скорости автомобиля, так и о его направлении. Поэтому мы назвали скорость величиной вектора скорости

Узнать больше об относительном движении.

Автомобиль массой 1000 кг в состоянии покоя проехал около 1 часа при силе 6 х 104 Применяется N. Рассчитайте скорость автомобиля.

Данный:

F = 6 х 104 N

m = 1000 кг

t = 1 час

Найти: v=?

Формула:

F = ma

Решение:

Скорость автомобиля рассчитывается с использованием Второй закон движения Ньютона.

F = ма

F=m*[(vv0)/(тт0)

Поскольку автомобиль изначально находится в состоянии покоя, v0 = 0 и t0 = 0

Следовательно,

Подставляя все значения,

Преобразуем скорость в скорость в метрах в секунду.

1 км = 1000 м

1 час = 3600 секунд

v=60*(1000/3600)

v = 60000/3600

v = 16.6

Автомобиль движется со скоростью 16.6 м / сек.

Подробнее о том, как рассчитать ускорение свободного падения.

Как рассчитать скорость по силе и массе, используя кинематическое уравнение движения?

Давайте вычислим скорость по силе и массе, используя второе кинематическое уравнение движения. 

Второе кинематическое уравнение движения связывает общее пройденное расстояние объекта с начальной скоростью и ускорением. Когда мы внедрили формулу ускорения из второго закона Ньютона в кинематическое уравнение, мы получили формулу, которая рассчитывала скорость на основе приложенной силы и ее массы. 

Второе кинематическое уравнение движения:

Как рассчитать скорость по силе и массе с помощью кинематического уравнения

Как рассчитать скорость по силе и массе с помощью кинематического уравнения

Узнать больше о кинематических уравнениях движения.

Парашютист массой 60 кг выпрыгивает из самолета и за 1 минуту достигает земли. Если сила, воздействующая на парашютиста по воздуху, составляет 800 Н, какова скорость парашютиста?

Данный:

m = 60 кг

t = 1 минута = 60 секунд

F = 800 Н

Найти: v =?

Формула:

Решения:

Скорость парашютиста рассчитывается с помощью второе кинематическое уравнение движения.

а=Ф/м

Но

Поскольку парашютист изначально находится в состоянии покоя относительно плоскости, следовательно, d0 = 0 и v0 = 0.

d=(1/2)*(Ф/м)*t2

С скорость v= d / t

vt=(1/2)*(Ф/м)*t2

v=фут/2м

Подставляем все значения

v=(800*60)/(2*60)

v = 48000/120

V = 400

Скорость парашютиста 400 м / сек.

Подробнее о преобразовании потенциала в кинетическую энергию.

Как рассчитать скорость по силе и массе, используя формулу работы-энергии?

Давайте вычислим скорость по силе и массе, используя формулу работы-энергии. 

Когда покоящийся объект перемещается на определенное расстояние при приложении силы, он выполняет работу. Приложенная сила преобразует накопленную потенциальную энергию неподвижного объекта в кинетическую энергию для выполнения работы. Вот почему используется формула работы-энергии; мы можем вычислить скорость по силе и массе. 

Компания формула работы является,

W = Fd

Поскольку работа, совершаемая телом, есть приобретение им кинетической энергии KE=(1/2)mv2

(1/2)мв2 =Fд

Узнать больше о выполненной работе.

Мужчина имеет горки массой 80 кг со скоростью 30 км / ч за 2 секунды, когда к нему прилагается сила 200 Н, когда он толкает горку на игровой площадке. Рассчитайте скорость скольжения человека. 

Данный:

F = 200 Н

m = 80 кг

v=30км/ч=30*(1000/3600)

t = 2 часа

Найти: v=?

Формула:

(1/2)мв2=Fд

Решения:

Скорость скольжения человека рассчитывается с помощью формула работы-энергии в виде,

(1/2)мв2=Fд

Но скорость v = d / t

(1/2)мв2=Fdt

v=мв2/2 фута

Используя формулу работы и энергии, мы можем вычислить скорость в терминах силы, массы и скорости.

Подставляя все значения,

v=(72*106)/(28.8*105)

v = 25

Скорость скольжения человека 25 м / сек.

Узнайте больше о проделанной работе на уклоне.

Как рассчитать скорость по силе и массе с помощью формулы мощности?

Давайте рассчитаем скорость по силе и массе, используя формулу мощности. 

Мощность любого объекта измеряется количеством его работы, выполненной за единицу времени. Поскольку проделанная работа объекта является произведением приложенной силы и пройденного расстояния. Следовательно, используя формулу мощности, мы можем рассчитать скорость объекта непосредственно из приложенной силы и ее мощности.  

Компания формула мощности является,

P=Вт/т

W = Fd

Но работа сделана

P=Fd/т

v=d/t

Поскольку скорость

Р=Fv

Как рассчитать скорость по силе и массе с помощью формулы мощности

Как рассчитать скорость по силе и массе с помощью формулы мощности
(Кредит: Shutterstock)

Узнать больше о Power

Если номинальная мощность двигателя составляет 500 Вт, он может выполнять работу при приложении силы 80 Н. Какая скорость у мотора?

Данный:

P = 500 Вт

1Вт=1кг.м2/s3

F = 80 Н

1Н=1кг.м2/s2

Найти: v=?

Формула:

P=Вт/т

Решения:

Скорость рассчитывается с использованием формула мощности,

P = Fv

v=П/Ф

Подставляя все значения,

В=500Вт/80Н

v = 40 м / сек

Скорость двигателя 40 м / сек.


Второй закон Ньютона это закон который был выведен в результате проведения опытов Ньютоном.

В результате чего были выведена новая формула второго закона ньютона а = F /m

Что такое второй закон Ньютона, масса и вес тела

Второй закон НьютонаОбобщая результаты опытов Галилея по падению тяжелых тел, астрономические законы Кеплера о движении планет, данные собственных исследований.

Ньютон сформулировал второй закон динамики, количественно связывающий изменение движения тела с силами, вызывающими это изменение.

Чтобы исследовать зависимость между силой и ускорением количественно, рассмотрим некоторые опыты.

Ускорение от величины силы

I. Рассмотрим, как зависит ускорение одного и того же тела от величины силы, действующей на это тело. Предположим, что к тележке прикреплен динамометр, по показаниям которого измеряют силу.

Измерив длину пройденного тележкой пути за какой-нибудь промежуток времени t, по формуле s = (at2) : 2 определим ускорение a.

Изменяя величину силы, проделаем опыт несколько раз. Результаты измерения покажут, что ускорение прямо пропорционально силе, действующей на тележку

a1 : a2 = F1 : F2

ИЛИ

а ~ F.

Отношение силы, действующей на тело, к ускорению есть величина постоянная, которую обозначим mЭто отношение назовем массой тела.

Зависимость ускорения от массы

II. Установим зависимость ускорения тела от его массы. Для этого будем действовать на тележку какой-нибудь постоянной силой, изменяя массу (помещая различные грузы на тележку).

Ускорения тележки будем определять так же, как и в первом опыте. Опыт покажет, что ускорение тележки обратно пропорционально массе, то есть

(a1/a2) = (m2/m1), или а ~ (1/m)

Обобщая результаты опытов, можно заметить, что ускорение, приобретаемое телом, прямо пропорционально силе, действующей на тело, и обратно пропорционально массе данного тела (второй закон ньютона формулировка).

Этот вывод называется вторым законом Ньютона. Математически этот закон можно записать так (формула второго закона ньютона):

а = F /m

где а — ускорение, m—масса тела, F — результирующая всех сил, приложенных к телу. В частном случае на тело может действовать и одна сила.

Результирующая сила равна векторной сумме всех сил, приложенных к телу;

= mа.

Следовательно, сила равна произведению массы на ускорение.

Второй закон динамики можно записать в иной более удобной форме. Учитывая, что ускорение

а = (υ2 — υ1) / (t2 — t1)

подставим это выражение в уравнение второго закона Ньютона. Получим

F = ma = (2 — 1) / (t2 — t1) = (∆(mυ))/t

Что такое импульс

Импульсом, или количеством движения, называется вектор, равный произведению массы тела на его скорость (тυ).

Тогда основной закон динамики можно сформулировать следующим образом: сила равна изменению импульса в единицу времени (второй закон ньютона в импульсной форме)

F(∆(mυ))/t

Это и есть наиболее общая формулировка второго закона Ньютона. Массу тела Ньютон определил как количество вещества, содержащегося в данной теле. Это определение несовершенно.

Из второго закона Ньютона вытекает следующее определение массы. Из равенства 

a1/a2m2/m1 

видно, что чем больше масса тела, тем меньше ускорение получает тело, то есть тем труднее изменить скорость этого тела и наоборот.

Следовательно, чем больше масса тела, тем в большей степени это тело способно сохранять скорость неизменной, то есть больше инертности. Тогда можно сказать, что масса есть мера инертности тела.

Эйнштейн доказал, что масса тела остается постоянной только при определенных условиях. В зависимости от скорости движения тела его масса изменяется по такому закону:

Масса тела

где m — масса тела, движущегося со скоростью υ; m0 — масса этого же тела, находящегося в покое; с = 3 • 108м/с скорость света в вакууме.

Проанализируем данное уравнение:

  1. Если υ«с, то величиной —, как очень малой, можно пренебречь и m = m0, то есть при скоростях движения, много меньших скорости света, масса тела не зависит от скорости движения;
  2. Если υ  с, то υ22 ≈ 1, тогда т = m0/0— отсюда вытекает, что m → ∞.

По мере увеличения скорости тела для его дальнейшего ускорения нужно будет прикладывать все увеличивающиеся силы.

Но бесконечно больших сил, которые потребовались бы для сообщения телу скорости, равной скорости света, в природе не существует.

Таким образом, заставить рассматриваемое тело двигаться со скоростью света принципиально невозможно.

Со скоростями, близкими к скорости света, современная физика встречается: так разгоняются, например, элементарные частицы в ускорителях.

Масса тела с ростом скорости

Масса тела с ростом скорости увеличивается, но количество вещества остается неизменным, возрастает инертность. Поэтому массу нельзя путать с количеством вещества.

Покажем связь между силой тяжести, массой тела и ускорением свободного падения. Любое тело, поднятое над Землей и ничем не поддерживаемое, падает снова на Землю.

Это происходит вследствие того, что между телом и Землей существует притяжение (этот вопрос более подробно рассмотрим позже). 

Сила, с которой тело притягивается к Земле, называется силой тяжести. Падение тел в безвоздушном пространстве под действием силы тяжести (при υ0 = 0) называется свободным падением. 

Отметим, что для тел, покоящихся в поле сил тяготения, сила тяжести равна весу тела Р.

Весом тела называется сила, с которой тело давит на горизонтальную подставку, неподвижную относительно Земли, или действует на подвес.

Если Р— сила тяжести, m — масса, g — ускорение силы тяжести (в данной точке Земли оно для всех тел одинаковой среднее его значение равно 9,8м2), то применяя второй закон динамики, получим

P = mg.

Выразим с помощью этой формулы веса двух различных тел. Тогда:

P1 = m1g и Р2 = m2g. Разделив почленно эти два равенства, будем иметь

P1/P2 = m1/m2

Следовательно, веса тел в данной точке земной поверхности прямо пропорциональны их массам.

Задачи на второй закон ньютона

1. Какая сила F действует на автомобиль массой кгm=1000 кг, если он движется с ускорением мсa=1 м/с2.

Дано:
m = 1000 кг
a = 1 м/с2

Найти: F — ?

Решение:

Запишем второй закон Ньютона :

= mа.

= 1000 кг • 1 м/с2 = 1000 Н

Ответ: 1000 Н.

2. На мяч действует сила F = 70Н, масса мяча m = 0,2 кг, найти его ускорение a.

Дано:

m = 0,2 кг,

F = 70Н

Найти:

a — ?

Решение:

Запишем второй закон Ньютона :

= mа.

Следовательно а = / m.

а = 70Н : 0,2 кг = 350 м/с.

Ответ: а = 350 м/с.


Статья на тему Второй закон Ньютона

Мы уже говорили об основах классической механики. Настала пора поговорить о них подробнее и затронуть в обсуждении чуть больше, чем просто основу. В этой статье мы подробно разберем основные законы классической механики. Как вы уже догадались, речь пойдет о законах Ньютона.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Основные законы классической механики Исаак Ньютон (1642-1727) собрал и опубликовал в 1687 году. Три знаменитых закона были включены в труд, который назывался «Математические начала натуральной философии».

Был долго этот мир глубокой тьмой окутан
Да будет свет, и тут явился Ньютон.

(Эпиграмма 18-го века)

Но сатана недолго ждал реванша —
Пришел Эйнштейн, и стало все как раньше.

(Эпиграмма 20-го века)

Что стало, когда пришел Эйнштейн, читайте в отдельном материале про релятивистскую динамику. А мы пока приведем формулировки и примеры решения задач на каждый закон Ньютона.

Первый закон Ньютона

Первый закон Ньютона гласит:

Существуют такие системы отсчета, называемые инерциальными, в которых тела движутся равномерно и прямолинейно, если на них не действуют никакие силы или действие других сил скомпенсировано.

Проще говоря, суть первого закона Ньютона можно сформулировать так: если мы на абсолютно ровной дороге толкнем тележку и представим, что можно пренебречь силами трения колес и сопротивления воздуха, то она будет катиться с одинаковой скоростью бесконечно долго.

Инерция – это способность тела сохранять скорость как по направлению, так и по величине, при отсутствии воздействий на тело. Первый закон Ньютона еще называют законом инерции.

До Ньютона закон инерции был сформулирован в менее четкой форме Галилео Галилеем. Инерцию ученый называл «неистребимо запечатленным движением». Закон инерции Галилея гласит: при отсутствии внешних сил тело либо покоится, либо движется равномерно. Огромная заслуга Ньютона в том, что он сумел объединить принцип относительности Галилея, собственные труды и работы других ученых в своих «Математических началах натуральной философии».

Понятно, что таких систем, где тележку толкнули, а она покатилась без действия внешних сил, на самом деле не бывает. На тела всегда действуют силы, причем скомпенсировать действие этих сил полностью практически невозможно.

Например, все на Земле находится в постоянном поле силы тяжести. Когда мы передвигаемся (не важно, ходим пешком, ездим на машине или велосипеде), нам нужно преодолевать множество сил: силу трения качения и силу трения скольжения, силу тяжести, силу Кориолиса.

Инерция - способность тела продолжать движение

 

Второй закон Ньютона

Помните пример про тележку? В этот момент мы приложили к ней силу! Интуитивно понятно, что тележка покатится и вскоре остановится. Это значит, ее скорость изменится.

В реальном мире скорость тела чаще всего изменяется, а не остается постоянной. Другими словами, тело движется с ускорением. Если скорость нарастает или убывает равномерно, то говорят, что движение равноускоренное.

Если рояль падает с крыши дома вниз, то он движется равноускоренно под действием постоянного ускорения свободного падения g. Причем любой дугой предмет, выброшенный из окна на нашей планете, будет двигаться с тем же ускорением свободного падения.

Второй закон Ньютона устанавливает связь между массой, ускорением и силой, действующей на тело. Приведем формулировку второго закона Ньютона:

Ускорение тела (материальной точки) в инерциальной системе отсчета прямо пропорционально приложенной к нему силе и обратно пропорционально массе.

второй закон ньютона сила

Рисунок - второй закон Ньютона

 

Если на тело действует сразу несколько сил, то в данную формулу подставляется равнодействующая всех сил, то есть их векторная сумма.

В такой формулировке второй закон Ньютона применим только для движения со скоростью, много меньшей, чем скорость света.

Существует более универсальная формулировка данного закона,  так называемый дифференциальный вид.

второй закон ньютона сила

В любой бесконечно малый промежуток времени dt сила, действующая на тело, равна производной импульса тела по времени.

Третий закон Ньютона

В чем состоит третий закон Ньютона? Этот закон описывает взаимодействие тел.

3 закон Ньютона говорит нам о том, что на любое действие найдется противодействие. Причем, в прямом смысле:

Два тела воздействуют друг на друга с силами, противоположными по направлению, но равными по модулю.

Формула, выражающая третий закон Ньютона:

третий закон движения ньютона

Другими словами, третий закон Ньютона — это закон действия и противодействия.

Третий закон Ньютона

 

Пример задачи на законы Ньютона

Вот типичная задачка на применение законов Ньютона. В ее решении используются первый и второй законы Ньютона.

Десантник раскрыл парашют и опускается вниз с постоянной скоростью. Какова сила сопротивления воздуха? Масса десантника – 100 килограмм.

Решение:  

Движение парашютиста – равномерное и прямолинейное, поэтому, по первому закону Ньютона, действие сил на него скомпенсировано.

На десантника действуют сила тяжести и сила сопротивления воздуха. Силы направлены в противоположные стороны.

По второму закону Ньютона, сила тяжести равна ускорению свободного падения, умноженному на массу десантника.

задача на законы Ньютона

Ответ: Сила сопротивления воздуха равна силе тяжести по модулю и противоположна направлена.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

А вот еще одна физическая задачка на понимание действия третьего закона Ньютона.

Комар ударяется о лобовое стекло автомобиля. Сравните силы, действующие на автомобиль и комара.

Решение:

По третьему закону Ньютона, силы, с которыми тела действуют друг на друга, равны по модулю и противоположны по направлению. Сила, с которой комар действует на автомобиль, равна силе, с которой автомобиль действует на комара.

Другое дело, что действие этих сил на тела сильно отличаются вследствие различия масс и ускорений.

Исаак Ньютон: мифы и факты из жизни

На момент публикации своего основного труда Ньютону было 45 лет. За свою долгую жизнь ученый внес огромный вклад в науку, заложив фундамент современной физики и определив ее развитие на годы вперед.

Он занимался не только механикой, но и оптикой, химией и другими науками, неплохо рисовал и писал стихи. Неудивительно, что личность Ньютона окружена множеством легенд.

Ниже приведены некоторые факты и мифы из жизни И. Ньютона. Сразу уточним, что миф – это не достоверная информация. Однако мы допускаем, что мифы и легенды не появляются сами по себе и что-то из перечисленного вполне может оказаться правдой.

  • Факт. Исаак Ньютон был очень скромным и застенчивым человеком. Он увековечил себя благодаря своим открытиям, однако сам никогда не стремился к славе и даже пытался ее избежать.
  • Миф. Существует легенда, согласно которой Ньютона осенило, когда на наго в саду упало яблоко. Это было время чумной эпидемии (1665-1667), и ученый был вынужден покинуть Кембридж, где постоянно трудился. Точно неизвестно, действительно ли падение яблока было таким роковым для науки событием, так как первые упоминания об этом появляются только в биографиях ученого уже после его смерти, а данные разных биографов расходятся.
  • Факт. Ньютон учился, а потом много работал в Кембридже. По долгу службы ему нужно было несколько часов в неделю вести занятия у студентов. Несмотря на признанные заслуги ученого, занятия Ньютона посещались плохо. Бывало, что на его лекции вообще никто не приходил. Скорее всего, это связано с тем, что ученый был полностью поглощен своими собственными исследованиями.
  • Миф. В 1689 году Ньютон был избран членом Кембриджского парламента. Согласно легенде, более чем за год заседания в парламенте вечно поглощенный своими мыслями ученый взял слово для выступления всего один раз. Он попросил закрыть окно, так как был сквозняк.
  • Факт. Неизвестно, как бы сложилась судьба ученого и всей современной науки, если бы он послушался матери и начал заниматься хозяйством на семейной ферме. Только благодаря уговорам учителей и своего дяди юный Исаак отправился учиться дальше вместо того, чтобы сажать свеклу, разбрасывать по полям навоз и по вечерам выпивать в местных пабах.

Дорогие друзья, помните — любую задачу можно решить! Если у вас возникли проблемы с решением задачи по физике, посмотрите на основные физические формулы. Возможно, ответ перед глазами, и его нужно просто рассмотреть. Ну а если времени на самостоятельные занятия совершенно нет, специализированный студенческий сервис всегда к вашим услугам!

В самом конце предлагаем посмотреть видеоурок на тему «Законы Ньютона».

Три закона Ньютона

Динамика — раздел механики, изучающий причины движения тел и способы определения их ускорения. В нем движение тел описывается с учетом их взаимодействия.

Большой вклад в развитие динамики внес английский ученый Исаак Ньютон. Он первым смог выделить законы движения, которым подчиняются все макроскопические тела. Эти законы называют законами Ньютона, законами механики, законами динамики или законами движения тел.

Внимание! Законы Ньютона нельзя применять к произвольным телам. Они применимы только к точке, обладающей массой — к материальной точке.

Основное утверждение механики

Для описания движения тела можно взять любую систему отсчета. Обычно для этого используется система отсчета, связанная с Землей. Если какое-то тело меняет свою скорость, рядом с ним всегда можно обнаружить другое тело, которое на него действует. Так, если поднять камень и отпустить, он не останется висеть в воздухе, а упадет вниз. Следовательно, на него что-то подействовало. В данном случае сама Земля притянула камень к себе. Отсюда следует основное утверждение механики:

Основное утверждение механики

Изменение скорости (ускорение) тела всегда вызывается воздействием на него других тел.

Согласно утверждению, если на тело не действуют никакие силы, его ускорение будет нулевым, и оно будет либо покоиться, либо двигаться равномерно и прямолинейно (с постоянной скоростью).

Но в нашем мире мы не всегда это наблюдаем. И этому есть объяснение. Если тело покоится, оно действительно не меняет свою скорость. Так, мяч лежит на траве до тех пор, пока его не пнут. После того, как его пнут, он начинает катиться, но затем останавливается. Пока мяч катится, к нему больше не прикасаются. Казалось бы, согласно основному утверждению механики, мяч должен катиться вечно. Но этого не происходит, потому что на мяч действует сила трения, возникающая между его поверхностью и травой.

Основное утверждение механики можно проиллюстрировать в открытом космосе в месте, где сила притяжения космических тел пренебрежимо мала. Если в космосе придать телу скорость и отпустить, оно будет двигаться с такой скоростью по прямой линии до тех пор, пока на него не подействуют другие силы. Ярким примером служат межгалактические звезды, или звезды-изгои. Гравитационно они не связаны ни с одной из галактик, а потому движутся с постоянной скоростью. Так, звезда HE 0437-5439 удаляется от нашей галактики с постоянной скоростью 723 км/с.

Свободное тело — тело, на которое не действуют другие тела. Свободное тело либо покоится, либо движется прямолинейно и равномерно.

Первый закон Ньютона

Исаак Ньютон, изучая движение тел, заметил, что относительно одних систем отсчета свободные тела сохраняют свою скорость, а относительно других — нет. Он разделил их на две большие группы: инерциальные системы отсчета и неинерциальные. В этом кроется первый закон динамики.

Первый закон Ньютона

Существуют такие системы отсчета, называемые инерциальными, относительно которых тела движутся равномерно и прямолинейно или находятся в состоянии покоя, если на них не действуют другие тела или их действие компенсировано.

Примером инерциальной системы отсчета служит система отсчета, связанная с Землей (геоцентрическая). Другой пример — гелиоцентрическая система отсчета (связанная с Солнцем).

Неинерциальная система отсчета — система отсчета, в которой тела могут менять свою скорость при отсутствии на них действия других тел.

Примером неинерциальной системы отсчета служит автобус. Когда он движется равномерно и прямолинейно, стоящие внутри пассажиры находятся относительно него в состоянии покоя. Но когда автобус останавливается, пассажиры падают вперед, т. е. меняют свою скорость, хотя на них не действуют другие тела.

Второй закон Ньютона

В примере с автобусом видно, что пассажиры стараются сохранить свою скорость относительно Земли — инерциальной системы отсчета. Такое явление называется инерцией.

Инерция — явление, при котором тело сохраняет состояние покоя или равномерного прямолинейного движения.

Инертность — физическое свойство, заключающееся в том, что любое тело оказывает сопротивление изменению его скорости (как по модулю, так и по направлению).

Не все тела одинаково инертны. Вы можете взять мячик и придать ему большое ускорение. Но вы не можете придать такое же ускорение гире, хотя она обладает похожим размером. Но мячик и гиря различаются между собой массой.

Масса — скалярная физическая величина, являющаяся мерой инертности тела. Чем больше масса, тем больше инертность тела.

Масса обозначается буквой m. Единица измерения массы — кг. Прибор для измерения массы — весы.

Чтобы придать одинаковую скорость двум телам с разной инертностью, к телу с большей инертностью придется приложить больше силы. Попробуйте сдвинуть с места стол, а затем — шкаф. Сдвинуть с места стол будет проще.

Если же приложить две одинаковые силы к телам с разной инертностью, будет видно, что тело с меньшей инертностью получает большее ускорение. Если приставить к пружине теннисный шарик, а затем сжать ее и резко отпустить, шарик улетит далеко. Если вместо теннисного шарика взять железный, он лишь откатится на некоторое расстояние.

Описанные выше примеры показывают, что между силой, прикладываемой к телу, и ускорением, которое оно получает в результате прикладывания этой силы, и массой этого тела есть взаимосвязь. Она раскрывается во втором законе Ньютона.

Второй закон Ньютона

Сила, действующая на тело, равна произведению массы этого тела на ускорение, которое сообщает эта сила.

F = ma

где F — сила, которую прикладывают к телу, a — ускорение, которое сообщает эта сила, m — масса тела

Сила — количественная мера действия тел друг на друга, в результате которого тела получают ускорения.

Сила — векторная физическая величина. Обозначается F. Единица измерения — Н (Ньютон). Прибор для измерения силы — динамометр.

Пример №1. Определить, с какой силой действует Земля на яблоко, если, упав с ветки, оно получило ускорение 9,8 м/с2. Масса яблока равна 200 г.

Сначала переведем массу яблока в кг. 200 г = 0,2 кг. Теперь найдем силу, действующую на яблоко со стороны Земли, по второму закону Ньютона:

F = ma = 0,2 ∙ 9,8 = 1,96 (Н)

Равнодействующая сила

Иногда на тело действуют несколько сил. Тогда при описании его движения вводится понятие равнодействующей силы.

Определение

Равнодействующая сила — векторная сумма всех сил, действующих на тело одновременно.

R = F1 + F2 + F3 + …

В этом случае второй закон Ньютона формулируется так:

Второй закон Ньютона через равнодействующие силы

Если на тело действует несколько сил, то их равнодействующая R будет равна произведению массы на ускорение этого тела.

ma = R = F1 + F2 + F3 + …

Правила сложения сил и их проекций

Сложение двух сил, направленных вдоль одной прямой в одну сторону

Если F1↑↑F2, то:

R = F1 + F2

Равнодействующая сила сонаправлена с обеими силами.

Сложение двух сил, направленных вдоль одной прямой во взаимно противоположных направлениях

Если F1↑↓F2, то:

R = |F1 F2|

Равнодействующая сила направлена в сторону направления большей по модулю силы.

Сложение двух сил, перпендикулярных друг к другу

Если F1 перпендикулярна F2, то равнодействующая сила вычисляется по теореме Пифагора:

Сложение двух сил, расположенных под углом α друг к другу

Если F1 и F2 расположены под углом α друг к другу, равнодействующая сила вычисляется по теореме косинусов:

Сложение трех сил

Способ сложения определяется правилами сложения векторов. В данном случае:

Сложение проекций сил

Проекция на ось ОХ:

F1x + F2x – F3x = 0

Проекция на ось OY:

F1y – F2y = 0

Третий закон Ньютона

Когда одно тело действует на другое, начинается взаимодействие этих тел. Это значит, если тело А действует на тело В и сообщает ему ускорение, то и тело В действует на тело А, тоже придавая ему ускорение. К примеру, если сжать пружину руками, то руки будут чувствовать сопротивление, оказываемое силой упругости пружины. Если же, находясь в лодке, начать тянуть за веревку вторую лодку, то обе лодки будут двигаться навстречу друг другу. То есть, вы, находясь в своей лодке, тоже будете двигаться навстречу второй лодке.

Иногда на тело действует сразу несколько сил, но тело продолжает покоиться. В этом случае говорят, что силы друг друга компенсируют, то есть их равнодействующая равна нулю.

Две силы независимо от их природы считаются равными по модулю и противоположно направленными, если их одновременное действие на тело не меняет его скорости.

Примером такого явления служит ситуация, когда при перетягивании каната его никто не может перетянуть в свою сторону. Если взять два каната и присоединить между ними два динамометра, а затем начать игру в перетягивание, выяснится, что показания динамометра всегда будут одинаковыми. Это значит, что независимо от масс и придаваемых ускорений два взаимодействующих тела оказывают друг на друга равные по модулю силы. В этом заключается смысл третьего закона Ньютона.

Третий закон Ньютона

Силы, с которыми тела действуют друг на друга, равны по модулям и направлены по одной прямой в противоположные стороны.

FA = –FB

Используя второй закон Ньютона, третий закон механики можно переписать иначе:

m1a1 = –m2a2

Отсюда следует:

Отношение модулей ускорений a1 и a2 взаимодействующих друг с другом тел определяется обратным отношением их масс и совершенно не зависит от характера действующих между ними сил.

Пример №2. Определить ускорение, с которым движется Земля к падающему на нее яблоку. Масса яблока равна 0,2 кг. Ускорение свободного падения принять равной за 10 м/с2. Массу Земли принять равно 6∙1024 кг.

Согласно третьему закону Ньютона модули сил, с которыми взаимодействуют Земли и яблоко, равны. Поэтому:

F1 = F2

Отсюда:

m1a1 = m2a2

Пусть тело 1 будет яблоко, а тело 2 — Земля. Тогда a1 будет равно g. Отсюда ускорение, с которым движется Земля к падающему на нее яблоку, равна:

Задание EF17993

Скорость тела массой 5 кг, движущегося вдоль оси Ох в инерциальной системе отсчёта, изменяется со временем в соответствии с графиком (см. рисунок). Равнодействующая приложенных к телу сил в момент времени t=2,5 с равна…

а) 2Н

б) 8 Н

в) 10 Н

г) 20 Н


Алгоритм решения

1.Записать исходные данные.

2.Проанализировать задачу.

3.Записать второй закон Ньютона.

4.Определить ускорение по графику проекции скорости от времени.

5.Подставить найденное ускорение в формулу второго закона Ньютона и произвести вычисления.

Решение

Запишем исходные данные:

Так как графиком скорости является прямая, непараллельная ось времени, тело движется с постоянным ускорением. Если ускорение постоянно, равнодействующая сил тоже будет постоянной в любой момент времени. Поэтому нам достаточно использовать координаты любой, более удобной для их определения точки. К примеру, в точке, соответствующей моменту времени 10 с.

Запишем второй закон Ньютона:

F = ma

Ускорение тела определяется как отношение изменения скорости ко времени, в течение которого эта скорость менялась. Согласно графику, за 10 секунд скорость изменилась на 20 м/с. Следовательно, ускорение равно:

a = 20/10 = 2 (м/с2)

Теперь можем вычислить равнодействующую сил:

F = ma = 5∙2 = 10 (Н)

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18915

Необходимо собрать экспериментальную установку, с помощью которой можно определить коэффициент трения скольжения стали по дереву. Для этого школьник взял стальной брусок с крючком. Какие два предмета из приведённого ниже перечня оборудования необходимо дополнительно использовать для проведения этого эксперимента?

а) деревянная рейка

б) динамометр

в) мензурка

г) пластмассовая рейка

д) линейка


Алгоритм решения

1.Проанализировать задачу. Выяснить, какие предметы необходимы для проведения опыта.

2.Вывести формулу для коэффициента трения.

3.Определить, какую величину нужно измерить, чтобы рассчитать коэффициент трения, и какой прибор для этого нужен.

Решение

Для определения коэффициента трения стали по дереву, нужен не только стальной груз, но и деревянная поверхность. То есть, понадобится деревянная рейка.

Сила трения определяется формулой:

Отсюда коэффициент трения равен:

Ускорение свободного падения известно. Массу можно измерить на весах, но весов в вариантах ответа нет. Силу трения можно измерить динамометром. Следовательно, для опыта нужны только динамометр и деревянная рейка. Рейка из пластика не понадобится, так как цели расчета коэффициента трения стали по пластику нет. Мензурка используется для определения объема жидкости. В данном опыте она тоже не нужна.

Ответ: аб

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17589

Система отсчёта, связанная с Землёй, считается инерциальной. В этом случае систему отсчёта, связанную с самолётом, можно считать инерциальной, если самолёт движется:

а) равномерно и прямолинейно, набирая высоту

б) с постоянным ускорением по горизонтали

в) равномерно, выполняя поворот

г) по взлетной полосе при взлете


Алгоритм решения

  1. Сформулировать первый закон Ньютона об инерциальных системах отсчета.
  2. На основании закона сделать вывод, при каких условиях система отсчета, связанная с самолетом, может считаться инерциальной.
  3. Проанализировать все 4 ситуации, приведенные в вариантах ответа.
  4. Выбрать тот вариант, который описывает ситуацию, не противоречащую условию, выведенному в шаге 2.

Решение

Первый закон Ньютона формулируется так:

«Существуют такие системы отсчета, называемые инерциальными, относительно которых тела движутся равномерно и прямолинейно или находятся в состоянии покоя, если на них не действуют другие тела или их действие компенсировано».

Чтобы система отсчета, связанная с самолетом, была инерциальной, она должна быть неподвижной или двигаться относительно Земли — инерциальной системы отсчета — равномерно и прямолинейно.

Когда самолет движется равномерно и прямолинейно, набирая высоту, самолет движется с собственным ускорением, которое компенсируется ускорением свободного падения. И это единственный верный ответ, так как:

  • Самолет, двигаясь с постоянным ускорением по горизонтали, движется неравномерно, что противоречит условию.
  • Самолет, двигаясь равномерно во время поворота, движется непрямолинейно (с центростремительным ускорением).
  • Самолет, двигаясь по взлетной полосе при взлете, движется прямолинейно, но неравномерно, так как он разгоняется из состояния покоя.

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22791

Погрешность прямого измерения силы динамометром, на котором висит груз, равна цене деления. Каков вес груза?

Ответ: (                  ±                  ) Н.

Внимание! Записывать ответ следует последовательностью цифр без запятых.


Алгоритм решения

1.Записать исходные данные.

2.Определить цену деления шкалы.

3.Записать значение измерения с учетом погрешности.

Решение

Из условий задачи известно, что погрешность равна цене деления шкалы. Цена деления шкалы определяется отношением разности двух ближайших числовых обозначений на шкале и количеству делений между ними. Возьмем ближайшие значения 1,0 и 1,5. Между ними 5 делений. Следовательно, цена деления шкалы динамометра равна:

Так как погрешность равна цене деления, она также равна 0,1 Н.

Стрелка динамометра показывает 1,1 Н. Следовательно, вес груза равен: 1,1±0,1. Но по условию задачи ответ нужно записать без запятых и прочих знаков. Следовательно, верный ответ: 1101.

Ответ: 1101

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17484

Тело массой m скользит по шероховатой наклонной опоре с углом α к горизонту (см. рисунок). На него действуют 3 силы: сила тяжести mg, сила упругости опоры N и сила трения Fтр. Если скорость тела не меняется, то модуль равнодействующей сил Fтр и mg равен:

а) N cosα

б) N

в) N sinα

г) mg + Fтр


Алгоритм решения

  1. Запись второго закона Ньютона в векторном виде.
  2. Вывод формулы равнодействующей силы трения и силы тяжести.
  3. Нахождение модуля равнодействующей силы трения и силы тяжести.

Решение

Записываем второй закон Ньютона в векторном виде с учетом того, сто скорость тела не меняется (ускорение равно 0):

N + mg + Fтр = 0

Отсюда равнодействующая силы трения и силы тяжести равна:

mg + Fтр = –N

Следовательно, равнодействующая силы трения и силы тяжести направлена противоположно силе реакции опоры, но равна ей по модулю. Отсюда:

|mg + Fтр| = N

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18548

На тело действуют две силы: F1 и F2. По силе F1 и равнодействующей двух сил F = F1 + F2 найдите модуль второй силы (см. рисунок).


Алгоритм решения

  1. Изобразить на рисунке второй вектор с учетом правил сложения векторов.
  2. Записать геометрическую формулу для расчета модуля вектора по его проекциям.
  3. Выбрать систему координат и построить проекции второй силы на оси ОХ и ОУ.
  4. По рисунку определить проекции второй силы на оси.
  5. Используя полученные данные, применить формулу для расчета вектора по его проекциям.

Решение

Построим вектор второй силы. Его начало должно совпадать с концом вектора первой силы, а его конец — с концов равнодействующей этих сил. Этот вывод следует из сложения векторов правилом треугольника.

Модуль вектора равен корню из суммы квадратов его проекций на оси ОХ и ОУ:

Выберем систему координат и построим проекции второй силы на оси ОХ и ОУ:

Согласно рисунку, проекция второй силы на ось ОХ равна: x = 4 (Н). Ее проекция на ось ОУ равна: y = 3 (Н).

Подставим известные данные в формулу и вычислим модуль вектора второй силы:

Ответ: 5

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 16.5k

Законы Ньютона — это законы соотношения между силами, действующими на массивное тело, и движением тела, это их взаимодействие; всего их 3, и впервые их сформулировал английский физик и математик сэр Исаак Ньютон в 1686 году.

Законы Ньютона кратко:

1-й закон Ньютона: закон инерции — если на тело не действуют внешние силы, то покоящееся тело будет оставаться в покое, а движущееся тело останется в равномерном движении по прямой.

2-й закон Ньютона: основной закон динамики — существует связь между силой, которая действует на тело и ускорением (тело приобретает ускорение из-за действующей на него силы, т.е. F = m × a).

3-й закон Ньютона: закон равенства действия и противодействия — на каждое действие существует равное и противоположное противодействие.

Сила — это мера взаимодействия тел и измеряется в ньютонах (Н; единица измерения 1 Н = 1 кг·м/с²). Ньютон — это интенсивность силы, приложенная к частице массой 1 кг, вызывающая ускорение 1 метр в секунду в секунду, т.е. 1 м/с².

Первый закон Ньютона: закон инерции

Определение

Если на тело не действуют внешние силы, то покоящееся тело будет оставаться в покое, а движущееся тело останется в равномерном движении по прямой.

Этот закон также используется как определение инерции.

Если на объект не действует внешняя сила, то его скорость будет постоянной. Если скорость будет нулевой, то и объект не сдвинется с места. Если будет существовать внешняя сила, из-за этой силы его скорость изменится.

Имеется в виду, что вещи не останавливаются, не начинают двигаться сами по себе и не меняют направление без силы, которая действует на них извне, что и вызывает такие изменения их движений.

Например, при игре в футбол мяч полетит в ту сторону, куда игрок его пнёт. Так, объект, на который действует сила, может изменить свою скорость и направление. Когда мяч попадает в ворота, другая сила (сила сетки ворот) действует на него, останавливая.

Другое определение инерции:

Инерция — это свойство тел, заставляющее их сопротивляться изменениям скорости и/или направления.

Формулы первого закона Ньютона не существует.

Второй закон Ньютона: основной закон динамики

Определение

Существует связь между силой (F), которая действует на тело (массы m), и ускорением (a). Тело приобретает ускорение из-за действующей на него силы.

Пример:

Второй закон Ньютона пример

Например, если взять два круглых предмета разной массы и ударить по ним битой (на картинке — бейсбольный мяч и шар для боулинга) с одинаковой силой, то результат будет разный.

Поскольку у них разная масса, то при ударе с одинаковой силой они будут перемещаться на разное расстояние и с разной скоростью. Если увеличится сила удара по тому же бейсбольному мячу, то результат тоже изменится — он улетит дальше.

Насколько объект ускоряется (a), зависит от массы тела (m) и силы, приложенной к нему (F).

Например, воздействие силы (F) 15 Н (Ньютонов) на бейсбольный мяч (массой m1) будет намного больше, чем та же самая сила, действующая на шар для боулинга (массой m2).

Формула

F = m × a Второй закон Ньютона Формула

или

a = F/m Второй закон Ньютона Формула

Где:

F — сила, приложенная к телу (в Н)

m — масса тела (в кг)

a — ускорение тела (в м/с²)

То есть ускорение (a) прямо пропорционально силе, приложенной к телу (F) и обратно пропорционально массе тела (m). F — это сила, возникающая в результате всех сил, действующих на тело.

Пример использования формулы

Сколько требуется силы для разгона автомобиля массой 1000 кг со скоростью 5 м/с²?

Записываем известные:

m = 1000 кг

a = 5 м/с²

Решение:

Используем эту формулу

Пример использования формулы Ньютона Второй закон Ньютона

F = 1000 кг × 5 м/с² = 5000 Н

Ответ: сила, необходимая для разгона автомобиля массой 1000 кг со скоростью 5 м/с², составляет 5000 Ньютонов.

Третий закон Ньютона: закон равенства действия и противодействия

Определение

На каждое действие существует равное и противоположное противодействие/реакция.

Имеется в виду, что на каждую силу действия, приложенную к телу, возникает другая сила противодействия в другом теле, и эта сила (реакции/противодействия) имеет ту же интенсивность, что и сила действия, но она действует в противоположном направлении. Так, парами, эти силы появляются и компенсируют друг друга.

Пример:

Пример Третий закон Ньютона

Действие — это сила стопы атлета на земле, а сила противодействия заключается в том, что земля отталкивает тело в противоположном направлении.
Таким образом, 3 закон Ньютона объясняет то, как мы можем бегать и ходить по земле.
Пример Третий закон Ньютона
Другой пример: когда каратист ударяет по боксёрской груше, она «ударяет» каратиста с той же силой, и это понятно по тому, как у него болит от этого удара нога.

Формула

Для постоянной массы тела справедлива следующая формула:

Формула Третий закон Ньютона F1 = –F2

Где:

F1 — сила действия первого тела на второе;

F2 — сила действия второго тела на первое.

Эта формула означает, что взаимодействие двух тел даёт пару сил F1 и F2, которые:

  • взаимодействуют друг с другом;
  • равняются по модулю;
  • ориентированы в противоположные направления вдоль прямой, которая совмещает эти два тела.

Узнайте также про Закон сохранения энергии, Ускорение свободного падения и Силу Архимеда.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти промежуток времени физика
  • Как составить меню в грамах
  • Как найти ток цепи с катушкой
  • Как исправить конфликт гит
  • Как составить свой комикс

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии