Как найти синус угла альфа в физике

2.1. Теорема Пифагора

Прямоугольный треугольник — треугольник, в котором один из углов прямой (то есть равен 90°). Сторона, противолежащая прямому углу, называется гипотенузой. Стороны, образующие прямой угол, называются катетами (см. рис.).

Для любого прямоугольного треугольника справедлива теорема Пифагора:

c в квадрате =a в квадрате плюс b в квадрате .

Гипотенузу можно найти по формуле:

c= корень из: начало аргумента: a в квадрате плюс b в квадрате конец аргумента .

Катет можно найти по формуле:

c= корень из: начало аргумента: c в квадрате минус b в квадрате конец аргумента .

2.2 Как найти  синус ⁡ альфа , косинус ⁡ альфа и  тангенс альфа из прямоугольного треугольника?

Рассмотрим прямоугольный треугольник с катетами a и b и гипотенузой c. Обозначим через α угол, лежащий напротив катета a (см. рис.).

Тогда, катет a — противолежащий катет для угла α (лежит напротив угла); катет b — прилежащий катет (непосредственно образует угол).

Синус угла α — отношение противолежащего катета к гипотенузе:

 синус ⁡ альфа = дробь: числитель: a, знаменатель: c конец дроби .

Косинус угла α — отношение прилежащего катета к гипотенузе:

 косинус ⁡ альфа = дробь: числитель: b, знаменатель: c конец дроби .

Тангенсом угла α — отношение противолежащего катета к прилежащему:

 тангенс альфа = дробь: числитель: a, знаменатель: b конец дроби .

2.3 Как найти проекции вектора, если известен его модуль и направление?

1) Опускаем перпендикуляры на ось Ox и ось Oy;

2) Проекции равны:

 система выражений a_x=pm a косинус альфа ,a_y=pm a синус альфа . конец системы .

3) Правило знаков.

Пусть даны вектор overrightarrowa и ось Ox. Из начала и конца вектора overrightarrowa опустим перпендикуляры на ось Ox. Пусть A и B — основания этих перпендикуляров (см. рис.).

Проекция a_x левая круглая скобка a_y правая круглая скобка вектора overrightarrowa на ось Ox (Oy) равна длине отрезка AB, взятой со знаком плюс, если угол φ между вектором overrightarrowa и осью Ox (Oy) является острым, и взятой соответственно со знаком минус, если φ тупой (или развернутый). Если угол φ прямой, то a_x=0.

То есть:

a_x= система выражений AB,если фи меньше 90 градусов, минус AB,если фи больше 90 градусов,0,если фи =0. конец системы .

Получаем:

 система выражений a_x= плюс a косинус альфа ,a_y= минус a синус альфа . конец системы .

2.4 Как найти проекции вектора, если известны координаты начала и конца вектора?

Пусть  левая круглая скобка x_0,y_0 правая круглая скобка и  левая круглая скобка x,y) — координаты начала и конца вектора соответственно. Тогда проекции

 система выражений a_x=x минус x_0,a_y=y минус y_0. конец системы .

2.5 Как найти модуль вектора, если известны его проекции на оси?

Если известны проекции вектора a_x и a_y на оси координат, то модуль вектора легко найти по формуле:

|veca|= корень из: начало аргумента: a в степени левая круглая скобка 2 конец аргумента _x правая круглая скобка плюс a в квадрате _y.

2.6 Как найти модуль вектора, если известны координаты конца и начала вектора?

Пусть  левая круглая скобка x_0,y_0 правая круглая скобка и  левая круглая скобка x,y правая круглая скобка  — координаты начала и конца вектора veca соответственно. Тогда модуль вектора находится по формуле:

|veca|= корень из: начало аргумента: левая круглая скобка x минус x_0 конец аргумента правая круглая скобка в квадрате плюс левая круглая скобка y минус y_0 правая круглая скобка в квадрате .

2.7 Теорема косинусов.

Для треугольника со сторонами a, b и c, углом α справедлива теорема:

a в квадрате =b в квадрате плюс c в квадрате минус 2bc косинус ⁡ альфа .

2.8 Как сложить вектора, направленные вдоль одной прямой?

Пусть даны вектора veca и vecb, имеющие одинаковое направление. Для нахождения вектора vecc=veca плюс vecb помещаем начало вектора vecb в конец вектора veca и соединяем начало вектора veca с концом вектора vecb (см. рис.).

Из рисунка видно, что модуль вектора vecc равен:

c=a плюс b.

2.9 Как вычитать вектора, направленные вдоль одной прямой?

Пусть даны вектора veca и vecb, имеющие одинаковое направление. Для нахождения вектора vecc=veca минус vecb помещаем начало вектора  левая круглая скобка минус vecb правая круглая скобка в конец вектора veca и соединяем начало вектора veca с концом вектора  левая круглая скобка минус vecb правая круглая скобка (см. рис.). Вектор  левая круглая скобка минус vecb правая круглая скобка  — это вектор, длина которого равна длине вектора vecb, но имеет противоположное направление.

Из рисунка видно, что модуль вектора vecc, равен:

c=|a минус b|.

2.10 Как сложить вектора, направленные под прямым углом друг к другу?

Пусть даны вектора veca и vecb, имеющие одинаковое направление. Для нахождения вектора vecc=veca плюс vecb помещаем начало вектора vecb в конец вектора veca и соединяем начало вектора veca с концом вектора vecb (см. рис.).

Из рисунка видно, что модуль вектора vecc равен:

c= корень из: начало аргумента: a в степени левая круглая скобка 2 конец аргумента плюс b в квадрате правая круглая скобка .

2.11 Как вычитать вектора, направленные под прямым углом друг к другу?

Пусть даны вектора veca и vecb, имеющие одинаковое направление. Для нахождения вектора vecc=veca минус vecb помещаем начало вектора  левая круглая скобка минус vecb правая круглая скобка в конец вектора veca и соединяем начало вектора veca с концом вектора  левая круглая скобка минус vecb правая круглая скобка (см. рис.). Вектор  левая круглая скобка минус vecb правая круглая скобка  — это вектор, длина которого равна длине вектора vecb, но имеет противоположное направление.

Из рисунка видно, что модуль вектора vecc равен:

c= корень из: начало аргумента: a в степени левая круглая скобка 2 конец аргумента плюс b в квадрате правая круглая скобка .

2.12 Как сложить вектора, направленные под углом α друг к другу?

Пусть даны вектора veca и vecb, имеющие одинаковое направление. Для нахождения вектора vecc=veca плюс vecb помещаем начало вектора vecb в конец вектора veca и соединяем начало вектора veca с концом вектора vecb (см. рис.).

По теореме косинусов, получаем:

c в квадрате =a в квадрате плюс b в квадрате минус 2ab косинус ⁡ альфа .

2.13 Как вычитать вектора, направленные под прямым углом друг к другу?

Пусть даны вектора veca и vecb, имеющие одинаковое направление. Для нахождения вектора vecc=veca минус vecb помещаем начало вектора  левая круглая скобка минус vecb правая круглая скобка в конец вектора veca и соединяем начало вектора veca с концом вектора  левая круглая скобка минус vecb правая круглая скобка (см. рис.). Вектор  левая круглая скобка минус vecb правая круглая скобка  — это вектор, длина которого равна длине вектора vecb, но имеет противоположное направление.

По теореме косинусов, получаем:

c в квадрате =a в квадрате плюс b в квадрате минус 2ab косинус ⁡ левая круглая скобка 180 градусов минус альфа правая круглая скобка .

2.14 Площадь треугольника.

Площадь любого треугольника можно найти по формуле

S= дробь: числитель: 1, знаменатель: 2 конец дроби ch.

2.15 Площадь прямоугольника.

Площадь любого прямоугольника можно найти по формуле

S=ab.

2.16 Площадь трапеции.

Площадь любой трапеции можно найти по формуле

S= дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка a плюс b правая круглая скобка h.

2.17 Длина окружности.

Длина окружности равна:

L=2 Пи R.

2.18 Длина дуги.

Длина дуги:

L= дробь: числитель: Пи R альфа , знаменатель: 180 градусов конец дроби .

Например тело катится вниз под углом альфа. Или тело бросают вверх под углом альфа .Как определить sin или cos в формулу вставить . Как это определяется в задачах по механике? Где можно найти материал что бы понятно раъяснили? За ранее спасибо

  • задача

Не уверен в ответе?

Найди верный ответ на вопрос ✅ «Как находить синус в задачах по физике. Это относится к оптике. напримеp, как найти sin 25° …» по предмету 📙 Физика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.

Искать другие ответы

Как находить синус в задачах по физике.

Это относится к оптике.

Напримеp, как найти sin 25°.

Перед вами страница с вопросом Как находить синус в задачах по физике?, который относится к
категории Физика. Уровень сложности соответствует учебной программе для
учащихся 5 — 9 классов. Здесь вы найдете не только правильный ответ, но и
сможете ознакомиться с вариантами пользователей, а также обсудить тему и
выбрать подходящую версию. Если среди найденных ответов не окажется
варианта, полностью раскрывающего тему, воспользуйтесь «умным поиском»,
который откроет все похожие ответы, или создайте собственный вопрос, нажав
кнопку в верхней части страницы.

Угол альфа и угол бета. Расшифровка

Популярные материалы

За сегодня:

Угол альфа и угол бета. Расшифровка

Положение суставов и головки бедренной кости оценивается не только визуально. Для определения их состояния используется специальное измерение углов по таблице Графа. Есть угол Альфа и угол Бета.

  • Альфа обозначает развитие костной части ветлужной ямки.
  • Бета описывает хрящевое пространство внутри ветлужной впадины.

Для здоровых детей считается нормальным, если угол Альфа составляет более 60 градусов, а угол Бета — менее 55 градусов.

Небольшое превышение нормы в 55 градусов допустимо, такой сустав считается нормальным, зрелым. Но если угол Бета составит 77 градусов, врач поставит в заключении подозрение на вывих или подвывих. Также на патологию указывает угол Альфа, который находится в диапазоне от 43 градусов.

Норма углов в таблице выглядит следующим образом.

Более 60 градусов

В пределах 55 градусов

Зрелый здоровый сустав

Менее 55 градусов, плотно облегает головку бедра

Физиологически незрелый сустав

Менее 55 градусов

Круглый, почти плоский

Менее 77 градусов

Более 77 градусов

Уплощенный или плоский

Менее 43 градусов

Не охватывает головку

Децентрация, полная незрелость сустава

В ходе роста ребенка показатели могут меняться, именно это будет учитывать доктор во время проведения УЗИ. Если ребенку уже исполнилось четыре месяца, наиболее правильным и точным методом обследования станет рентгеновский снимок.

В случае обнаружения проблем врачи стараются обследовать одновременно и костное строение малого таза. Довольно часто патология тазобедренного сустава отражается именно на нем.

В заключении доктор может быть немногословен и предпочтет ограничиться буквенно-числовым обозначением типа сустава, обнаруженного у ребенка. Запомните, что здоровый сустав всегда обозначается как 1А или 1В.

Если в заключении указано, что обнаружен сустав 2А или 2В, это означает, что у ребенка есть признаки физиологической незрелости, которая пройдет самостоятельно с огромной вероятностью, но все-таки потребует наблюдения у детского ортопеда.

Сустав 2С — сустав с признаками предвывиха. Обязательно требуется наблюдение у врача и выполнение всех его рекомендаций. 3А и 3В — суставы с подвывихом. Самая тяжелая патология — сустав 4 типа. Именно так обозначается тазобедренный сустав с признаками вывиха (дисплазии).

Угол альфа в физике. Что такое угол альфа?

Мысленно поместим результирующий вектор возбуждения желудочков внутрь треугольника Эйнтховена. У г о л , образованный направлением результирующего вектора и осью I стандартного отведения, и есть искомый угол альфа .

Величину угла альфа находят по специальным таблицам или схемам, предварительно определив на электрокардиограмме алгебраическую сумму зубцов желудочкового комплекса (Q + R + S) в I и III стандартных отведениях.

Найти алгебраическую сумму зубцов желудочкового комплекса достаточно просто: измеряют в миллиметрах величину каждого зубца одного желудочкового комплекса QRS, учитывая при этом, что зубцы Q и S имеют знак минус (-), поскольку находятся ниже изоэлектрической линии, а зубец R — знак плюс (+). Если какой-либо зубец на электрокардиограмме отсутствует, то его значение приравнивается к нулю (0).

Далее, сопоставляя найденную алгебраическую сумму зубцов для I и III стандартных отведений, по таблице определяют значение угла альфа. В нашем случае он равен минус 70°.

Если угол альфа находится в пределах 50-70° , говорят о нормальном положении электрической оси сердца (электрическая ось сердца не отклонена), или нормограмме. При отклонении электрической ось сердца вправо угол альфа будет определяться в пределах 70-90° . В обиходе такое положение электрической оси сердца называют правограммой .

Если угол альфа будет больше 90° (например, 97°), считают, что на данной ЭКГ имеет место блокада задней ветви левой ножки пучка Гиса .
Определяя угол альфа в пределах 50-0° говорят об отклонении электрической оси сердца влево, или о левограмме .
Изменение угла альфа в пределах 0 — минус 30° свидетельствует о резком отклонении электрической оси сердца влево или, иными словами, о резкой левограмме .
И наконец, если значение угла альфа будет меньше минус 30° (например, минус 45°) — говорят о блокаде передней ветви левой ножки пучка Гиса .

Определение отклонения электрической оси сердца по углу альфа с использованием таблиц и схем производят в основном врачи кабинетов функциональной диагностики, где соответствующие таблицы и схемы всегда под рукой.
Однако определить отклонение электрической оси сердца можно и без необходимых таблиц.

В этом случае отклонение электрической оси находят по анализу зубцов R и S в I и III стандартных отведениях. При этом понятие алгебраической суммы зубцов желудочкового комплекса заменяют понятием «определяющий зубец» комплекса QRS, визуально сопоставляя по абсолютной величине зубцы R и S. Говорят о «желудочковом комплексе R-типа», подразумевая, что в данном желудочковом комплексе более высоким является зубец R. Напротив, в «желудочковом комплексе S-типа» определяющим зубцом комплекса QRS является зубец S.

Если на электрокардиограмме в I стандартном отведении желудочковый комплекс представлен R-типом, а комплекс QRS в III стандартном отведении имеет форму S-типа, то в данном случае электрическая ось сердца отклонена влево (левограмма) . Схематично это условие записывается как RI-SIII.

Напротив, если в I стандартном отведении мы имеем S-тип желудочкового комплекса, а в III отведении R-тип комплекса QRS, то электрическая ось сердца отклонена вправо (правограмма) .
Упрощенно это условие записывается как SI-RIII.

Результирующий вектор возбуждения желудочков расположен в норме во фронтальной плоскости так , что его направление совпадает с направлением оси II стандартного отведения.

На рисунке видно, что амплитуда зубца R во II стандартном отведении наибольшая. В свою очередь зубец R в I стандартном отведении превосходит зубец RIII. При таком условии соотношения зубцов R в различных стандартных отведениях мы имеем нормальное положение электрической оси сердца (электрическая ось сердца не отклонена). Краткая запись этого условия — RII>RI>RIII.

Угол альфа символ. Угол атаки

Датчики углов атаки у ракеты «воздух-воздух»

Для самолёта в горизонтальном прямолинейном полёте увеличение скорости и угла атаки приводит к увеличению подъёмной силы , создаваемой крылом. В то же время увеличение угла атаки сопровождается ростом.

Торпедоносец/пикирующий бомбардировщик Supermarine Type 322 , истребитель палубного базирования Воут F-8 «Крусейдер» (Vought F-8 Crusader, 1953 г.) и прототип бомбардировщика Martin XB-51 ( англ. ) (1949 г.) имели изменяемый в полёте угол установки крыла.

Угол альфа в треугольнике. Как найти угол в прямоугольном треугольнике

Здравствуйте!
Как найти угол в прямоугольном треугольнике? Расскажите, пожалуйста, как можно подробнее.
Спасибо!

Прежде, чем разобрать вопрос о том, как найти угол в прямоугольном треугольнике , рассмотрим основные свойства такого вида треугольников. Первое, что нас будет интересовать — это углы данного треугольника. Поскольку треугольник прямоугольный, то один его угол будет прямым, то есть равным 90 градусов. Известно, что если сложить все углы любого из треугольников, то получим 180 градусов. Соответственно, если один из углов в прямоугольном треугольнике равен 90 градусов, то сумма двух других будет равна 180 — 90 = 90 градусов. Следовательно, достаточно найти один из двух острых углов, и тогда легко можно вычислить и величину второго острого угла:
ugol1 = 90 — ugol2.
Зная две любые стороны прямоугольного треугольника и используя определения основных из тригонометрических функций, можно найти величину любого угла прямоугольного треугольника.
Например, если известна длина любого из катетов и длина гипотенузы, то можно вычислить синус или косинус одного из острых углов. А если даны длины обоих катетов. То можно вычислить значение тангенса или котангенса любого из острых углов.

Далее необходимо вычислить с помощью таблицы значений тригонометрических функций величину угла и рассчитать значение второго острого угла по выше упомянутой формуле:
ugol1 = 90 — ugol2.

Угол альфа, как определить. Таблица определения положения электрической оси сердца (по Дьеду)

Таблица определения угла альфа

Если угол альфа находится в пределах 50—70°, говорят о нормальном положении электрической оси сердца (электрическая ось сердца не отклонена), или нормограмме.

При отклонении электрической ось сердца вправо угол альфа будет определяться в пределах 70—90°. В обиходе такое положение электрической оси сердца называют правограммой.

Если угол альфа будет больше 90° (например, 97°), считают, что на данной ЭКГ имеет место блокада задней ветви левой ножки пучка Гиса.

Определяя угол альфа в пределах 50—0° говорят об отклонении электрической оси сердца влево, или о левограмме.

Изменение угла альфа в пределах 0 — минус 30° свидетельствует о резком отклонении электрической оси сердца влево или, иными словами, о резкой левограмме.

И наконец, если значение угла альфа будет меньше минус 30° (например, минус 45°) — говорят о блокаде передней ветви левой ножки пучка Гиса.

Пределы отклонения электрической оси сердца

Определение отклонения электрической оси сердца по углу альфа с использованием таблиц и схем производят в основном врачи кабинетов функциональной диагностики, где соответствующие таблицы и схемы всегда под рукой.

Однако определить отклонение электрической оси сердца можно и без необходимых таблиц.

В этом случае отклонение электрической оси находят по анализу зубцов R и S в I и III стандартных отведениях. При этом понятие алгебраической суммы зубцов желудочкового комплекса заменяют понятием «определяющий зубец» комплекса QRS, визуально сопоставляя по абсолютной величине зубцы R и S .

Говорят о «желудочковом комплексе R-типа», подразумевая, что в данном желудочковом комплексе более высоким является зубец R. Напротив, в «желудочковом комплексе S-типа» определяющим зубцом комплекса QRS является зубец S.

Сопоставление зубцов R и S комплекса QRS

Если на электрокардиограмме в I стандартном отведении желудочковый комплекс представлен R-типом, а комплекс QRS в III стандартном отведении имеет форму S-типа, то в данном случае электрическая ось сердца отклонена влево (левограмма).

Схематично это условие записывается как RI-SIII.

Визуальное определение электрической оси сердца. Левограмма

Напротив, если в I стандартном отведении мы имеем S-тип желудочкового комплекса, а в III отведении R-тип комплекса QRS, то электрическая ось сердца отклонена вправо (правограмма).

Упрощенно это условие записывается как SI-RIII.

Визуальное определение электрической оси сердца. Правограмма

Результирующий вектор возбуждения желудочков расположен в норме во фронтальной плоскости так, что его направление совпадает с направлением оси II стандартного отведения.

Длина окружности

О чем эта статья:

6 класс, 9 класс, ЕГЭ/ОГЭ

Если вы не знаете, как обозначается длина окружности, то знак окружности выглядит вот так — l

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Как найти длину окружности через диаметр

Хорда — это отрезок, который соединяет две точки окружности.

Диаметр — хорда, которая проходит через центр окружности. Формула длины окружности через диаметр:

π— число пи — математическая константа, примерно равная 3,14

d — диаметр окружности

Как найти длину окружности через радиус

Радиус окружности — отрезок, который соединяет центр окружности с точкой на окружности. Формула длины окружности через радиус:

π — число пи, примерно равное 3,14

r — радиус окружности

Это две основные формулы для вычисления длины окружности. Ниже мы покажем еще несколько формул, которые вы сможете доказать самостоятельно, пользуясь основными формулами и свойствами геометрических фигур.

Как вычислить длину окружности через площадь круга

Если вам известна площадь круга, вы также можете узнать длину окружности:

π — число пи, примерно равное 3,14

S — площадь круга

Как найти длину окружности через диагональ вписанного прямоугольника

Как измерить окружность, если в нее вписан прямоугольник:

π — число пи, примерно равное 3,14

d — диагональ прямоугольника

Как вычислить длину окружности через сторону описанного квадрата

Давайте рассмотрим, как найти длину окружности, если она вписана в квадрат и нам известна сторона квадрата:

π — математическая константа, примерно равная 3,14

a — сторона квадрата

Как найти длину окружности через стороны и площадь вписанного треугольника

Можно найти, чему равна длина окружности, если в нее вписан треугольник и известны все три его стороны, а также известна его площадь:

π — математическая константа, она примерно равна 3,14

a — первая сторона треугольника

b — вторая сторона треугольника

c — третья сторона треугольника

S — площадь треугольника

Как найти длину окружности через площадь и полупериметр описанного треугольника

Можно определить, чему равна длина окружности, если круг вписан в треугольник, и известны следующие параметры: площадь треугольника и его полупериметр.

Периметр — это сумма всех сторон треугольника. Полупериметр равен половине этой суммы, то есть чтобы его найти, вам нужно рассчитать периметр и поделить его на два.

π — математическая константа, примерно равная 3,14

S — площадь треугольника

p — полупериметр треугольника

Как вычислить длину окружности через сторону вписанного правильного многоугольника

Разбираемся, как в этом случае измерить окружность. Для этого необходимо посчитать, сколько сторон у многоугольника, а также знать длину стороны многоугольника. Напомним, что у правильного многоугольника все стороны равны, как у квадрата.

Формула вычисления длины окружности:

π — математическая константа, примерно равная 3,14

a — сторона многоугольника

N — количество сторон многоугольника

Задачи для решения

Давайте тренироваться! Двигаемся от простого к сложному:

Задача 1. Найти длину окружности, диаметр которой равен 5 см.

Решение. Итак, нам известен диаметр окружности, значит для вычисления длины заданной окружности берем формулу:

Подставляем туда известные переменные и получается, что длина окружности равна

Задача 2. Чему равна длина окружности, описанной около правильного треугольника со стороною a = 4√3 дм

Решение. Радиус окружности равен Подставим туда наши переменные и получим

Теперь, когда нам известен радиус окружности и есть формула длины окружности через радиус l=2πr, мы можем подставить наши данные и получить решение задачи.

Обучение на курсах по математике поможет закрепить полученные знания на практике.

Синус, косинус, тангенс и котангенс: определения в тригонометрии, примеры, формулы

Тригонометрия — раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой науки внесли ученые Ближнего Востока и Индии.

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.

Синус, косинус, тангенс и котангенс. Определения

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Синус угла ( sin α ) — отношение противолежащего этому углу катета к гипотенузе.

Косинус угла ( cos α ) — отношение прилежащего катета к гипотенузе.

Тангенс угла ( t g α ) — отношение противолежащего катета к прилежащему.

Котангенс угла ( c t g α ) — отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса — вся числовая прямая, то есть эти функции могут принимать любые значения.

Угол поворота

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от — ∞ до + ∞ .

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.

Начальная точка A с координатами ( 1 , 0 ) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A 1 . Определение дается через координаты точки A 1 ( x , y ).

Синус (sin) угла поворота

Синус угла поворота α — это ордината точки A 1 ( x , y ). sin α = y

Косинус угла поворота α — это абсцисса точки A 1 ( x , y ). cos α = х

Тангенс угла поворота α — это отношение ординаты точки A 1 ( x , y ) к ее абсциссе. t g α = y x

Котангенс угла поворота α — это отношение абсциссы точки A 1 ( x , y ) к ее ординате. c t g α = x y

Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой ( 0 , 1 ) и ( 0 , — 1 ). В таких случаях выражение для тангенса t g α = y x просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогично ситуация с котангенсом. Отличием состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.

Синус и косинус определены для любых углов α .

Тангенс определен для всех углов, кроме α = 90 ° + 180 ° · k , k ∈ Z ( α = π 2 + π · k , k ∈ Z )

Котангенс определен для всех углов, кроме α = 180 ° · k , k ∈ Z ( α = π · k , k ∈ Z )

При решении практических примеров не говорят «синус угла поворота α «. Слова «угол поворота» просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.

Числа

Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан.

Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.

Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.

Начальная точка на окружности — точка A c координатами ( 1 , 0 ).

Положительному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t .

Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t .

Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.

Синус (sin) числа t

Синус числа t — ордината точки единичной окружности, соответствующей числу t. sin t = y

Косинус числа t — абсцисса точки единичной окружности, соответствующей числу t. cos t = x

Тангенс числа t — отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. t g t = y x = sin t cos t

Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t, совпадает с точкой, в которую переходит начальная точка после поворота на угол t радиан.

Тригонометрические функции углового и числового аргумента

Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α , отличным от α = 90 ° + 180 ° · k , k ∈ Z ( α = π 2 + π · k , k ∈ Z ) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α , кроме α = 180 ° · k , k ∈ Z ( α = π · k , k ∈ Z ).

Можно сказать, что sin α , cos α , t g α , c t g α — это функции угла альфа, или функции углового аргумента.

Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу t соответствует определенное значение синуса или косинуса числа t. Всем числам, отличным от π 2 + π · k , k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k , k ∈ Z.

Основные функции тригонометрии

Синус, косинус, тангенс и котангенс — основные тригонометрические функции.

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело.

Связь определений sin, cos, tg и ctg из геометрии и тригонометрии

Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью соотношений сторон прямоугольного треугольника. Покажем это.

Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A ( 1 , 0 ) на угол величиной до 90 градусов и проведем из полученной точки A 1 ( x , y ) перпендикуляр к оси абсцисс. В полученном прямоугольном треугольнике угол A 1 O H равен углу поворота α , длина катета O H равна абсциссе точки A 1 ( x , y ) . Длина катета, противолежащего углу, равна ординате точки A 1 ( x , y ) , а длина гипотенузы равна единице, так как она является радиусом единичной окружности.

В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе.

sin α = A 1 H O A 1 = y 1 = y

Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α , при альфа лежащем в пределах от 0 до 90 градусов.

Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.

источники:

http://skysmart.ru/articles/mathematic/dlina-okruzhnosti

http://zaochnik.com/spravochnik/matematika/trigonometrija/sinus-kosinus-tangens-i-kotangens/

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как составить названия для углеводородов
  • Как найти разрешение экрана монитора
  • Как найти расстояние между географическими координатами
  • Как найти работы смм
  • Word как составить список по алфавиту

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии