The value of sin 600 degrees is -0.8660254. . .. Sin 600 degrees in radians is written as sin (600° × π/180°), i.e., sin (10π/3) or sin (10.471975. . .). In this article, we will discuss the methods to find the value of sin 600 degrees with examples.
- Sin 600°: -0.8660254. . .
- Sin 600° in fraction: -(√3/2)
- Sin (-600 degrees): 0.8660254. . .
- Sin 600° in radians: sin (10π/3) or sin (10.4719755 . . .)
What is the Value of Sin 600 Degrees?
The value of sin 600 degrees in decimal is -0.866025403. . .. Sin 600 degrees can also be expressed using the equivalent of the given angle (600 degrees) in radians (10.47197 . . .).
We know, using degree to radian conversion, θ in radians = θ in degrees × (pi/180°)
⇒ 600 degrees = 600° × (π/180°) rad = 10π/3 or 10.4719 . . .
∴ sin 600° = sin(10.4719) = -(√3/2) or -0.8660254. . .
Explanation:
For sin 600°, the angle 600° > 360°. Given the periodic property of the sine function, we can represent it as sin(600° mod 360°) = sin(240°). The angle 600°, coterminal to angle 240°, is located in the Third Quadrant(Quadrant III).
Since sine function is negative in the 3rd quadrant, thus sin 600 degrees value = -(√3/2) or -0.8660254. . .
Similarly, sin 600° can also be written as, sin 600 degrees = (600° + n × 360°), n ∈ Z.
⇒ sin 600° = sin 960° = sin 1320°, and so on.
Note: Since, sine is an odd function, the value of sin(-600°) = -sin(600°).
Methods to Find Value of Sin 600 Degrees
The sine function is negative in the 3rd quadrant. The value of sin 600° is given as -0.86602. . .. We can find the value of sin 600 degrees by:
- Using Unit Circle
- Using Trigonometric Functions
Sin 600 Degrees Using Unit Circle
To find the value of sin 600 degrees using the unit circle, represent 600° in the form (1 × 360°) + 240° [∵ 600°>360°] ∵ sine is a periodic function, sin 600° = sin 240°.
- Rotate ‘r’ anticlockwise to form a 240° or 600° angle with the positive x-axis.
- The sin of 600 degrees equals the y-coordinate(-0.866) of the point of intersection (-0.5, -0.866) of unit circle and r.
Hence the value of sin 600° = y = -0.866 (approx)
Sin 600° in Terms of Trigonometric Functions
Using trigonometry formulas, we can represent the sin 600 degrees as:
- ± √(1-cos²(600°))
- ± tan 600°/√(1 + tan²(600°))
- ± 1/√(1 + cot²(600°))
- ± √(sec²(600°) — 1)/sec 600°
- 1/cosec 600°
Note: Since 600° lies in the 3rd Quadrant, the final value of sin 600° will be negative.
We can use trigonometric identities to represent sin 600° as,
- sin(180° — 600°) = sin(-420°)
- -sin(180° + 600°) = -sin 780°
- cos(90° — 600°) = cos(-510°)
- -cos(90° + 600°) = -cos 690°
☛ Also Check:
- sin 50 degrees
- sin 556 degrees
- sin 35 degrees
- sin 42 degrees
- sin 903 degrees
- sin 115 degrees
FAQs on Sin 600 Degrees
What is Sin 600 Degrees?
Sin 600 degrees is the value of sine trigonometric function for an angle equal to 600 degrees. The value of sin 600° is -(√3/2) or -0.866 (approx).
How to Find Sin 600° in Terms of Other Trigonometric Functions?
Using trigonometry formula, the value of sin 600° can be given in terms of other trigonometric functions as:
- ± √(1-cos²(600°))
- ± tan 600°/√(1 + tan²(600°))
- ± 1/√(1 + cot²(600°))
- ± √(sec²(600°) — 1)/sec 600°
- 1/cosec 600°
☛ Also check: trigonometric table
How to Find the Value of Sin 600 Degrees?
The value of sin 600 degrees can be calculated by constructing an angle of 600° with the x-axis, and then finding the coordinates of the corresponding point (-0.5, -0.866) on the unit circle. The value of sin 600° is equal to the y-coordinate (-0.866). ∴ sin 600° = -0.866.
What is the Value of Sin 600 Degrees in Terms of Tan 600°?
We know, using trig identities, we can write sin 600° as -tan 600°/√(1 + tan²(600°)). Here, the value of tan 600° is equal to 1.732050.
What is the Value of Sin 600° in Terms of Sec 600°?
Since the sine function can be represented using the secant function, we can write sin 600° as √(sec²(600°) — 1)/sec 600°. The value of sec 600° is equal to -2.
Таблица синусов.
Таблица синусов — это записанные в таблицу посчитанные значения синусов углов от 0° до 360°. Используя таблицу синусов вы сможете провести расчеты даже если под руками не окажется инженерного калькулятора. Чтобы узнать значение синуса от нужного Вам угла достаточно найти его в таблице.
Калькулятор — синус угла
sin(°) = 0
Калькулятор — арксинус угла
arcsin() = 90°
Таблица синусов в радианах
α | 0 | π6 | π4 | π3 | π2 | π | 3π2 | 2π |
sin α | 0 | 12 | √22 | √32 | 1 | 0 | -1 | 0 |
Таблица синусов углов от 0° до 180°
sin(0°) = 0 sin(1°) = 0.017452 sin(2°) = 0.034899 sin(3°) = 0.052336 sin(4°) = 0.069756 sin(5°) = 0.087156 sin(6°) = 0.104528 sin(7°) = 0.121869 sin(8°) = 0.139173 sin(9°) = 0.156434 sin(10°) = 0.173648 sin(11°) = 0.190809 sin(12°) = 0.207912 sin(13°) = 0.224951 sin(14°) = 0.241922 sin(15°) = 0.258819 sin(16°) = 0.275637 sin(17°) = 0.292372 sin(18°) = 0.309017 sin(19°) = 0.325568 sin(20°) = 0.34202 sin(21°) = 0.358368 sin(22°) = 0.374607 sin(23°) = 0.390731 sin(24°) = 0.406737 sin(25°) = 0.422618 sin(26°) = 0.438371 sin(27°) = 0.45399 sin(28°) = 0.469472 sin(29°) = 0.48481 sin(30°) = 0.5 sin(31°) = 0.515038 sin(32°) = 0.529919 sin(33°) = 0.544639 sin(34°) = 0.559193 sin(35°) = 0.573576 sin(36°) = 0.587785 sin(37°) = 0.601815 sin(38°) = 0.615661 sin(39°) = 0.62932 sin(40°) = 0.642788 sin(41°) = 0.656059 sin(42°) = 0.669131 sin(43°) = 0.681998 sin(44°) = 0.694658 sin(45°) = 0.707107 |
sin(46°) = 0.71934 sin(47°) = 0.731354 sin(48°) = 0.743145 sin(49°) = 0.75471 sin(50°) = 0.766044 sin(51°) = 0.777146 sin(52°) = 0.788011 sin(53°) = 0.798636 sin(54°) = 0.809017 sin(55°) = 0.819152 sin(56°) = 0.829038 sin(57°) = 0.838671 sin(58°) = 0.848048 sin(59°) = 0.857167 sin(60°) = 0.866025 sin(61°) = 0.87462 sin(62°) = 0.882948 sin(63°) = 0.891007 sin(64°) = 0.898794 sin(65°) = 0.906308 sin(66°) = 0.913545 sin(67°) = 0.920505 sin(68°) = 0.927184 sin(69°) = 0.93358 sin(70°) = 0.939693 sin(71°) = 0.945519 sin(72°) = 0.951057 sin(73°) = 0.956305 sin(74°) = 0.961262 sin(75°) = 0.965926 sin(76°) = 0.970296 sin(77°) = 0.97437 sin(78°) = 0.978148 sin(79°) = 0.981627 sin(80°) = 0.984808 sin(81°) = 0.987688 sin(82°) = 0.990268 sin(83°) = 0.992546 sin(84°) = 0.994522 sin(85°) = 0.996195 sin(86°) = 0.997564 sin(87°) = 0.99863 sin(88°) = 0.999391 sin(89°) = 0.999848 sin(90°) = 1 |
sin(91°) = 0.999848 sin(92°) = 0.999391 sin(93°) = 0.99863 sin(94°) = 0.997564 sin(95°) = 0.996195 sin(96°) = 0.994522 sin(97°) = 0.992546 sin(98°) = 0.990268 sin(99°) = 0.987688 sin(100°) = 0.984808 sin(101°) = 0.981627 sin(102°) = 0.978148 sin(103°) = 0.97437 sin(104°) = 0.970296 sin(105°) = 0.965926 sin(106°) = 0.961262 sin(107°) = 0.956305 sin(108°) = 0.951057 sin(109°) = 0.945519 sin(110°) = 0.939693 sin(111°) = 0.93358 sin(112°) = 0.927184 sin(113°) = 0.920505 sin(114°) = 0.913545 sin(115°) = 0.906308 sin(116°) = 0.898794 sin(117°) = 0.891007 sin(118°) = 0.882948 sin(119°) = 0.87462 sin(120°) = 0.866025 sin(121°) = 0.857167 sin(122°) = 0.848048 sin(123°) = 0.838671 sin(124°) = 0.829038 sin(125°) = 0.819152 sin(126°) = 0.809017 sin(127°) = 0.798636 sin(128°) = 0.788011 sin(129°) = 0.777146 sin(130°) = 0.766044 sin(131°) = 0.75471 sin(132°) = 0.743145 sin(133°) = 0.731354 sin(134°) = 0.71934 sin(135°) = 0.707107 |
sin(136°) = 0.694658 sin(137°) = 0.681998 sin(138°) = 0.669131 sin(139°) = 0.656059 sin(140°) = 0.642788 sin(141°) = 0.62932 sin(142°) = 0.615661 sin(143°) = 0.601815 sin(144°) = 0.587785 sin(145°) = 0.573576 sin(146°) = 0.559193 sin(147°) = 0.544639 sin(148°) = 0.529919 sin(149°) = 0.515038 sin(150°) = 0.5 sin(151°) = 0.48481 sin(152°) = 0.469472 sin(153°) = 0.45399 sin(154°) = 0.438371 sin(155°) = 0.422618 sin(156°) = 0.406737 sin(157°) = 0.390731 sin(158°) = 0.374607 sin(159°) = 0.358368 sin(160°) = 0.34202 sin(161°) = 0.325568 sin(162°) = 0.309017 sin(163°) = 0.292372 sin(164°) = 0.275637 sin(165°) = 0.258819 sin(166°) = 0.241922 sin(167°) = 0.224951 sin(168°) = 0.207912 sin(169°) = 0.190809 sin(170°) = 0.173648 sin(171°) = 0.156434 sin(172°) = 0.139173 sin(173°) = 0.121869 sin(174°) = 0.104528 sin(175°) = 0.087156 sin(176°) = 0.069756 sin(177°) = 0.052336 sin(178°) = 0.034899 sin(179°) = 0.017452 sin(180°) = 0 |
Таблица синусов углов от 181° до 360°
sin(181°) = -0.017452 sin(182°) = -0.034899 sin(183°) = -0.052336 sin(184°) = -0.069756 sin(185°) = -0.087156 sin(186°) = -0.104528 sin(187°) = -0.121869 sin(188°) = -0.139173 sin(189°) = -0.156434 sin(190°) = -0.173648 sin(191°) = -0.190809 sin(192°) = -0.207912 sin(193°) = -0.224951 sin(194°) = -0.241922 sin(195°) = -0.258819 sin(196°) = -0.275637 sin(197°) = -0.292372 sin(198°) = -0.309017 sin(199°) = -0.325568 sin(200°) = -0.34202 sin(201°) = -0.358368 sin(202°) = -0.374607 sin(203°) = -0.390731 sin(204°) = -0.406737 sin(205°) = -0.422618 sin(206°) = -0.438371 sin(207°) = -0.45399 sin(208°) = -0.469472 sin(209°) = -0.48481 sin(210°) = -0.5 sin(211°) = -0.515038 sin(212°) = -0.529919 sin(213°) = -0.544639 sin(214°) = -0.559193 sin(215°) = -0.573576 sin(216°) = -0.587785 sin(217°) = -0.601815 sin(218°) = -0.615661 sin(219°) = -0.62932 sin(220°) = -0.642788 sin(221°) = -0.656059 sin(222°) = -0.669131 sin(223°) = -0.681998 sin(224°) = -0.694658 sin(225°) = -0.707107 |
sin(226°) = -0.71934 sin(227°) = -0.731354 sin(228°) = -0.743145 sin(229°) = -0.75471 sin(230°) = -0.766044 sin(231°) = -0.777146 sin(232°) = -0.788011 sin(233°) = -0.798636 sin(234°) = -0.809017 sin(235°) = -0.819152 sin(236°) = -0.829038 sin(237°) = -0.838671 sin(238°) = -0.848048 sin(239°) = -0.857167 sin(240°) = -0.866025 sin(241°) = -0.87462 sin(242°) = -0.882948 sin(243°) = -0.891007 sin(244°) = -0.898794 sin(245°) = -0.906308 sin(246°) = -0.913545 sin(247°) = -0.920505 sin(248°) = -0.927184 sin(249°) = -0.93358 sin(250°) = -0.939693 sin(251°) = -0.945519 sin(252°) = -0.951057 sin(253°) = -0.956305 sin(254°) = -0.961262 sin(255°) = -0.965926 sin(256°) = -0.970296 sin(257°) = -0.97437 sin(258°) = -0.978148 sin(259°) = -0.981627 sin(260°) = -0.984808 sin(261°) = -0.987688 sin(262°) = -0.990268 sin(263°) = -0.992546 sin(264°) = -0.994522 sin(265°) = -0.996195 sin(266°) = -0.997564 sin(267°) = -0.99863 sin(268°) = -0.999391 sin(269°) = -0.999848 sin(270°) = -1 |
sin(271°) = -0.999848 sin(272°) = -0.999391 sin(273°) = -0.99863 sin(274°) = -0.997564 sin(275°) = -0.996195 sin(276°) = -0.994522 sin(277°) = -0.992546 sin(278°) = -0.990268 sin(279°) = -0.987688 sin(280°) = -0.984808 sin(281°) = -0.981627 sin(282°) = -0.978148 sin(283°) = -0.97437 sin(284°) = -0.970296 sin(285°) = -0.965926 sin(286°) = -0.961262 sin(287°) = -0.956305 sin(288°) = -0.951057 sin(289°) = -0.945519 sin(290°) = -0.939693 sin(291°) = -0.93358 sin(292°) = -0.927184 sin(293°) = -0.920505 sin(294°) = -0.913545 sin(295°) = -0.906308 sin(296°) = -0.898794 sin(297°) = -0.891007 sin(298°) = -0.882948 sin(299°) = -0.87462 sin(300°) = -0.866025 sin(301°) = -0.857167 sin(302°) = -0.848048 sin(303°) = -0.838671 sin(304°) = -0.829038 sin(305°) = -0.819152 sin(306°) = -0.809017 sin(307°) = -0.798636 sin(308°) = -0.788011 sin(309°) = -0.777146 sin(310°) = -0.766044 sin(311°) = -0.75471 sin(312°) = -0.743145 sin(313°) = -0.731354 sin(314°) = -0.71934 sin(315°) = -0.707107 |
sin(316°) = -0.694658 sin(317°) = -0.681998 sin(318°) = -0.669131 sin(319°) = -0.656059 sin(320°) = -0.642788 sin(321°) = -0.62932 sin(322°) = -0.615661 sin(323°) = -0.601815 sin(324°) = -0.587785 sin(325°) = -0.573576 sin(326°) = -0.559193 sin(327°) = -0.544639 sin(328°) = -0.529919 sin(329°) = -0.515038 sin(330°) = -0.5 sin(331°) = -0.48481 sin(332°) = -0.469472 sin(333°) = -0.45399 sin(334°) = -0.438371 sin(335°) = -0.422618 sin(336°) = -0.406737 sin(337°) = -0.390731 sin(338°) = -0.374607 sin(339°) = -0.358368 sin(340°) = -0.34202 sin(341°) = -0.325568 sin(342°) = -0.309017 sin(343°) = -0.292372 sin(344°) = -0.275637 sin(345°) = -0.258819 sin(346°) = -0.241922 sin(347°) = -0.224951 sin(348°) = -0.207912 sin(349°) = -0.190809 sin(350°) = -0.173648 sin(351°) = -0.156434 sin(352°) = -0.139173 sin(353°) = -0.121869 sin(354°) = -0.104528 sin(355°) = -0.087156 sin(356°) = -0.069756 sin(357°) = -0.052336 sin(358°) = -0.034899 sin(359°) = -0.017452 sin(360°) = 0 |
Calculator use
To use this calculator, just type a value for the angle, then press ‘Calculate’. You may choose radians (rad) or degrees (°) as the angle unit. The default unit is degree (°)
Examples of accepted input values
- 30 → sin(30°) = 0.5
- pi → sin(pirad) = 0
- 3pi/4 → sin(3pi/4) = 0.707 …
- 1/(2pi) → sin(1/(2pi)rad) = 0.158 … (note the parenthesis in denominator)
- 1/2pi → sin(1/2pirad) = sin((1/2) x pirad) = 1 exactly
Note: this calculator accepts numbers, fractions, ‘pi’, ‘π’, ‘+’, ‘-‘, ‘*’, ‘/’, ‘(‘, ‘)’ and some (not all) combinations of them as input. Use it with care!
Разделы презентаций
- Разное
- Бизнес и предпринимательство
- Образование
- Финансы
- Государство
- Спорт
- Армия
- Культурология
- Еда и кулинария
- Лингвистика
- Черчение
- Психология
- Социология
- Английский язык
- Астрономия
- Биология
- География
- Детские презентации
- Информатика
- История
- Литература
- Маркетинг
- Математика
- Медицина
- Менеджмент
- Музыка
- МХК
- Немецкий язык
- ОБЖ
- Обществознание
- Окружающий мир
- Педагогика
- Русский язык
- Технология
- Физика
- Философия
- Химия
- Экология
- Экономика
- Юриспруденция
Содержание
-
1.
Значения синуса, косинуса и тангенса для углов 300, 600, 450 градусов -
2.
C B A 5 13 -
3.
600 C A B D 4 5 АВСD- параллелограмм. Найти: SABCD -
4.
A B C -
6.
300 600 C B -
7.
300 600 C B -
8.
450 C B A -
13.
Скачать презентацию -
14.
Похожие презентации
C B A 5 13 №1 Найти: sin A, cos A, tq A, sin B, cos B, tq B.
Слайды и текст этой презентации
Слайд 1
Значения синуса, косинуса и тангенса для углов 300,
600, 450
8 класс
Тавеева Дина Радиковна
учитель математики
д. Золотой Родник, 2014
Слайд 2
C
B
A
5
13
№1
Найти:
sin A, cos A, tq A,
sin B, cos
B, tq B.
Слайд 3
600
C
A
B
D
4
5
АВСD- параллелограмм.
Найти: SABCD
Слайд 4
A
B
C
D
H
F
6
16
300
450
ABCD-трапеция.
Найти: AD.
Слайд 6
300
600
C
B
A
Найти:
sin300, cos300, tq300 .
Пусть ВС = х
, то АВ=
2х.
АС=
sin A=
sin300
cos A
cos300
tq
A
tq300
Слайд 7
300
600
C
B
A
Найти:
sin600, cos600, tq600 .
cos B=
sin B
tq B
sin600
cos600
tq600
Пусть ВС = х
, то АВ=
2х.
АС
Слайд 8
450
C
B
A
Пусть ВС = х , то АC=
х.
АB
sin A=
cos
A
tq A
Найти:
sin450, cos450, tq450 .
sin450
cos450
tq450 =1
0 голосов
148 просмотров
Вычислите при помощи формул приведения sin 600
- вычислите
- помощи
- формул
- приведения
- 10 — 11 классы
- математика
Математика
Koly23_zn
08 Май, 18
|
148 просмотров
Дан 1 ответ
0 голосов
Sin(600)=sin(2п+240)=sin(240)=sin(п+60)=-sin(60)=-√3/2
akes_zn
08 Май, 18