Как найти силу тока в первичной обмотке

Как найти силу тока в первичной обмотке?

первичная и вторичная обмотки

Отношение витков
вторичной и первичной обмоток трансформатора составляет 12,5. Сила тока в
нагрузке равна 2,0 А. Найти силу тока в первичной обмотке.

Решение.

Пусть n1 и n2 – число витком в
первичной и вторичной обмотках соответственно.

Тогда: k = n1/n2 = I2/I1; I1 = I2n2/n1 = 2,0•12,5 = 25 А, где
I1
,
I2
– действующие значения силы токов в первичной и вторичной обмотках.

Ответ: сила тока в
первичной обмотке составляет 25 А.

Источник: Пособие-репетитор для подготовки к централизованному тестированию. С.Н.Капельян, Л.А.Аксенович.

Расчет
силового трансформатора

Трансформатор
– это пассивный преобразователь энергии.
Его коэффициент полезного действия
(КПД) всегда меньше единицы. Это означает,
что мощность потребляемая нагрузкой,
которая подключена к вторичной обмотке
трансформатора, меньше, чем мощность,
потребляемая нагруженным трансформатором
от сети. Известно, что мощность равна
произведению силы тока на напряжение,
следовательно, в повышающих обмотках
сила тока меньше, а в понижающих –
больше силы тока, потребляемого
трансформатором от сети.

Параметры
и характеристики трансформатора.

Два разных
трансформатора при одинаковом напряжении
сети могут быть рассчитаны на получение
одинаковых напряжений вторичных обмоток.
Но если нагрузка первого трансформатора
потребляет больший ток, а второго
маленький, значит, первый трансформатор
характеризуется по сравнению со вторым
большей мощностью. Чем больше сила тока
в обмотках трансформатора, тем больше
и магнитный поток в его сердечнике,
поэтому сердечник должен быть толще.
Кроме того, чем больше сила тока в
обмотке, тем более толстым проводом она
должна быть намотана, а это требует
увеличения окна сердечника. Поэтому
габариты трансформатора зависят от его
мощности. И наоборот, сердечник
определенного размера пригоден для
изготовления трансформатора только до
определенной мощности, которая называется
габаритной мощностью трансформатора.
Количество витков вторичной обмотки
трансформатора определяет напряжение
на ее выводах. Но это напряжение зависит
также и от количества витков первичной
обмотки. При определенном значении
напряжения питания первичной обмотки
напряжение вторичной зависит от
отношения количества витков вторичной
обмотки количеству витков первичной.
Это отношение и называется коэффициентом
трансформации. Если напряжение на
вторичной обмотке зависит от коэффициента
трансформации нельзя произвольно
выбирать количество витков одной из
обмоток. Чем меньше габариты сердечника,
тем больше должно быть количество витков
каждой обмотки. Поэтому размеру сердечника
трансформатора соответствует вполне
определенное количество витков его
обмоток, приходящееся на один вольт
напряжения, меньше которого брать
нельзя. Эта характеристика называется
количеством витков на один вольт..

Как и всякий
преобразователь энергии, трансформатор
обладает коэффициентом полезного
действия – отношением мощности,
потребляемой нагрузкой трансформатора,
к мощности, которую нагруженный
трансформатор потребляет от сети. КПД
маломощных трансформаторов, которые
обычно применяются для питания бытовой
электронной аппаратуры, колеблется в
пределах от 0,8 до 0,95. Более высокие
значения имеют трансформаторы большей
мощности.

Электрический
расчет трансформатора

Перед
расчетом трансформатора необходимо
сформулировать требования, которым он
должен удовлетворять. Они и будут
являться исходными данными для расчета.
Технические требования к трансформатору
определяются также путем расчета, в
результате которого определяются те
напряжения и токи, которые должны быть
обеспечены вторичными обмотками. Поэтому
перед расчетом трансформатора производится
расчет выпрямителя для определения
напряжений каждой из вторичных обмоток
и потребляемых от этих обмоток токов.
Если же напряжения и токи каждой из
обмоток трансформатора уже известны,
то они являются техническими требованиями
к трансформатору. Для определения
габаритной мощности трансформатора
необходимо определить мощности,
потребляемые от каждой из вторичных
обмоток и сложить их, учитывая также
КПД трансформатора. Мощность, потребляемую
от любой обмотки, определяют умножением
напряжения между выводами этой обмотки
на силу потребляемого от нее тока:

P
= UI,

P
– мощность, потребляемая от обмотки,
Вт;

U
– эффективное значение напряжения,
снимаемого с этой обмотки, В;

I
– эффективное значение силы тока,
протекающего в этой же обмотке, А.

Суммарная
мощность, потребляемая, например, тремя
вторичными обмотками, вычисляется по
формуле:

PS
= U1I1+U2I2+U3I3

Для определения
габаритной мощности трансформатора,
полученное значение суммарной мощности
PS
нужно разделить на КПД трансформатора:
Pг =
,
где

Pг
– габаритная мощность трансформатора;
η
– КПД трансформатора.

Заранее
рассчитать КПД трансформатора нельзя,
так как для этого нужно знать величину
потерь энергии в обмотках и в сердечнике,
которые зависят от параметров самих
обмоток (диаметры проводов и их длина)
и параметров сердечника (длина магнитной
силовой линии и марка стали). И те и
другие параметры становятся известными
только после расчета трансформатора.
Поэтому с достаточной для практического
расчета точностью КПД трансформатора
можно определить из таблицы 6.1.

Таблица
6.1

Суммарная мощность, Вт

10-20

20-40

40-100

100-300

КПД трансформатора

0,8

0,85

0,88

0,92

Наиболее
распространены две формы сердечника:
О – образная и Ш – образная. На сердечнике
О – образной формы обычно располагаются
две катушки, а на сердечнике Ш – образной
формы — одна. Зная габаритную мощность
трансформатора, находят сечение рабочего
керна его сердечника, на котором находится
катушка:

S
= 1,2

Сечением
рабочего керна сердечника является
произведение ширины рабочего керна а
и толщины пакета с. Размеры а и с выражены
в сантиметрах, а сечение – в квадратных
сантиметрах.

После этого
выбирают тип пластин трансформаторной
стали и определяют толщину пакета
сердечника. Сначала находят приблизительную
ширину рабочего керна сердечника по
формуле: a = 0,8

Затем по
полученному значению а производят выбор
типа пластин трансформаторной стали
из числа имеющихся в наличии и находят
фактическую ширину рабочего керна а.
после чего определяют толщину пакета
сердечника с:

c
= S/a

Количество
витков , приходящихся на 1 вольт напряжения,
определяется сечением рабочего керна
сердечника трансформатора по формуле:
n = k/S,
где N – количество витков
на 1 В; k – коэффициент,
определяемый свойствами сердечника; S
— сечение рабочего керна сердечника,
см2.

Из приведенной
формулы видно, что чем меньше коэффициент
k, тем меньше витков будут
иметь все обмотки трансформатора. Однако
произвольно выбирать коэффициент k
нельзя. Его значение обычно лежит в
пределах от 35 до 60. В первую очередь оно
зависит от свойств пластин трансформаторной
стали, из которых собран сердечник. Для
сердечников С-образной формы, витых из
тонкой ленты, можно брать k
= 35. Если используется сердечник О —
образной формы, собранный из П- или Г –
образных пластин без отверстий по углам,
берут k = 40. Такое же значение
k и для пластин типа УШ,
у которых ширина боковых кернов больше
половины ширины среднего керна.. Если
используются пластины типа Ш без
отверстий по углам, у которых ширина
среднего керна ровно вдвое больше ширины
крайних кернов, целесообразно взять k
= 45, а если Ш – образные пластины имеют
отверстия, то k = 50. Таки
образом, выбор k в
значительной мере условен и им можно в
некоторых пределах варьировать, если
учесть, что уменьшение k
облегчает намотку, но ужесточает режим
трансформатора. При применении пластин
из высококачественной трансформаторной
стали этот коэффициент можно немного
уменьшать, а при низком качестве стали
приходится его увеличивать.

Зная
необходимое напряжение каждой обмотки
и количество витков на 1 В, легко определить
количество витков обмотки, перемножим
эти величины: W = Un

Такое
соотношение справедливо только для
первичной обмотки, а при определении
количества витков вторичных обмоток
нужно дополнительно вводить приближенную
поправку для учета падения напряжения
на самой обмотке от протекающего по ее
проводу тока нагрузки: W
= mUn

Коэффициент
m зависит от силы тока,
протекающего по данной обмотке (см.
таблицу 6.2). Если сила тока меньше 0,2 А,
можно принимать m = 1.
Толщина провода, которым наматывается
обмотка трансформатора определяется
силой тока, протекающей по этой обмотке.
Чем больше ток, тем толще должен быть
провод, подобно тому как для увеличения
потока воды требуется использовать
более толстую трубу. От толщины провода
зависит сопротивление обмотки. Чем
тоньше провод, тем больше сопротивление
обмотки, следовательно, увеличивается
выделяемая в ней мощность и она сильнее
нагревается. Для каждого типа обмоточного
провода существует предел допустимого
нагрева, который зависит от свойств
эмалевой изоляции. Поэтому диаметр
провода может быть определен по формуле:
d = p,
где d – диаметр провода
по меди, м; I — сила тока в
обмотке, А; p — коэффициент,
(таблица 6.3) который учитывает допустимый
нагрев той или иной марки провода.

Таблица
6.2: Определение коэффициента
m

Сила тока вторичной обмотки, А

0,2 – 0,5

0,5 – 1,0

1,0 – 2,0

2,0 – 4,0

m

1,02

1,03

1,04

1,06

Таблица
6.3: Выбор диаметра провода.

Марка провода

ПЭЛ

ПЭВ-1

ПЭВ-2

ПЭТ

p

0,8

0,72

0,69

0,65

Выбрав
коэффициент p можно
определить диаметр провода каждой
обмотки. Найденное значение диаметра
округляют до большего стандартного.

Сила тока
в первичной обмотке определяется с
учетом габаритной мощности трансформатора
и напряжения сети:

I
= Pг/U

Практическая
работа:

Рассчитать
трансформатор, имеющий три вторичные
обмотки с учетом следующих исходных
данных:

U1
= 6,3 В, I1 = 1,5 А; U2
= 12 В, I2 = 0,3 А; U3
= 120 В, I3 = 59 мА

Ход
работы:

  1. Найти
    суммарную мощность, потребляемую от
    вторичных обмоток: Ps

  2. Из
    таблицы 6.1 найти КПД трансформатора и
    определить его габаритную мощность:
    Pг

  3. Найти
    сечение сердечника трансформатора: S

  4. Найти
    приближенное значение ширины рабочего
    керна: a

  5. Используя
    найденное значение ширины рабочего
    керна найти толщину пакета: с

  6. Определить
    фактическое сечение рабочего керна
    сердечника: Sф = ac

  7. Считая,
    что используются пластины трансформаторной
    стали типа Ш-19 без отверстий по углам,
    взять k = 45.

  8. Найти
    количество витков на 1В: n
    = k/SФ,
    где Sф – фактическое
    сечение рабочего керна сердечника.

  9. Определить
    количество витков первичной обмотки
    при питании от сети напряжением 127 В:
    WI

  10. Определить
    количество витков первичной обмотки
    при питании от сети напряжением 220 В:WII

  11. Определить
    количество витков дополнительной
    секции первичной обмотки, которую
    необходимо подключить к обмотке,
    рассчитанной на 127 В, для питания
    напряжением 220 В: Wд
    = WII
    – WI

  12. Найти
    из таблицы 6.2 коэффициент m
    для каждой из вторичных обмоток: при
    I1, определить m1,
    при I2, определить
    m2, при I3,
    определить m3.

  13. Определить
    количество витков каждой из вторичных
    обмоток с округлением до ближайшего
    целого числа: W1,
    W2, W3.

  14. Найти
    силу тока в первичной обмотке при
    питании от сети напряжением Ua
    = 127 В: Ia
    = Pг/Ua

  15. Найти
    силу тока в первичной обмотке при
    питании от сети напряжением Ub
    = 220 В: Ib
    = Pг/Ub

  16. Считая,
    что используется провод марки ПЭВ-1
    найти диаметр провода первичной обмотки
    для секции, рассчитанной на 127 В: da
    = p
    (Коэффициент p взять из
    таблицы 6.3)

  17. Считая,
    что используется провод марки ПЭВ-1
    найти диаметр провода первичной обмотки
    для секции, рассчитанной на 220 В: db
    = p
    (Коэффициент p взять из
    таблицы 6.3)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Печатать эту главуПечатать эту главу

Пример решения задачи

Определите силу тока I1 в первичной обмотке трансформатора, если напряжение на ее зажимах на ΔU = 1500 В выше, чем на вторичной обмотке. Сопротивление первичной обмотки R1 = 35 Ом, коэффициент трансформации k = 20.

Дано:

ΔU = 1500 В  
R1 = 35 Ом
k = 20

I1  — ?

 Решение: 

По закону Ома сила тока в первичной обмотке 

.

где  U1— напряжение на первичной обмотке.

Коэффициент трансформации , где U— напряжение на вторичной обмотке

По условию задачи 

,

Тогда сила тока в первичной обмотке

 .  

Ответ : I1 = 45 А.

Многие электронные и радиотехнические устройства получают питание от нескольких источников постоянного напряжения. Они относятся к так называемым вторичным источникам питания. В качестве первичных источников выступают сети переменного тока, напряжением 127 и 220 вольт, с частотой 50 Гц. Для обеспечения аппаратуры постоянным напряжением, вначале требуется выполнить повышение или понижение сетевого напряжения до необходимого значения. Чтобы получить требуемые параметры, необходимо произвести расчет трансформатора, который выполняет функцию посредника между электрическими сетями и приборам, работающими при постоянном напряжении.

Расчет силового трансформатора

Для точного расчета трансформатора требуются довольно сложные вычисления. Тем не менее, существуют упрощенные варианты формул, используемые радиолюбителями при создании силовых трансформаторов с заданными параметрами.

В начале нужно заранее рассчитать величину силы тока и напряжения для каждой обмотки. С этой целью на первом этапе определяется мощность каждой повышающей или понижающей вторичной обмотки. Расчет выполняется с помощью формул: P2 = I2xU2; P3 = I3xU3;P4 = I4xU4, и так далее. Здесь P2, P3, P4 являются мощностями, которые выдают обмотки трансформатора, I2, I3, I4 – сила тока, возникающая в каждой обмотке, а U2, U3, U4 – напряжение в соответствующих обмотках.

Определить общую мощность трансформатора (Р) необходимо отдельные мощности обмоток сложить и полученную сумму умножить на коэффициент потерь трансформатора 1,25. В виде формулы это выглядит как: Р = 1,25 (Р2 + Р3 + Р4 + …).

Исходя из полученной мощности, выполняется расчет сечения сердечника Q (в см2). Для этого необходимо извлечь квадратный корень из общей мощности и полученное значение умножить на 1,2:  . С помощью сечения сердечника необходимо определить количество витков n, соответствующее 1 вольту напряжения: n= 50/Q.
Расчет трансформатора
На следующем этапе определяется количество витков для каждой обмотки. Вначале рассчитывается первичная сетевая обмотка, в которой количество витков с учетом потерь напряжения составит: n1 = 0,97 xnxU1. Вторичные обмотки рассчитываются по следующим формулам: n2 = 1,03 x n x U2; n3 = 1,03 x n x U3;n4 = 1,03 x n x U4;…

Любая обмотка трансформатора имеет следующий диаметр проводов:
где I – сила тока, проходящего через обмотку в амперах, d – диаметр медного провода в мм. Определить силу тока в первичной (сетевой) обмотке можно по формуле: I1 = P/U1. Здесь используется общая мощность трансформатора.

Далее выбираются пластины для сердечника с соответствующими типоразмерами. В связи с этим, вычисляется площадь, необходимая для размещения всей обмотки в окне сердечника. Необходимо воспользоваться формулой: Sм = 4 x (d12n1 + d22n2 +d32n3 + d42n4 + …), в которой d1, d2, d3 и d4 – диаметр провода в мм, n1, n2, n3 и n4 – количество витков в обмотках. В этой формуле берется в расчет толщина изоляции проводников, их неравномерная намотка, место расположения каркаса в окне сердечника.

Полученная площадь Sм позволяет выбрать типоразмер пластины таким образом, чтобы обмотка свободно размещалась в ее окне. Не рекомендуется выбирать окно, размеры которого больше, чем это необходимо, поскольку это снижает нормальную работоспособность трансформатора.

Заключительным этапом расчетов будет определение толщины набора сердечника (b), осуществляемое по следующей формуле: b = (100 xQ)/a, в которой «а» – ширина средней части пластины. После выполненных расчетов можно выбирать сердечник с необходимыми параметрами.

Как рассчитать мощность трансформатора

Чаще всего необходимость расчета мощности трансформатора возникает при работе со сварочной аппаратурой, особенно когда технические характеристики заранее неизвестны.

Мощность трансформатора тесно связана с силой тока и напряжением, при которых аппаратура будет нормально функционировать. Самым простым вариантом расчета мощности будет умножение значения напряжения на величину силы тока, потребляемого устройством. Однако на практике не все так просто, прежде всего из-за различия в типах устройств и применяемых в них сердечников. В качестве примера рекомендуется рассматривать Ш-образные сердечники, получившие наиболее широкое распространение, благодаря своей доступности и сравнительно невысокой стоимости.

Для расчета мощности трансформатора понадобятся параметры его обмотки. Эти вычисления проводятся по такой же методике, которая рассматривалась ранее. Наиболее простым вариантом считается практическое измерение обмотки трансформатора. Показания нужно снимать аккуратно и максимально точно. После получения всех необходимых данных можно приступать к расчету мощности.

Ранее, для определения площади сердечника применялась формула: S=1,3*√Pтр. Теперь же, зная площадь сечения магнитопровода, эту формулу можно преобразовать в другой вариант: Ртр = (S/1,3)/2. В обеих формулах число 1,3 является коэффициентом с усредненным значением.

Расчёт трансформатора по сечению сердечника

Конструкция трансформатора зависят от формы магнитопровода. Они бывают стержневыми, броневыми и тороидальными. В стержневых трансформаторах обмотки наматываются на стержни сердечника. В броневых – магнитопроводом только частично обхватываются обмотки. В тороидальных конструкциях выполняется равномерное распределение обмоток по магнитопроводу.

Для изготовления стержневых и броневых сердечников используются отдельные тонкие пластины из трансформаторной стали, изолированные между собой. Тороидальные магнитопроводы представляют собой намотанные рулоны из ленты, для изготовления которых также используется трансформаторная сталь.

Важнейшим параметром каждого сердечника считается площадь поперечного сечения, оказывающая большое влияние на мощность трансформатора. КПД стержневых трансформаторов значительно превышает такие же показатели у броневых устройств. Их обмотки лучше охлаждаются, оказывая влияние на допустимую плотность тока. Поэтому в качестве примера для расчетов рекомендуется рассматривать именно эту конструкцию.

В зависимости от параметров сердечника, определяется значение габаритной мощности трансформатора. Она должна превышать электрическую, поскольку возможности сердечника связаны именно с габаритной мощностью. Эта взаимная связь отражается и в расчетной формуле: Sо хSс = 100 хРг /(2,22 * Вс х j х f х kох kc). Здесь Sо и Sс являются соответственно площадями окна и поперечного сечения сердечника, Рг – значение габаритной мощности, Вс – показатель магнитной индукции в сердечнике, j – плотность тока в проводниках обмоток, f – частота переменного тока, kо и kc – коэффициенты заполнения окна и сердечника.

Как определить число витков обмотки трансформатора не разматывая катушку

При отсутствии данных о конкретной модели трансформатора, количество витков в обмотках определяется при помощи одной из функций мультиметра.

Мультиметр следует перевести в режим омметра. Затем определяются выводы всех имеющихся обмоток. Если между магнитопроводом и катушкой имеется зазор, то сверху всех обмоток наматывается дополнительная обмотка из тонкого провода. От количества витков будет зависеть точность результатов измерений.

Один щуп прибора подключается к концу основной обмотки, а другой щуп – к дополнительной обмотке. По очереди выполняются измерения всех обмоток. Та из них, у которой наибольшее сопротивление, считается первичной. Полученные данные позволяют выполнить расчет трансформатора и вместе с другими параметрами выбрать наиболее оптимальную конструкцию для конкретной электрической цепи.

Принцип работы устройства

Трансформатор — это электротехническое устройство, предназначенное для передачи энергии без изменения её формы и частоты. Используя в своей работе явление электромагнитной индукции, устройство применяется для преобразования переменного сигнала или создания гальванической развязки. Каждый трансформатор собирается из следующих конструктивных элементов:

  • сердечника;
  • обмотки;
  • каркаса для расположения обмоток;
  • изолятора;
  • дополнительных элементов, обеспечивающих жёсткость устройства.

В основе принципа действия любого трансформаторного устройства лежит эффект возникновения магнитного поля вокруг проводника с текущим по нему электрическим током. Такое поле также возникает вокруг магнитов. Током называется направленный поток электронов или ионов (зарядов). Взяв проволочный проводник и намотав его на катушку и подключив к его концам прибор для измерения потенциала можно наблюдать всплеск амплитуды напряжения при помещении катушки в магнитное поле. Это говорит о том, что при воздействии магнитного поля на катушку с намотанным проводником получается источник энергии или её преобразователь.

В устройстве трансформатора такая катушка называется первичной или сетевой. Она предназначена для создания магнитного поля. Стоит отметить, что такое поле обязательно должно всё время изменяться по направлению и величине, то есть быть переменным.

Классический трансформатор состоит из двух катушек и магнитопровода, соединяющего их. При подаче переменного сигнала на контакты первичной катушки возникающий магнитный поток через магнитопровод (сердечник) передаётся на вторую катушку. Таким образом, катушки связаны силовыми магнитными линиями. Согласно правилу электромагнитной индукции при изменении магнитного поля в катушке индуктируется переменная электродвижущая сила (ЭДС). Поэтому в первичной катушки возникает ЭДС самоиндукции, а во вторичной ЭДС взаимоиндукции.

Количество витков на обмотках определяет амплитуду сигнала, а диаметр провода наибольшую силу тока. При равенстве витков на катушках уровень входного сигнала будет равен выходному. В случае когда вторичная катушка имеет в три раза больше витков, амплитуда выходного сигнала будет в три раза больше, чем входного — и наоборот.

От сечения провода, используемого в трансформаторе, зависит нагрев всего устройства. Правильно подобрать сечение возможно, воспользовавшись специальными таблицами из справочников, но проще использовать трансформаторный онлайн-калькулятор.

Отношение общего магнитного потока к потоку одной катушки устанавливает силу магнитной связи. Для её увеличения обмотки катушек размещаются на замкнутом магнитопроводе. Изготавливается он из материалов имеющих хорошую электромагнитную проводимость, например, феррит, альсифер, карбонильное железо. Таким образом, в трансформаторе возникают три цепи: электрическая — образуемая протеканием тока в первичной катушке, электромагнитная — образующая магнитный поток, и вторая электрическая — связанная с появлением тока во вторичной катушке при подключении к ней нагрузки.

Правильная работа трансформатора зависит и от частоты сигнала. Чем она больше, тем меньше возникает потерь во время передачи энергии. А это означает, что от её значения зависят размеры магнитопровода: чем частота больше, тем размеры устройства меньше. На этом принципе и построены импульсные преобразователи, изготовление которых связано с трудностями разработки, поэтому часто используется калькулятор для расчёта трансформатора по сечению сердечника, помогающий избавиться от ошибок ручного расчёта.

Виды сердечников

Трансформаторы отличаются между собой не только сферой применения, техническими характеристиками и размерам, но и типом магнитопровода. Очень важным параметром, влияющим на величину магнитного поля, кроме отношения витков, является размер сердечника. От его значения зависит способность насыщения. Эффект насыщения наступает тогда, когда при увеличении тока в катушке величина магнитного потока остаётся неизменной, т. е. мощность не изменяется.

Для предотвращения возникновения эффекта насыщения понадобится правильно рассчитать объём и сечение сердечника, от размеров которого зависит мощность трансформатора. Следовательно, чем больше мощность трансформатора, тем большим должен быть его сердечник.

По конструкции сердечник разделяют на три основных вида:

  • стержневой;
  • броневой;
  • тороидальный.

Стержневой магнитопровод представляет собой П-образный или Ш-образный вид конструкции. Собирается из стержней, стягивающихся ярмом. Для защиты катушек от влияния внешних электромагнитных сил используются броневые магнитопроводы. Их ярмо располагается на внешней стороне и закрывает стержень с катушкой. Тороидальный вид изготавливается из металлических лент. Такие сердечники из-за своей кольцевой конструкции экономически наиболее выгодны.

Зная форму сердечника, несложно рассчитать мощность трансформатора. Находится она по несложной формуле: P=(S/K)*(S/K), где:

  • S — площадь сечения сердечника.
  • K — постоянный коэффициент равный 1,33.

Площадь сердечника находится в зависимости от его вида, её единица измерения — сантиметр в квадрате. Полученный результат измеряется в ваттах. Но на практике часто приходится выполнять расчёт сечения сердечника по необходимой мощности трансформатора: Sс = 1.2√P, см2. Исходя из формул можно подтвердить вывод: что чем больше мощность изделия, тем габаритней используется сердечник.

Расчёт трехфазного трансформатора

Особенности применения и выбора измерительных трансформаторов тока

Изготовление трехфазного трансформатора и его точный расчёт процесс более сложный, так как здесь первичная и вторичная обмотка состоят уже из трёх катушек. Это разновидность силового трансформатора, магнитопровод которого выполнен чаще всего стержневым способом. Здесь уже появляются такие понятие, как фазные и линейные напряжения. Линейные измеряются между двумя фазами, а фазные между фазой и землёй. Если трансформатор трехфазный рассчитан на 0,4 кВ, то линейное напряжение будет 380В, а фазное 220 В. Обмотки могут быть соединены в звезду или треугольник, что даёт разные величины токов и напряжений.

Обмотки трехфазного трансформатора расположены на стержнях так же, как и в однофазном, т. е. обмотки низшего напряжения НН размещаются ближе к стержню, а обмотки высшего напряжения ВН — на обмотках низшего напряжения.

Высоковольтные трансформаторы трёхфазного тока рассчитываются и изготавливаются исключительно в промышленных условиях. Кстати, любой понижающий трансформатор при обратном включении, выполняет роль повышающего напряжение устройства.

Типовой расчёт параметров

Довольно часто радиолюбители используют при расчёте трансформатора упрощённую методику. Она позволяет выполнить расчёт в домашних условиях без использования величин, которые трудно узнать. Но проще использовать готовый для расчёта трансформатора онлайн-калькулятор. Для того чтобы воспользоваться таким калькулятором, понадобится знать некоторые данные, а именно:

  • напряжение первичной и вторичной обмотки;
  • габаритны сердечника;
  • толщину пластины.

После их ввода понадобится нажать кнопку «Рассчитать» или похожую по названию и дождаться результата.

Стержневой тип магнитопровода

В случае отсутствия возможности расчёта на калькуляторе выполнить такую операцию самостоятельно несложно и вручную. Для этого потребуется определиться с напряжением на выходе вторичной обмотки U2 и требуемой мощностью Po. Расчёт происходит следующим образом:

  1. Рассчитывается ток нагрузки: In=Po/U2, А.
  2. Вычисляется величина тока вторичной обмотки: I2 = 1,5*In, А.
  3. Определяется мощность вторичной обмотки: P2 = U2*I2, Вт.
  4. Находится общая мощность устройства: Pт = 1,25*P2, Вт.
  5. Вычисляется сила тока первичной обмотки: I1 = Pт/U1, А.
  6. Находится необходимое сечение магнитопровода: S = 1,3*√ Pт, см².

Следует отметить, что если конструируется устройство с несколькими выводами во вторичной обмотке, то в четвёртом пункте все мощности суммируются, и их результат подставляется вместо P2.

После того как первый этап выполнен, приступают к следующей стадии расчёта. Число витков в первичной обмотке находится по формуле: K1 = 50*U1/S. А число витков вторичной обмотке определяется выражением K2= 55* U2/S, где:

  • U1 — напряжение первичной обмотке, В.
  • S — площадь сердечника, см².
  • K1, K2 — число витков в обмотках, шт.

Остаётся вычислить диаметр наматываемой проволоки. Он равен D = 0,632*√ I, где:

  • d — диаметр провода, мм.
  • I — обмоточный ток рассчитываемой катушки, А.

При подборе магнитопровода следует соблюдать соотношение 1 к 2 ширины сердечника к его толщине. По окончании расчёта выполняется проверка заполняемости, т. е. поместится ли обмотка на каркас. Для этого площадь окна вычисляется по формуле: Sо = 50*Pт, мм2.

Особенности автотрансформатора

Автотрансформаторы рассчитываются аналогично простым трансформаторам, только сердечник определяется не на всю мощность, а на мощность разницы напряжений.

Например, мощность магнитопровода 250 Вт, на входе 220 вольт, на выходе требуется получить 240 вольт. Разница напряжений составляет 20 В, при мощности 250 Вт ток будет равен 12,5 А. Такое значение тока соответствует мощности 12,5*240=3000 Вт. Потребление сетевого тока составляет 12,5+250/220=13,64А, что как раз и соответствует 3000Вт=220В*13,64А. Трансформатор имеет одну обмотку на 240 В с отводом на 220 В, который подключён к сети. Участок между отводом и выходом мотается проводом, рассчитанным на 12,5А.

Таким образом, автотрансформатор позволяет получить на выходе мощность значительно больше, чем трансформатор на таком же сердечнике при небольшом коэффициенте передачи.

Трансформатор тороидального типа

Тороидальные трансформаторы имеют ряд преимуществ по сравнению с другими типами: меньший размер, меньший вес и при этом большее КПД. При этом они легко наматываются и перематываются. Использование онлайн-калькулятора для расчёта тороидального трансформатора позволяет не только сократить время изготовления изделия, но и «на лету» поэкспериментировать с разными вводными данными. В качестве таких данных используются:

  • напряжение входной обмотки, В;
  • напряжение выходной обмотки, В;
  • ток выходной обмотки, А;
  • наружный диаметр тора, мм;
  • внутренний диаметр тора, мм;
  • высота тора, мм.

Необходимо отметить, что почти все онлайн-программы не демонстрируют особой точности в случае расчёта импульсных трансформаторов. Для получения высокой точности можно воспользоваться специально разработанными программами, например, Lite-CalcIT, или рассчитать вручную. Для самостоятельного расчёта используются следующие формулы:

  1. Мощность выходной обмотки: P2=I2*U2, Вт.
  2. Габаритная мощность: Pg=P2/Q, Вт. Где Q — коэффициент, берущийся из справочника (0,76−0,96).
  3. Фактическое сечение «железа» в месте размещения катушки: Sch= ((D-d)*h)/2, мм2.
  4. Расчётное сечение «железа» в месте расположения катушки: Sw =√Pq/1.2, мм2
  5. Площадь окна тора: Sfh=d*s* π/4, мм2.
  6. Значение рабочего тока входной обмотки: I1=P2/(U1*Q*cosφ), А, где cosφ справочная величина (от 0,85 до 0,94).
  7. Сечение провода находится отдельно для каждой обмотки из выражения: Sp = I/J, мм2., где J- плотность тока, берущаяся из справочника (от 3 до 5).
  8. Число витков в обмотках рассчитывается отдельно для каждой катушки: Wn=45*Un*(1-Y/100)/Bm* Sch шт., где Y — табличное значение, которое зависит от суммарной мощности выходных обмоток.
  9. Остается найти выходную мощность и расчёт тороидального силового трансформатора считается выполненным. Pout = Bm*J*Kok*Kct* Sch* Sfh /0,901, где: Bm — магнитная индукция, Kok — коэффициент заполнения проводом, Kct —коэффициент заполнения железом.

Все значения коэффициентов берутся из справочника радиоаппаратуры (РЭА). Таким образом, проводить вычисления в ручном режиме несложно, но потребуется аккуратность и доступ к справочным данным, поэтому гораздо проще использовать онлайн-сервисы.

Расчет однофазного трансформатора

Особенности применения и устройства сварочных трансформаторов

Рассчитывая понижающие трансформаторы однофазного тока, как самые распространенные в быту, для начала нужно выяснить его мощность. Конечно, понизить напряжение можно и другими способами, но этот самый эффективный и даёт ещё вдобавок гальваническую развязку, а значит возможность подключения силовой нагрузки.

Например, если напряжение первичной обмотки 220 Вольт, что свойственно для стандартных сетей однофазного тока, то вторичное напряжение нужно определить по нагрузке, которая будет подключаться к нему. Это может быть как низшее, так и высшее напряжение. Например, для зарядки автомобильных аккумуляторов необходимо напряжение 12-14 Вольт. То есть вторичное напряжение и ток тоже должно быть заранее известно.

Примерная мощность будет равна произведению тока на напряжение. Стоит учесть также и КПД. Для силовых аппаратов он составляет примерно 0,8–0,85. Тогда с учётом этого коэффициента полезного действия расчётная мощность будет составлять:

Ррасч= P*КПД

Именно эта мощность и ложится в основу расчёта поперечного сечения сердечника, на котором будут произведены намотки обмоток. Кстати, видов этих сердечников магнитопровода может быть несколько, как показано на рисунке снизу.

Далее, по этой формуле определяем сечение

S (см2) = (1,0 ÷1,3) √Р

Коэффициент 1–1,3 зависит от качества электротехнической стали. К электротехнической стали относится чистое железо в виде листов или ленты толщиной 0,1–8 мм либо в виде сортового проката (круг или квадрат) различных размеров.

После чего определяется количество витков, на один вольт напряжения.

N = (50 ÷70)/S (см2)

Берем среднюю величину коэффициента 60.

Теперь зная количество витков на один вольт есть возможность подсчитать количество витков в каждой обмотке. Осталось всего лишь найти сечение провода, которым выполнится намотка обмоток. Медь, для этого лучший материал, так как обладает высокой токопроводимостью и быстро остывает в случае нагрева. Тип провода ПЭЛ или ПЭВ. Кстати, нагрев даже самого идеального электромагнитного устройства неизбежен, поэтому при изготовлении сетевого трансформатора актуален и вопрос вентиляции. Для этого хотя бы предусмотреть на корпусе естественную вентилируемую конструкцию путём вырезания отверстий.

Ток в обмотке равен

I=P/U

Диаметр сечения проводника для обмотки определяется по формуле:

D= (0,7÷0,9)√I

где 0,7-0,9 это коэффициент плотности тока в проводнике. Чем больше его значение, тем меньше будет греться провод при работе.

Существует множество методов расчёта характеристик и параметров, этот же самый простой, но и примерный (неточный). Более точный расчет обмоток трансформатора применяется для производственных и промышленных нужд.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти целые числа между дробями
  • Как найти девушку по ближе
  • Как на клавиатуре найти знак градус цельсия
  • Что такое эпл айди как его найти
  • Как найти инструменты тонкой работы на юпитере

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии