Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов
Серединный перпендикуляр к отрезку
Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).
Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.
Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.
Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.
Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.
Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .
Докажем, что отрезок AE длиннее отрезка EB . Действительно,
Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.
Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,
Полученное противоречие и завершает доказательство теоремы 2
Окружность, описанная около треугольника
Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .
Свойства описанной около треугольника окружности. Теорема синусов
Для любого треугольника справедливы равенства (теорема синусов):
,
где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.
Для любого треугольника справедливо равенство:
где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.
Для любого треугольника справедливо равенство:
где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.
Фигура | Рисунок | Свойство |
Серединные перпендикуляры к сторонам треугольника |
Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке. Посмотреть доказательство |
|
Окружность, описанная около треугольника | Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника. Посмотреть доказательство |
|
Центр описанной около остроугольного треугольника окружности | Центр описанной около остроугольного треугольника окружности лежит внутри треугольника. | |
Центр описанной около прямоугольного треугольника окружности | Центром описанной около прямоугольного треугольника окружности является середина гипотенузы. Посмотреть доказательство |
|
Центр описанной около тупоугольного треугольника окружности | Центр описанной около тупоугольного треугольника окружности лежит вне треугольника. | |
Теорема синусов | ||
Площадь треугольника | ||
Радиус описанной окружности |
Серединные перпендикуляры к сторонам треугольника |
Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Окружность, описанная около треугольника
Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Центр описанной около остроугольного треугольника окружности
Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружности
Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Центр описанной около тупоугольного треугольника окружности
Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусов
Для любого треугольника справедливы равенства (теорема синусов):
,
где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.
Площадь треугольника
Для любого треугольника справедливо равенство:
где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.
Радиус описанной окружности
Для любого треугольника справедливо равенство:
где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.
Доказательства теорем о свойствах описанной около треугольника окружности
Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).
Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:
Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:
Следовательно, справедливо равенство:
откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.
Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).
При доказательстве теоремы 3 было получено равенство:
из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.
Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)
.
Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:
Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).
Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.
Формула (1) доказана.
Из формулы (1) для вписанного треугольника ABC получаем (рис.7):
Серединный перпендикуляр — определение, свойства и формулы
Общие сведения
Серединным перпендикуляром отрезка называют прямую, которая проходит под прямым углом через среднюю точку, т. е. середину отрезка. Для полного понимания материала следует остановиться на базовых элементах геометрии.
Точка — единица, при помощи которой строятся прямые, отрезки, лучи и фигуры. Прямая — простая фигура в форме бесконечной линии, состоящей из множества точек, лежащих в одной плоскости. Луч — базовая геометрическая фигура в виде бесконечной линии с одной стороны и точки-ограничителя — с другой. Иными словами, луч имеет начало, но не имеет конца. Отрезок — некоторая часть прямой (луча или другого отрезка), ограниченная двумя точками.
Кроме того, в геометрии серединный перпендикуляр встречается в треугольниках. Из определения можно сделать вывод, что им может быть прямая, отрезок и даже луч.
Аксиомы геометрии Евклида
Евклидовой геометрией называется наука о фигурах на плоскости, основанная на аксиомах и теоремах. Аксиома — базовое утверждение, не требующее доказательства. Оно используется для доказательства каких-либо теорем. Математики выделяют пять аксиом:
- Принадлежности.
- Порядка.
- Конгруэнтности.
- Параллельности прямых.
- Непрерывности.
Формулировка первой имеет такой вид: если существует в геометрическом пространстве плоскость, состоящая из множества точек, то через любые из них можно провести только одну прямую. Иными словами, можно взять произвольные две точки и провести через них одну прямую. Чтобы начертить еще одну прямую, следует взять две другие точки.
Следующее утверждение называется аксиомой порядка. Она гласит, что существует точка, которая лежит между двумя другими на прямой. Значение слова «конгруэнтность» не совсем понятно для новичка, однако нужно постепенно привыкать к терминологии. Оно обозначает «равенство». Третий геометрический факт формулируется таким образом: когда два отрезка или угла конгруэнтны третьему, тогда они равны между собой. Аксиома касается только отрезков и углов.
Чтобы убедиться в ее правильности, нужно разобрать следующий пример: длина первого отрезка составляет 10 см, второго — тоже, а третий равен первому. Необходимо доказать, что они равны между собой. Это делается очень просто:
- Вводятся обозначения: первый — MN, второй — OP и третий — RS.
- Устанавливаются значения по условию: MN = 10 см, ОР = 10 см, а RS = MN.
- Доказательство строится таким образом: MN = RS = 10 (см). Следовательно, отрезки равны, поскольку MN = ОР = RS = 10 (см).
Следует отметить, что данные действия оказались лишними — было потрачено время на понимание простой «истины». Параллельность прямых является также аксиомой и формулируется таким образом: если существует некоторая прямая на плоскости и точка, не лежащая на ней, то через последнюю можно провести только одну параллельную ей прямую.
И последняя аксиома называется Архимедовой. Ее формулировка имеет такой вид: для произвольных отрезков, лежащих на одной прямой, существует некоторая последовательность базовых элементов (точек), лежащих на одном и другом отрезках, таких, что заданные их части равны между собой. Иными словами, на одной прямой могут быть расположены равные между собой отрезки.
Информация о треугольниках
Треугольником является любая фигура, состоящая из трех вершин (точек) соединенных отрезками (сторонами), причем точки не лежат на одной прямой в одной плоскости. Они классифицируются по такому типу:
В первом случае фигуры делятся на остроугольные, тупоугольные и прямоугольные. Остроугольным называется треугольник, у которого все углы острые (меньше 90 градусов). У тупоугольного — один угол тупой (> 90), а в прямоугольном — один из углов равен 90 градусам. Следует отметить, что сумма градусных мер углов любого треугольника эквивалентна 180.
Когда стороны у треугольника неравны между собой, тогда его называют разносторонним. При равенстве двух боковых сторон он считается равнобедренным, у которого третья сторона — основание. Если все стороны равны, то значит, фигура является равносторонней или правильной.
У треугольника есть еще и другие параметры. Их называют медианой, биссектрисой и высотой. Первый параметр является отрезком, который проводится из любой вершины на среднюю точку стороны. Высота — часть прямой, которая проводится из произвольной вершины и перпендикулярна противоположной стороне. Биссектрисой называется прямая, делящая угол на две равные части.
Медиана, высота и биссектриса, проведенные из вершины к основанию, совпадают и эквивалентны серединному перпендикуляру в треугольниках равнобедренного и равностороннего типов. Это очень важно при решении задач. Еще одним признаком, по которому выполняется классификация — подобность треугольников. У них могут быть равными только углы и некоторые стороны. Они отличаются между собой по определенному параметру, который называется коэффициентом подобия. Последний влияет только на размерность сторон. Говорят, что фигуры подобны по определенному признаку (их всего три).
Основные теоремы
Теорема — гипотеза (предположение), которую нужно доказать. Они применяются для оптимизации расчетов и вычисления отдельных параметров заданной фигуры. Кроме того, существуют следствия, полученные при доказательстве таких научных предположений. Эти аспекты упрощают и автоматизируют вычисления. Например, при вычислении площади треугольника нет необходимости выводить формулу, достаточно воспользоваться уже готовой.
Математики выделяют всего три теоремы о СП, которые могут значительно упростить расчеты. К ним можно отнести следующие:
- Прямая.
- Обратная.
- Пересечение в треугольнике.
Первая теорема называется прямой о СП. Она показывает, каким свойством обладают точки серединного перпендикуляра. Ее формулировка следующая: произвольная точка, которая взятая на перпендикуляре, удалена на равные расстояния от конечных точек отрезка, ограничивающих его на плоскости.
Для доказательства следует рассмотреть два прямоугольных треугольника с общей вершиной (искомая точка), общей стороной — катетом и равными катетами (по определению). Фигуры равны по одному из признаков равенства треугольников. Следовательно, их гипотенузы (стороны, равенство которых нужно доказать), равны между собой. Первая теорема доказана.
Следующая теорема — обратная: если точка удалена на равные расстояния от концов отрезка, то значит, она лежит на СП. В этом случае следует рассматривать равнобедренный треугольник, вершиной которого она является. Удалена точка на одинаковые расстояния от вершин основания по условию. Следовательно, этот факт доказывает, что полученный треугольник является равнобедренным, а в нем медиана, проведенная к основанию, является биссектрисой и высотой. Значит, она лежит на серединном перпендикуляре. Утверждение доказано.
Следующую теорему нет необходимости доказывать, поскольку известно, что в равнобедренном и равностороннем треугольниках высоты (медианы и биссектрисы) имеют общую точку пересечения. Они являются также и СП. Следовательно, это утверждение справедливо для них.
Важные свойства
Иногда трех теорем недостаточно для решения какой-либо сложной задачи. В этом случае необходимо знать еще и некоторые свойства СП:
- Центр описанной окружности вокруг треугольника соответствует точке их пересечения.
- Точка, взятая на СП, равноудалена от конечных точек отрезка и образует равнобедренный или равносторонний треугольник.
- В треугольниках равнобедренного и равностороннего типов им является высота, медиана и биссектриса.
В первом случае все зависит от типа треугольника. Если он является остроугольным, то центр лежит внутри него. Для тупоугольного — во внешнем пространстве, а в прямоугольном — на середине гипотенузы.
Следует отметить, что есть формулы для его расчета. Если предположить, что существует некоторый произвольный треугольник со сторонами а, b и с. Кроме того, для них выполняется условие a >= b >= c. Исходя из полученных данных, можно записать формулы перпендикуляров (Р), проведенных к определенной стороне:
- а: Pa = (2 * а * S) / (a^2 + b^2 — c^2).
- b: Pb = (2 * b * S) / (a^2 + b^2 — c^2).
- c: Pc = (2 * c * S) / (a^2 — b^2 + c^2).
Иными словами, Р является отношением удвоенного произведения стороны на площадь треугольника к сумме квадратов смежных сторон без квадрата противоположной. Кроме того, справедливы неравенства: Pa >= Pb и Pс >= Pb. Стороны — известные параметры, а вот площадь находится по некоторым соотношениям, которые выглядят следующим образом:
- Основание и высоту, проведенную к нему: S = (1/2) * a * Ha = (1/2) * b * Hb = (1/2) * c * Hc.
- Через радиус вписанной окружности: S = (1/2) * r * (a + b + c).
- Формулу Герона через полупериметр (р) и без него: S = [p * (p — a) * (p — b) * (p — c)]^(1/2) и S = 1/4 * [(a + b + c) * (b + c — a) * (а + c — b) * (a + b — c)]^(1/2).
В основном по таким соотношениям и нужно определить площадь. Полупериметр вычисляется таким образом: р = (а + b + с) / 2.
Бывают задачи, в которых необходимо просто подставить значения в формулу. Они называются простейшими. Однако встречаются и сложные. К ним относятся все виды без некоторых промежуточных параметров фигуры.
Пример решения задачи
В интернете попадаются примеры решения простых задач, а сложные приходится решать самостоятельно, просить помощи у кого-нибудь или покупать на сайтах готовое решение. Для примера нужно решить задание с такими данными:
- Прямоугольник, изображенный на рисунке 1 с диагональю равной d.
- Серединный перпендикуляр, проведенный к диагонали прямоугольника.
- Точка Е делит сторону на отрезки а и 2а.
Нужно найти: углы, указанные на рисунке, стороны и ОЕ. Кроме того, дополнительные данные можно узнать из чертежа, который используется для решения задачи (рис. 1). К любому заданию нужно делать графическое представление, поскольку оно позволяет избежать ошибок при вычислении
Рисунок 1. Чертеж для решения задачи.
Числовых значений нет, тогда необходимо решать в общем виде. Углы можно найти по такому алгоритму:
- Нужно рассмотреть треугольник ВДЕ. Он является равнобедренным, поскольку ОЕ — СП, а диагональ — отрезок. Следовательно, ВЕ = ДЕ = 2а.
- Необходимо найти угол ЕВО. Сделать это проблемно. Рекомендуется обратить внимание на треугольник АВЕ.
- При помощи тригонометрической функции синуса можно вычислить значение угла АBE: sin(АBE) = a/2а = 0,5. Следовательно, arcsin(0,5) = 30 (градусов).
- Угол СВЕ вычисляется следующим образом: 90 — 30 = 60 (градусов).
- Следовательно, искомый угол равен 30, поскольку 90 — 30 — 30 = 30.
- В равнобедренном треугольнике углы при основании равны между собой: ЕДО = ЕВО = 30 (градусов).
Для нахождения сторон нужно составить уравнение в общем виде, обозначив неизвестную величину АВ литерой «х». Рассмотрев прямоугольный треугольник АВЕ, по теореме Пифагора можно вычислить АВ: x = [4a^2 + a^2]^(1/2) = a * [5]^(1/2). Следовательно, АВ = a * [5]^(1/2) и ВС = 3а. ОЕ находится по формуле: ОЕ = (2 * 2 * а * S) / (8 * a^2 — d^2). Можно править соотношение таким образом через прямоугольный треугольник ДОЕ: ОЕ = [4 * a^2 — (d^2) / 4]^(1/2).
Таким образом, нахождение серединного перпендикуляра позволяет значительно уменьшить объемы вычислений. Однако для этого нужно знать не только основные теоремы, но и его свойства.
Серединный перпендикуляр
Что такое серединный перпендикуляр к отрезку? Что можно сказать о пересечении серединных перпендикуляров к сторонам треугольника? К сторонам многоугольника?
Серединный перпендикуляр к отрезку — это прямая, перпендикулярная данному отрезку и проходящая через его середину.
m — серединный перпендикуляр к отрезку AB, если
точка C — середина отрезка AB,
Чтобы построить серединный перпендикуляр к данному отрезку с помощью угольника, нужно:
1) найти середину отрезка;
2) провести через эту точку прямую, перпендикулярную данному отрезку (для этого угольник прикладываем прямым углом к середине отрезка так, чтобы она сторона угольника проходила через отрезок, а через другую сторону проводим прямую):
Свойства серединного перпендикуляра.
1) Геометрическое место точек, равноудаленных от двух данных точек, есть серединный перпендикуляр к отрезку, соединяющему эти точки.
Например, прямая m — геометрическое место точек, равноудаленных от точек A и B (рисунок 1).
2) Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. Эта точка является центром описанной около треугольника окружности.
3) Если около многоугольника можно описать окружность, то центр этой описанной окружности является точкой пересечения серединных перпендикуляров к сторонам многоугольника.
http://nauka.club/matematika/geometriya/seredinnyi-perpendikulyar.html
Теорема о серединном перпендикуляре к хорде
Серединный перпендикуляр к хорде проходит через центр окружности.
Серединный перпендикуляр к отрезку АВ – это множество точек, равноудаленных от точек А и В. Другими словами, все точки, равноудаленные от А и В, лежат на серединном перпендикуляре к АВ. С другой стороны, если точки А и В лежат на окружности с центром О, то АО = ВО. Это значит, что точка О лежит на серединном перпендикуляре к АВ.
Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Теорема о серединном перпендикуляре к хорде» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
08.05.2023
План урока:
Точка пересечения биссектрис в треугольнике
Серединный перпендикуляр
Точка пересечения высот треугольника
Вписанная окружность
Описанная окружность
Построение вписанной и описанной окружности
Точка пересечения биссектрис в треугольнике
Напомним, что для каждой прямой и точки можно вычислить расстояние между ними. Оно представляет собой длину перпендикуляра, который из точки проведен к этой прямой.
Если есть пара прямых и одна точка, то можно определить расстояние от точки до каждой из прямых. В случае, когда эти расстояния одинаковы, точку называют равноудаленной от обеих прямых.
Например, на этом рисунке длины AВ и ВС одинаковы, а потому точка А – равноудаленная от прямых m и n.
Сформулируем важную теорему.
Для доказательства опустим из произвольно выбранной точки М, принадлежащей биссектрисе ∠AВС, расстояния МК и МL на AВ и ВС:
Сравним ∆ВКМ и ∆ВМL. Это два прямоугольных треуг-ка, у которых общая гипотенуза ВМ, а также одинаковы острые углы ∠МВL и ∠KBM (они одинаковы, ведь биссектриса по определению разбивает угол пополам). Тогда ∆BKM и ∆BLM равны, и отрезки КM и МС также одинаковы, ч. т. д.
Верно и обратное утверждение.
Для доказательства можно использовать тот же рисунок. Пусть точка М находится на одинаковом расстоянии от ВК и ВL. То есть КМ = МL. Тогда ∆ВКМ и ∆ВМL снова оказываются равными, но уже как прямоугольные треуг-ки с одинаковыми катетом и гипотенузой. Из равенства треуг-ков вытекает, что
Действительно, если в ∆AВС построить биссектрисы ∠А и ∠В, то они должны будут пересечься в какой-нибудь точке О:
Опустим из О перпендикуляры на все стороны треуг-ка. Так как О принадлежит биссектрисе ∠А, то она находится на одинаковом расстоянии от АС и AВ, то есть
Из него следует, что О также находится на одном расстоянии от АС и ВС и потому принадлежит биссектрисе ∠С. Получается, что О – общая точка для всех трех биссектрис ∆AВС.
Серединный перпендикуляр
Введем новое понятие – серединный перпендикуляр.
На рисунке О – это середина AВ. Через нее проведена прямая m, образующая прямой угол с AВ. Тогда по определению m – это серединный перпендикуляр:
Рассмотрим две теоремы, которые связаны с серединным перпендикуляром и являются обратными друг для друга.
Сначала рассмотрим первое утверждение. Пусть точка М находится на серединном перпендикуляре, проведенному к AВ. Нам надо
Изучим∆АОМ и ∆ВОМ. Они прямоугольные, имеют одинаковые катеты АО и ОВ (ведь О – середина AВ) и общий катетОМ. Получается, что ∆АОМ и ∆ВОМ равны. Значит, одинаковы и отрезки АМ и МВ, ч. т. д.
Во второй теореме уже изначально известно, что
AM = MB
Надо доказать, что М принадлежит серединному перпендикуляру. Изучим∆АМВ, он равнобедренный, ведь АМ = МВ. Теперь из М опустим медиану МО на AВ. ∆АМВ – равнобедренный, поэтому эта медиана окажется также и высотой. Получается, что отрезок ОМ перпендикулярен AВ и одновременно делит его пополам. Значит, ОМ – это серединный перпендикуляр.
Из этих двух теорем вытекает важное утверждение:
Действительно, в ∆AВС проведем серединные перпендикуляры к сторонам треугольника AВ и АС:
Здесь N и K – середины сторон AN и AC, а О – точка пересечения серединных перпендикуляров в треугольнике. Так как О лежит на серединном перпендикуляре, проведенному к AВ, то справедливо равенство
AO = OB
Аналогично О равноудаленная от вершин А и С, ведь она лежит на серединном перпендикуляре, проведенному к АС:
AO = OC
В итоге можно составить двойное равенство:
OC = AO = OB
Оно показывает, что О также расположена на одном расстоянии от В и С. Отсюда вытекает, что она должна принадлежать серединному перпендикуляру, проведенному к ВС, ч. т. д.
Точка пересечения высот треугольника
Следующая теорема касается высот треуг-ка.
Для доказательства выполним такое построение – через вершины ∆AВС проведем прямые, которые будут параллельны сторонам ∆АВС. Они образуют новый ∆А1В1С1:
Из условий AВ||A1В1 и АС||А1С1 вытекает, что четырехуг-к АСА1В – это параллелограмм. Значит, у него одинаковы противоположные стороны:
Аналогично можно показать, что четырехуг-ки AВСВ1 и АСВС1 – также параллелограммы, откуда вытекают равенства:
Теперь обозначим на рисунке все отрезки, равные AВ, одной черточкой, отрезки, равные ВС – двумя чертами, в тремя черточками отметим те отрезки, равные АС:
Получается, что А, В и С являются серединами сторон А1В1, А1С1 и В1С1. Построим в ∆А1В1С1 серединные перпендикуляры. Они по определению будут проходить через середины А, В и С и при этом будут иметь общую точку О:
Заметим, что проведенные перпендикуляры будут также перпендикулярны сторонам исходного ∆AВС. Например, ОВ⊥А1С1 и А1С1|| АС, значит, ОВ⊥АС (прямая, перпендикулярная одной из двух параллельных прямых, будет перпендикулярна и второй прямой). Аналогично можно продемонстрировать, что АО⊥ВС, а СО⊥AВ. Другими словами, прямые АО, ВО и СО оказываются высотами, и при этом они пересеклись точке О. Так как ∆AВС был выбран произвольно, то получается, что в любом треуг-ке высоты пересекутся в одной точке, ч. т. д.
Ранее, изучая подобие треуг-ков, мы уже выяснили, что и медианы треуг-ка будут пересекаться в одной точке. В итоге можно сформулировать следующее утверждение:
Задание. На рисунке ∠MKN = 66°. Вычислите величину ∠FNO.
Решение. Судя по рисунку, в точке О пересекаются высоты MF и KE. Но тогда и прямая ON также должна быть высотой. Достроим рисунок с учетом этого факта:
Теперь на рисунке множество прямоугольных треуг-ков. Напомним, что у каждого из них острые углы в сумме составляют 90°. Например, в ∆MKF
Ответ: 24°.
Задание. В ∆AВС биссектрисы АА1 и ВВ1 пересеклись в точке М, причем ∠АМВ = 128°. Вычислите ∠МСВ1.
Решение. Изучим ∆АМВ. В сумме его углы должны составлять 180°:
Ясно, что МС – это биссектриса ∠АСВ, ведь она проходит через общую точку двух других биссектрис ∆AВС. То есть МС делит ∠АСВ пополам:
Задание. На рисунке RO = 20. Вычислите длину OK:
Решение. На рисунке видно, что OM и ON – это серединные перпендикуляры. Отсюда вытекает, что точка О равноудалена от ОР и OR:
OP = OR = 20
Теперь можно рассмотреть ∆РОК. Он прямоугольный, и в нем есть ∠30°. Напомним, что катет, лежащий против такого угла, вдвое короче гипотенузы:
OK = OP/2 = 20/2 = 10
Ответ: 10.
Вписанная окружность
Иногда в многоугольник можно вписать окруж-ть. Это значит, что возможно построить такую окруж-ть (ее именуют вписанной окружностью), которая будет касаться каждой стороны многоуг-ка (его в таком случае называют описанным около окружности многоуг-ком).
Для того чтобы, построить вписанную в многоуг-к окруж-ть, надо сначала определить, возможно ли вообще это сделать. Оказывается, что в треуг-к окруж-ть можно вписать всегда.
Действительно, построим произвольный ∆AВС и биссектрисы в нем. Они пересекутся в какой-нибудь точке О. Далее из О проведем перпендикуляры на стороны ∆AВС.
Эти перпендикуляры являются, по сути, расстояниями от О до сторон углов ∠А, ∠В и ∠С. По свойству биссектрисы они окажутся одинаковыми. Теперь проведем окруж-ть с центром в О, радиус которой будет равен длине этих перпендикуляров.
r = OK = OL = OM
Ясно, что точки M, L и K будут принадлежать окруж-ти, ведь они находятся на расстоянии R от ее центра. При этом отрезки OK, OM, OL будут радиусами. Заметим, что прямая AВ перпендикулярна радиусу OK, а потому является касательной. По той же причине ВС и АС также окажутся касательными. В итоге окруж-ть оказывается вписанной, ч. т. д.
В данном доказательстве мы не просто доказали, что для каждого треуг-ка существует вписанная окруж-ть, но и показали, как ее построить. Надо сначала провести биссектрисы углов, найти точку их пересечения (это и будет центр вписанной окруж-ти), после чего из этой точки надо опустить перпендикуляр на одну из сторон треуг-ка. Осталось лишь построить окруж-ть, радиус которой будет этот перпендикуляр. Заметим, что так как в треуг-ке есть только одна точка пересечения биссектрис, то и окруж-ть в треуг-к можно вписать лишь одну.
Ещё раз посмотрим на окружность, вписанную в треугольник:
Заметим, что радиусы OK, ОМ и ОL одновременно являются и высотами в ∆AВО, ∆АОС и ∆ВОС. Тогда через радиус можно выразить площади этих треуг-ков:
Сумма сторон AВ, АС и ВС – это периметр ∆AВС (его обозначают буквой Р), а потому можно записать, что
Эту формулу часто используют не для вычисления площади треуг-ка, а для нахождения радиуса вписанной окружности.
Задание. Найдите радиус окруж-ти, вписанной в равнобедренный треуг-к, основание которого имеет длину 20, а боковая сторона – 26.
Теперь надо найти его площадь. Для этого опустим на основание MN высоту KH, которая одновременно будет и медианой:
Отрезок HN будет вдвое короче MN:
Зная в ∆MKN высоту и основание, к которой она проведена, сможем найти его площадь:
Теперь запишем формулу площади, содержащую радиус вписанной окруж-ти, и найдем из нее этот радиус:
Ответ: 20/3.
Задание. В прямоугольный треуг-к, длина гипотенузы которого составляет 52, вписана окруж-ть радиусом 8. Вычислите периметр этого треуг-ка.
Решение. Проведем радиусы ОМ и ОК из центра окруж-ти к катетам:
Буквой N обозначим точку касания окруж-ти и гипотенузы. Сначала изучим четырехуг-к МОКС. В нем∠С – прямой, ведь ∆AВС – прямоугольный, а ∠ОМС и ∠ОКС также составляют 90°, так как образованы радиусом и касательной. Тогда и ∠МОК тоже должен быть прямым. Значит, МОКС – это квадрат, и его стороны одинаковы:
MO = OK = CK = MC
Заметим, что отрезки AN и AM одинаковы, ведь они представляют собой отрезки касательных, которые построены из одной точки:
AN = AM
Аналогично одинаковы ВК и BN:
BK = BN
Тогда периметр можно записать так:
Ответ: 120.
Задание. Вписанная в ∆AВС окруж-ть касается его сторон AВ, ВС и АС в точках Е, М и F. Известно, что АЕ = 4, СF = 6, МВ = 10. Определите периметр ∆AВС.
Решение. Заметим, отрезки касательных, проведенных к окруж-ти из одной точки, одинаковы, поэтому
Это позволяет найти каждую из сторон ∆AВС:
Ответ: 40.
В многоугольники, имеющие 4 и более вершины, вписать окруж-ть можно лишь в отдельных случаях. В частности, четырехуг-к должен для этого обладать особым свойством.
Действительно, пусть в четырехуг-к AВСD вписана окруж-ть. Тогда отрезки касательных, которые построены из точек А, В, С и D, будут одинаковыми.
Обозначим их маленькими буквами a, b, cи d:
Тогда стороны четырехуг-ка будут вычисляться так:
Действительно, пусть есть четырехуг-к AВСD, у которого
AD + BC = CD + AB (1)
Проведем биссектрисы ∠Aи ∠B, они пересекутся в некоторой точке О. Эта точка окажется равноудаленной от сторон AD, AB и ВС, то есть можно построить окруж-ть, которая коснется этих трех прямых. Докажем, что она также коснется и CD. Возможны три варианта:
1) СD вообще не пересекается с окруж-тью;
2) CD – секущая, и пересекается с окруж-тью в 2 точках;
3) CD – касательная.
Сначала рассмотрим первый вариант, когда СD и окруж-ть не имеют общих точек. Тогда можно провести касательную С’D’, параллельную CD:
Мы видим, что существует описанный четырехуг-к AВС’D’, а значит, суммы его противоположных сторон будут одинаковыми:
Мы получили, что в четырехуг-ке С’D’DC сторона CD равна сумме трех других сторон. Это невозможно, то есть мы получили противоречие. Значит, принятое нами предположение о том, что CD не имеет общих точек с окруж-тью, является ошибочным. С помощью аналогичных утверждений можно отбросить и вариант, согласно которому CD – это секущая. Остается один вариант, по которому СD – касательная, ч. т. д.
Задание. В четырехуг-к MCЕА вписана окруж-ть, причем МС = 5, СЕ = 10, АЕ = 8. Какова длина АМ?
Решение. Если в четырехуг-к можно вписать окруж-ть, то суммы его противоположных сторон одинаковы:
Рассмотрим частные случаи четырехуг-ков. Очевидно, что в ромб и квадрат вписать окруж-ть можно, ведь у них одинаковы все стороны, значит, одинаковы и суммы противоположных сторон. С другой стороны, если параллелограмм НЕ является ромбом, то есть его смежные стороны различны, то вписать в него окруж-ть не получится. Также ее нельзя вписать и в прямоугольник, если он НЕ является квадратом:
Ранее мы составили формулу, которая связывала периметр треуг-ка с его площадью и радиусом вписанной окруж-ти. Оказывается, она справедлива и для четырехуг-ка. Действительно, пусть есть произвольный описанный четырехуг-к AВСD. Соединим центр вписанной окруж-ти с вершинами, а также проведем из нее радиусы к точкам касания:
В результате мы разбили AВСD на ∆АОD, ∆DOC, ∆COВ и ∆АОВ, причем высотой для каждого из них являются радиусы длиной r. Тогда площади этих треуг-ков можно вычислить так:
Аналогичным образом эту формулу можно доказать и для пятиугольника, и для шестиугольника, и т. д.
Задание. В четырехуг-к AВСD, у которого стороны AB и CD соответственно составляют 13 и 8, вписана окруж-ть радиусом 5. Какова площадь AВСD?
Решение.
Мы можем найти сумму сторон AВ и CD:
AB + CD = 13 + 8 = 21
Так как в четырехуг-к вписана окруж-ть, то и сумма двух других сторон, AD и BC, будет такой же:
AD + BC = AB + CD = 21
Теперь можно вычислить и периметр AВСD:
P = AB + CD + AD + BC = 21 + 21 = 42
Осталось только применить формулу и рассчитать площадь:
Ответ: 105.
Задание. В квадрат вписана окруж-ть с радиусом 6. Какова площадь квадрата?
Решение. Проведем в окруж-ти радиусы, которые коснутся противоположных сторон квадрата:
В результате получится прямоугольник ВСНК. КН – диаметр окруж-ти, поэтому он вдвое длиннее радиуса:
KH = 6*2 = 12
В прямоугольнике противоположные стороны одинаковы, поэтому
BC = KH = 12
Но ВС – это сторона квадрата, площадь которого и надо найти. Для этого ВС надо возвести в квадрат:
S = BC2 = 122 = 144
Ответ: 144.
Описанная окружность
Возможна и ситуация, при которой не окруж-ть вписана в многоуг-к, а наоборот, многоуг-к в окруж-ть. В таком случае все его вершины будут лежать на окруж-ти.
Есть несколько важных теорем, касающихся описанных окружностей.
Для доказательства построим в произвольном ∆AВС серединные перпендикуляры. Они пересекутся в некоторой точке О:
Каждая точка, лежащая на серединном перпендикуляре, равноудалена от концов отрезка, к которому этот перпендикуляр проведен. Значит, и точка О равноудалена от вершин ∆AВС:
OA = OB = OC
Но тогда из О можно провести окруж-ть, на которой будут лежать точки А, В и С. Она как раз и окажется окружностью, описанной около треугольника. Так как серединные перпендикуляры пересекаются только в одной точке, то и окруж-ть около треуг-ка можно описать лишь одну.
Из теоремы следует важный вывод:
Действительно, три точки, не лежащие на прямой, образуют на плоскости треуг-к.Окруж-ть, проведенная через его вершины, по определению и будет описанной окруж-тью.
Задание. Около равнобедренного треуг-ка с основанием длиной 6 описана окруж-ть радиусом 5. Какова длина боковых сторон этого треуг-ка?
Решение: Проведем радиусы ОА, ОВ и ОС к вершинам вписанного треуг-ка, а на основание ВС опустим перпендикуляр:
Стоит обратить внимание, что точки А, О и Н лежат на одной прямой. Это высота, проведенная к основанию. Она же, по свойству равнобедренного треуг-ка, является медианой, то есть Н – середина ВС. Тогда ОН оказывается серединным перпендикуляром.
Сначала найдем ВН, он равен половине ВС:
BH = BC:2 = 6:2 = 3
Далее изучим ∆ОНВ. Он прямоугольный, то есть для него верна теорема Пифагора:
Задание. Выведите формулу, которая связывает длину стороны равностороннего треуг-ка с радиусом описанной окружности.
Решение. Обозначим буквой a сторону треуг-ка, а буквой R – радиус описанной окруж-ти. Также проведем один серединный перпендикуляр:
Так как ∆AВС – равносторонний, то все его углы, в частности, ∠AВС, составляют 60°.
Заметим, что ∆ВОС и ∆АОВ равны по трем одинаковым сторонам, поэтому
В четырехуг-к окруж-ть удается вписать не всегда. Для этого должно соблюдаться одно условие:
Действительно, пусть около четырехуг-ка ABCD описана окруж-ть:
Тогда вся окруж-ть может быть разбита на две дуги: ⋃ВАD и ⋃ВСD. Их сумма составляет 360°:
Аналогично доказывается утверждение и для другой пары противоположных углов, ∠ADC и ∠ABC.
Обратное утверждение также справедливо:
Докажем эту теорему методом от «противного». Пусть есть четырехуг-к AВСD, у которого сумма противоположных углов составляет 180°, но вокруг него нельзя описать окруж-ть. Тогда проведем окруж-ть через любые три его вершины. Четвертая вершина (пусть это будет D) не может оказаться на окруж-ти. То есть она находится либо внутри окруж-ти, либо вне ее. Сначала рассмотрим случай, когда точка оказывается внутри окруж-ти:
Продолжим прямые AD и CD до пересечения окруж-ти в точках А’ и C’, а потом выберем произвольную точку D’ на окруж-ти между ними.
Теперь сравним ∆АСD и ∆АСD’. У обоих сумма углов одинакова и составляет 180°:
Получается, что ∠D и ∠D’ должны быть равны, но ранее мы показали, что ∠D больше. Это противоречие означает, что точка D не может быть внутри окруж-ти. Аналогичным образом рассматривается второй случай, когда D лежит вне окруж-ти:
Здесь, рассматривая ∆АСD и АСD’, можно показать, что ∠D меньше, чем ∠D’. Однако они должны быть равны друг другу, ведь в сумме с∠В должны давать 180°.
Задание. В окруж-ть вписан четырехуг-к AВСD, причем∠А составляет 110°, а ∠В – 62°. Найдите два других угла четырехуг-ка.
Решение.
Здесь надо просто использовать тот факт, что противоположные углы в AВСD должны давать в сумме 180°:
Задание. Докажите, что если трапеция вписана в окруж-ть, то она равнобедренная.
Решение.
Пусть в окруж-ть вписана трапеция AВСD, причем AD и ВС– ее основания. Тогда∠А и ∠В – это односторонние углы при параллельных прямых ВС и AD и секущей AВ, и в сумме они дают 180°. Но так как AВСD вписана в окруж-ть, то и ее противоположные углы, ∠А и ∠С, также должны составлять в сумме 180°:
∠А + ∠B = 180°
∠А + ∠C = 180°
Естественно, эти равенства могут одновременно справедливыми только в том случае, если∠В и ∠С одинаковы. Они являются углами при основании трапеции. Если они одинаковы, то трапеция – равнобедренная (это признак равнобедренной трапеции).
Построение вписанной и описанной окружности
Дополнительно уточним, как выполнить построение вписанной окружности либо описанной окруж-ти. Мы уже говорили, в центр вписанной окружности в треуг-ке – это центр пересечения его биссектрис, ведь он равноудален от сторон. То же самое относится и к многоуг-кам. Вписанная окруж-ть равноудалена от его сторон, поэтому будет лежать на биссектрисе каждого из углов многоуг-ка. При этом строить биссектрисы всех углов не нужно, достаточно выбрать любые два из них. Найдя таким способом центр вписанной окруж-ти, из нее надо опустить перпендикуляр на любую сторону – он и будет радиусом окруж-ти:
При построении описанной окружности нужно помнить, что ее центр описанной окруж-ти находится уже в той точке, где пересекаются серединные перпендикуляры. Снова достаточно провести только два перпендикуляра:
Итак, мы узнали про вписанные и описанные окруж-ти, как определять их центры, и какими свойствами обладают вписанные и описанные многоуг-ки. Это поможет решить ряд задач на экзаменах, в том числе и на ЕГЭ.
Учебный курс | Решаем задачи по геометрии |
Определение хорды Часть кривой, заключенной между двумя точками хорды, называется дугой. Плоская фигура, заключенная между дугой и ее хордой называется сегментом. Хорда, проходящая через центр окружности, называется диаметром окружности. Диаметр окружности — самая длинная хорда окружности. Свойства хорды к окружности
Свойства хорды и вписанного углаНа рисунке [1] вписанный угол обозначен обозначен как ACB, хорда окружности — AB
Свойства хорды и центрального углаНа рисунке [2] центральный угол обозначен как AOB, хорда как AB.
Формулы нахождения хорды Длина хорды окружности равна удвоенному радиусу данной окружности, умноженному на синус половины центрального угла. Решение задач Примечание. Если Вы не нашли решение подходящей задачи, пишите об этом в форуме. Наверняка, курс геометрии будет дополнен. Хорды АВ и СD пересекаются в точке S, при чем AS:SB = 2:3, DS = 12см, SC = 5см, найти АВ. Решение. Согласно свойству хорд AS x SB = CS x SD, тогда 2х * 3х = 5 * 12 Откуда Ответ: 5√10 Задача. Окружность разделена на части, которые относятся как 3,5:5,5:3 и точки деления соединены между собой. Определить величину углов образовавшегося треугольника.
Решение. 3,5х + 5,5х + 3х = 360 Откуда градусные величины центральных углов равны: 90 / 2 = 45 Ответ: Величина углов треугольника равна 45 ; 52,5 ; 82,5 ;
Задачи про окружность | Описание курса | Треугольник (Трикутник) |
Обсудить на форуме
Записаться на курсы
Обратиться к консультанту
Пройти тест
Полный список курсов обучения
Бесплатные видеоуроки
Нужна информация!
Описанная окружность — подробнее
Определение
Описанная окружность – такая окружность, что проходит через все три вершины треугольника, около которого она описана.
Свойства и центр описанной кружности
И вот, представь себе, имеет место удивительный факт:
Вокруг всякого треугольника можно описать окружность.
Почему этот факт удивительный?
Потому что треугольники ведь бывают разные!
И для всякого найдётся окружность, которая пройдёт через все три вершины, то есть описанная окружность.
Доказательство этого удивительного факта мы приведем чуть позже, а здесь заметим только, что если взять, к примеру, четырехугольник, то уже вовсе не для всякого найдётся окружность, проходящая через четыре вершины.
Вот, скажем, параллелограмм – отличный четырехугольник, а окружности, проходящей через все его четыре вершины – нет!
А есть только для прямоугольника:
Подробнее об этом смотри в статье о вписанных четырехугольниках!
Ну вот, а треугольник всякий и всегда имеет собственную описанную окружность! И даже всегда довольно просто найти центр этой окружности.
Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к сторонам этого треугольника.
Знаешь ли ты, что такое серединный перпендикуляр?
Серединный перпендикуляр — это прямая, проходящая через середину отрезка и перпендикулярная ему.
Прямая ( displaystyle a) – это серединный перпендикуляр к отрезку ( displaystyle AB).
А теперь посмотрим, что получится, если мы рассмотрим целых три серединных перпендикуляра к сторонам треугольника.
Вот оказывается (и это как раз и нужно доказывать, хотя мы и не будем), что все три перпендикуляра пересекутся в одной точке. Смотри на рисунок – все три серединных перпендикуляра пересекаются в одной точке ( displaystyle O).
Это и есть центр описанной около (вокруг) треугольника ( displaystyle ABC) окружности.
Как ты думаешь, всегда ли центр описанной окружности лежит внутри треугольника? Представь себе – вовсе не всегда!
Если треугольник тупоугольный, то центр его описанной окружности лежит снаружи!
Вот так:
А вот если остроугольный, то внутри:
Что же делать с прямоугольным треугольником?
В прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы.
Здорово, правда?
Если треугольник – прямоугольный, то не надо строить аж три перпендикуляра, а можно просто найти середину гипотенузы – и центр описанной окружности готов!
Да ещё с дополнительным бонусом:
В прямоугольном треугольнике радиус описанной окружности равен половине гипотенузы.
Раз уж заговорили о радиусе описанной окружности: чему он равен для произвольного треугольника? И есть ответ на этот вопрос: так называемая теорема синусов.
А именно:
В произвольном треугольнике:
( Large displaystyle frac{a}{sin angle A}=2R)
Ну и, конечно,
( displaystyle begin{array}{l}frac{b}{sin angle B}=2R\frac{c}{sin angle C}=2Rend{array})
Так что ты теперь всегда сможешь найти и центр , и радиус окружности, описанной вокруг треугольника.
То есть чтобы найти радиус описанной окружности, нужно знать одну (!) сторону и один (!) противолежащий ей угол.
Хорошая формула? По-моему, просто отличная!
Доказательство теоремы
Теорема. Вокруг всякого треугольника можно описать окружность, при том единственным образом.
Центр этой окружности – точка пересечения серединных перпендикуляров к сторонам треугольника.
Смотри, вот так:
Давай наберёмся мужества и докажем эту теорему.
Если ты читал уже тему «Биссектриса» разбирался в том, почему же три биссектрисы пересекаются в одной точке, то тебе будет легче, но и если не читал – не переживай: сейчас во всём разберёмся.
Доказательство будем проводить, используя понятие геометрического места точек (ГМТ).
Геометрическое место точек, обладающих свойством «( displaystyle X)» — такое множество точек, что все они обладают свойством «( displaystyle X)» и никакие другие точки этим свойством не обладают.
Ну вот, например, является ли множество мячей – «геометрическим местом» круглых предметов? Нет, конечно, потому что бывают круглые …арбузы.
А является ли множество людей, «геометрическим местом», умеющих говорить? Тоже нет, потому что есть младенцы, которые говорить не умеют.
В жизни вообще сложно найти пример настоящего «геометрического места точек». В геометрии проще. Вот, к примеру, как раз то, что нам нужно:
Серединный перпендикуляр к отрезку является геометрическим местом точек, равноудалённых от концов отрезка.
Тут множество – это серединный перпендикуляр, а свойство «( displaystyle X)» — это «быть равноудаленной (точкой) от концов отрезка».
Проверим? Итак, нужно удостовериться в двух вещах:
- Всякая точка на серединном перпендикуляре находится на одинаковом расстоянии от концов отрезка
- Всякая точка, которая равноудалена от концов отрезка – находится на серединном перпендикуляре к ему
Приступим:
Проверим 1. Пусть точка ( displaystyle M) лежит на серединном перпендикуляре к отрезку ( displaystyle AB).
Соединим ( displaystyle M) с ( displaystyle A) и с ( displaystyle B).Тогда линия ( displaystyle MK) является медианой и высотой в ( displaystyle Delta AMB).
Значит, ( displaystyle Delta AMB) – равнобедренный, ( displaystyle MA=MB) – убедились, что любая точка ( displaystyle M), лежащая на серединном перпендикуляре, одинаково удалена от точек ( displaystyle A) и ( displaystyle B).
Теперь 2. Почти точно так же, но в другую сторону. Пусть точка ( displaystyle M) равноудалена от точек ( displaystyle A) и ( displaystyle B), то есть ( displaystyle MA=MB).
Возьмём ( displaystyle K) – середину ( displaystyle AB) и соединим ( displaystyle M) и ( displaystyle K). Получилась медиана ( displaystyle MK). Но ( displaystyle Delta AMB) – равнобедренный по условию ( displaystyle (MA=MB)Rightarrow MK) не только медиана, но и высота, то есть – серединный перпендикуляр. Значит, точка ( displaystyle M) — точно лежит на серединном перпендикуляре.
Всё! Полностью проверили тот факт, что серединный перпендикуляр к отрезку является геометрическим местом точек, равноудаленных от концов отрезка.
Это все хорошо, но не забыли ли мы об описанной окружности? Вовсе нет, мы как раз подготовили себе «плацдарм для нападения».
Рассмотрим треугольник ( displaystyle ABC). Проведём два серединных перпендикуляра ( displaystyle {{a}_{1}}) и ( displaystyle {{a}_{2}}), скажем, к отрезкам ( displaystyle AB) и ( displaystyle BC). Они пересекутся в какой-то точке, которую мы назовем ( displaystyle O).
А теперь, внимание!
Точка ( displaystyle O) лежит на серединном перпендикуляре ( displaystyle {{a}_{1}}Rightarrow OA=OB);
точка ( displaystyle O) лежит на серединном перпендикуляре ( displaystyle {{a}_{2}}Rightarrow OB=OC).
И значит, ( displaystyle OA=OB=OC) и ( displaystyle OA=OC).
Отсюда следует сразу несколько вещей:
Бонусы: Вебинары из нашего курса подготовки к ЕГЭ по математике
ЕГЭ 6. Описанная окружность. Многоугольники
Вы этом видео вы узнаете, что такое описанная окружность, где находится её центр, и другие свойства.
Около каких фигур можно, а вокруг каких нельзя описать окружность.
Также мы узнаем, что такое правильные многоугольники, и какие у них свойства; как они связаны с описанной окружностью.
Научимся решать задачи из ЕГЭ на описанную окружность и правильные многоугольники.
ЕГЭ 6. Вписанная окружность
В этом видео мы узнаем, что такое вписанная окружность, где находится её центр, и другие свойства.
В какие фигуры можно, а в какие нельзя вписать окружность. Научимся решать задачи на вписанную окружность.