2520 — самое маленькое число, которое делится без остатка на все числа от 1 до 10.
Не понимаю, что в решении не так, в конце выдает ошибку о том, что память закончилась, но ведь нагрузка не такая большая ? Или я что-то путаю
max_multiple = 2520
dividers = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,19,20]
dividers1 = []
t = True
while t:
for i in range (2,21):
if max_multiple % i == 0:
dividers1.append (i)
else:
i -= 1
max_multiple += 1
if dividers1 == dividers:
t = False
print (max_multiple)
Если число делиться на 15, то оно должно делиться на числа 5 и 3 одновременно, так как они являются множителями числа 15.
Из признаков деления на 3 и 5 следует, что:
- Сумма цифр искомого делимого должна быть кратна 3;
- Искомое делимое должно заканчиваться на 0 или 5.
Следовательно искомое делимое можно представить в виде ху0 или ху5.
Так как по условию задачи искомое трехзначное число должно быть минимальным, то х может быть равным только 1, а значит искомое делимое можно представить в виде 1у0 или 1у5.
Сумма чисел в первом случае равна 1+0=1, во втором случае 1+5=6.
Значит:
- в первом случае, чтобы сумма цифр делилась на 3 и при этом число было минимальным, у должен быть равен 2, а все число 120.
- во втором случае, чтобы сумма цифр делилась на 3 и при этом число было минимальным, у должен быть равен 0, а все число 105.
Так как 105<120, то искомое трехзначное число 105.
Ответ: самое маленькое трехзначное число которое делится на пятнадцать 105.
Наименьшее о́бщее кратное (HOK) двух целых чисел — это наименьшее натуральное число, которое делится на оба без остатка, то есть кратно им обоим. К примеру, для чисел 6 и 4, наименьшим общим кратным будет 12.
Как найти НОК?
Способов найти НОК несколько. Мы рассмотрим один из часто используемых в математике — это нахождение НОК при помощи разложения чисел на простые множители. В общем случае алгоритм будет выглядеть следующим образом:
- разложить оба числа на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Примеры нахождения наименьшего общего кратного
Рассмотрим приведенный алгоритм на конкретных примерах:
Пример 1: найти НОК 4 и 6
1. Раскладываем 6 и 4 на простые множители:
2. Возьмем первую группу множителей: 2 · 3.
3. Смотрим вторую группу (2 · 2) и видим, что из двух двоек, одна присутствует в первом разложении. Таким образом, берем только одну двойку. Добавляем к первому разложению и получаем: 2 · 3 · 2
4. Вычисляем произведение: 2 · 3 · 2 = 12.
Ответ: НОК (6; 4) = 12
Пример 2: найти НОК 32 и 20
1. Раскладываем 32 и 20 на простые множители:
2. Возьмем первую группу множителей: 2 · 2 · 2 · 2 · 2.
3. Смотрим вторую группу (2 · 2 · 5) и видим, что из двух двоек и пятерки, обе двойки присутствуют в первом разложении. Таким образом, берем только пятерку. Добавляем к первому разложению и получаем: 2 · 3 · 2
4. Вычисляем произведение: 2 · 2 · 2 · 2 · 2 · 5 = 160.
Ответ: НОК (32; 20) = 160
Чтобы понять, как вычислять НОК, следует определиться в первую очередь со значением термина «кратное».
Кратным числу А называют такое натуральное число, которое без остатка делится на А. Так, числами кратными 5 можно считать 15, 20, 25 и так далее.
Делителей конкретного числа может быть ограниченное количество, а вот кратных бесконечное множество.
Общее кратное натуральных чисел — это такое число, которое делится на них без остатка.
Наименьшее общее кратное (НОК) чисел (двух, трех или больше) — это самое маленькое натурально число, которое делится на все эти числа нацело.
Чтобы найти НОК, можно использовать несколько способов.
Для небольших чисел удобно выписать в строчку все кратные этих чисел до тех пор, пока среди них не найдется общее. Кратные обозначают в записи заглавной буквой К.
Например, кратные числа 4 можно записать так:
К (4) = {8,12, 16, 20, 24, …}
К (6) = {12, 18, 24, …}
Так, можно увидеть, что наименьшим общим кратным чисел 4 и 6 является число 24. Эту запись выполняют следующим образом:
НОК (4, 6) = 24
Если числа большие, или нужно найти наименьшее общее кратное трех и более чисел, то лучше использовать другой способ вычисления НОК.
Для выполнения задания необходимо разложить предложенные числа на простые множители.
Сначала нужно выписать в строчку разложение наибольшего из чисел, а под ним — остальных.
В разложении каждого числа может присутствовать различное количество множителей.
Например, разложим на простые множители числа 50 и 20.
50 = 2 * 5 * 5
20 = 2 * 5 * 2
В разложении меньшего числа следует подчеркнуть множители, которые отсутствуют в разложении первого самого большого числа, а затем их добавить к нему. В представленном примере не хватает двойки.
Теперь можно вычислить наименьшее общее кратное 20 и 50.
НОК (20, 50) = 2 * 5 * 5 * 2 = 100
Так, произведение простых множителей большего числа и множителей второго числа, которые не вошли в разложение большего, будет наименьшим общим кратным.
Чтобы найти НОК трех чисел и более, следует их все разложить на простые множители, как и в предыдущем случае.
В качестве примера можно найти наименьшее общее кратное чисел 16, 24, 36.
36 = 2 * 2 * 3 * 3
24 = 2 * 2 * 2 * 3
16 = 2 * 2 * 2 * 2
Так, в разложение большего числа на множители не вошли только две двойки из разложения шестнадцати (одна есть в разложении двадцати четырех).
Таким образом, их нужно добавить к разложению большего числа.
НОК (12, 16, 36) = 2 * 2 * 3 * 3 * 2 * 2 = 9
Существуют частные случаи определения наименьшего общего кратного. Так, если одно из чисел можно поделить без остатка на другое, то большее из этих чисел и будет наименьшим общим кратным.
Например, НОК двенадцати и двадцати четырех будет двадцать четыре.
Если необходимо найти наименьшее общее кратное взаимно простых чисел, не имеющих одинаковых делителей, то их НОК будет равняться их произведению.
Например, НОК (10, 11) = 110.
Наименьшее общее кратное
- Общее кратное
- Наименьшее общее кратное
- Как найти НОК
- С помощью разложения на простые множители
- Нахождение НОК через НОД
- Калькулятор НОК
Общее кратное
Число может быть кратно не одному, а сразу нескольким числам, такое число называется общим кратным данных чисел.
Пример.
Числу 3 кратны числа: 6, 9, 12, 15 и т. д.
Числу 4 кратны числа: 8, 12, 16, 20 и т. д.
Можно заметить, что одно и тоже число (12) делится нацело сразу на оба числа 3 и 4. Следовательно, число 12 есть общее кратное чисел 3 и 4.
Общее кратное чисел — это любое число, которое делится без остатка на каждое из данных чисел.
Найти общее кратное нескольких натуральных чисел достаточно легко, можно просто перемножить данные числа, полученное произведение и будет их общим кратным.
Пример. Найти общее кратное для чисел 2, 3, 4, 6.
Решение:
2 · 3 · 4 · 6 = 144.
Число 144 — общее кратное чисел 2, 3, 4 и 6.
Для любого количества натуральных чисел существует бесконечно много кратных.
Пример. Для чисел 12 и 20 кратными будут числа: 60, 120, 180, 240 и т. д. Все они являются общими кратными для чисел 12 и 20.
Наименьшее общее кратное
Наименьшее общее кратное (НОК) нескольких чисел — это самое маленькое натуральное число, которое делится без остатка на каждое из этих чисел.
Пример. Наименьшим общим кратным чисел 3, 4 и 9 является число 36, никакое другое число меньше 36 не делится одновременно на 3, 4 и 9 без остатка.
Наименьшее общее кратное записывается так:
НОК (a, b, …) = x.
Числа в круглых скобках могут быть указаны в любом порядке.
Пример. Запишем наименьшее общее кратное чисел 3, 4 и 9:
НОК (3, 4, 9) = 36.
Как найти НОК
Рассмотрим два способа нахождения наименьшего общего кратного: с помощью разложения чисел на простые множители и нахождение НОК через НОД.
С помощью разложения на простые множители
Чтобы найти НОК нескольких натуральных чисел, надо разложить эти числа на простые множители, затем взять из этих разложений каждый простой множитель с наибольшим показателем степени и перемножить эти множители между собой.
Пример. Найдите наименьшее общее кратное двух чисел 99 и 54.
Решение: разложим каждое из этих чисел на простые множители:
99 = 3 · 3 · 11 = 32 · 11,
54 = 2 · 3 · 3 · 3 = 2 · 33.
Наименьшее общее кратное должно делиться на 99, значит, в его состав должны входить все множители числа 99. Далее НОК должно делиться и на 54, т. е. в его состав должны входить множители и этого числа.
Выпишем из этих разложений каждый простой множитель с наибольшим показателем степени и перемножим эти множители между собой. Получим следующее произведение:
2 · 33 · 11 = 594.
Это и есть наименьшее общее кратное данных чисел. Никакое другое число меньше 594 не делится нацело на 99 и 54.
Ответ: НОК (99, 54) = 594.
Так как взаимно простые числа не имеют одинаковых простых множителей, то их наименьшее общее кратное равно произведению этих чисел.
Пример. Найдите наименьшее общее кратное двух чисел 12 и 49.
Решение: разложим каждое из этих чисел на простые множители:
12 = 2 · 2 · 3 = 22 · 3,
49 = 7 · 7 = 72.
Применяя к этому случаю правило, мы придём к заключению, что взаимно простые числа надо просто перемножить:
22 · 3 · 72 = 12 · 49 = 588.
Ответ: НОК (12, 49) = 588.
Таким же образом надо поступать, когда нужно найти наименьшее общее кратное простых чисел.
Пример. Найдите наименьшее общее кратное чисел 5, 7 и 13.
Решение: так как данные числа являются простыми, то просто перемножим их:
5 · 7 · 13 = 45.
Ответ: НОК (5, 7, 13) = 455.
Если большее из данных чисел делится на все остальные числа, то это число и будет наименьшим общим кратным данных чисел.
Пример. Найдите наименьшее общее кратное чисел 24, 12 и 4.
Решение: разложим каждое из этих чисел на простые множители:
24 = 2 · 2 · 2 · 3 = 23 · 3,
12 = 2 · 2 · 3 = 22 · 3,
4 = 2 · 2 = 22.
Можно заметить, что разложение большего числа содержит все множители остальных чисел, значит большее из этих чисел делится на все остальные числа (в том числе и само на себя) и является наименьшим общим кратным:
23 · 3 = 24.
Ответ: НОК (24, 12, 4) = 24.
Нахождение НОК через НОД
НОК двух натуральных чисел равно произведению этих чисел, поделённого на их НОД.
Правило в общем виде:
НОК (m, n) = m · n : НОД (m, n)
Пример. Найдите наименьшее общее кратное двух чисел 99 и 54.
Решение: сначала находим наибольший общий делитель:
НОД (99, 54) = 9.
Теперь мы можем вычислить НОК этих чисел по формуле:
НОК (99, 54) = 99 · 54 : НОД (99, 54) = 5346 : 9 = 594.
Ответ: НОК (99, 54) = 594.
Чтобы найти НОК трёх или более чисел используется следующий порядок действий:
- Находят НОК любых двух из данных чисел.
- Затем находят наименьшее общее кратное найденного НОК и третьего числа и т. д.
- Таким образом поиск НОК продолжается до тех пор, пока есть числа.
Пример. Найдите наименьшее общее кратное чисел 8, 12 и 9.
Решение: сначала находим наибольший общий делитель любых двух из этих чисел, например, 12 и 8:
НОД (12, = 4.
Вычисляем их НОК по формуле:
НОК (12, = 12 · 8 : НОД (12,
= 96 : 4 = 24.
Теперь найдём НОК числа 24 и оставшегося числа 9. Их НОД:
НОД (24, 9) = 3.
Вычисляем НОК по формуле:
НОК (24, 9) = 24 · 9 : НОД (24, 9) = 216 : 3 = 72.
Ответ: НОК (8, 12, 9) = 72.
Калькулятор НОК
Данный калькулятор поможет вам найти наименьшее общее кратное чисел. Просто введите числа через пробел или запятую и нажмите кнопку Вычислить НОК
.