Математика
5 класс
Урок № 79
Координатный луч
Перечень рассматриваемых вопросов:
– координатный луч;
– единичный отрезок;
– соотношение единичного отрезка со знаменателем дроби;
– координата точки.
Тезаурус
Единичный отрезок – это расстояние от 0 до точки, выбранной для измерения.
Отрезок – часть прямой, ограниченная с двух сторон точками.
Луч – это часть прямой линии, расположенная по одну сторону от любой точки, лежащей на этой прямой.
Обязательная литература
- Никольский С. М. Математика. 5 класс: Учебник для общеобразовательных учреждений. / ФГОС // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. — М.: Просвещение, 2017. — 272 с.
Дополнительная литература
- Чулков П. В. Математика: тематические тесты. 5 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. — М.: Просвещение, 2009. — 142 с.
- Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин. — М.: Просвещение, 2014. — 95 с.
Теоретический материал для самостоятельного изучения
Зададим прямую, на которой указано направление. Отметим на ней точку О. Примем её за начало отсчета.
Отложим на прямой вправо от точки О единичные отрезки.
Единичный отрезок – это расстояние от О до точки, выбранной для измерения.
Обозначим конец первого отрезка числом 1, второго – числом 2 и т. д.
Сформулируем определение.
Прямую с заданными на ней началом отсчёта, единичным отрезком и направлением отсчёта называют координатной осью или координатным лучом.
С помощью координатной прямой натуральные числа изображаются точками.
Точке О на координатной прямой соответствует число 0. Обозначают: О (0).
Число, которое соответствует данной точке на координатной оси, называют координатой данной точки.
Например, точка А имеет координату 5.
Обозначают А (5).
Таким образом, на координатной прямой можно найти точку, соответствующую натуральному числу. Также с помощью натуральных чисел и числа ноль можно указать положение любой точки на прямой.
А теперь рассмотрим, как отметить на координатном луче дробь.
Чтобы удобно было изображать дробные числа, нужно правильно выбрать длину единичного отрезка.
Удобный вариант – взять единичный отрезок из стольких клеточек, каков знаменатель дробей. Например, если требуется изобразить на координатном луче дроби со знаменателем 7, единичный отрезок лучше взять длиной в 7 клеточек. В этом случае изображение дробей на координатном луче будет несложным.
можно изобразить одним единичным отрезком и ещё двумя клеточками.
Если требуется отметить на координатном луче дроби с разными знаменателями, желательно, чтобы число клеточек в единичном отрезке делилось на все знаменатели. Например, для изображения на координатном луче дробей со знаменателями 6, 4 и 12 удобно взять единичный отрезок длиной в двенадцать клеточек. Чтобы отметить на координатном луче нужную дробь, единичный отрезок разбиваем на столько частей, каков знаменатель, и берём таких частей столько, каков числитель.
Возьмём единичный отрезок, разделим на шесть частей и возьмём одну из них.
Тренировочные задания
№ 1. Подберите правильные названия к числам. Разместите нужные подписи под изображениями.
Варианты ответов: смешанное число; правильная дробь; неправильная дробь.
Чтобы правильно выполнить задание, необходимо вспомнить, какую дробь называют правильной, а какую неправильной. А также, что называют смешанным числом.
Правильный ответ:
Варианты ответа: 9; 6; 4; 3; 2
Мы знаем, что удобный вариант – взять единичный отрезок из стольких клеточек, каков знаменатель дробей. Знаменатель равен 9, значит, единичный отрезок следует выбирать в 9 клеток.
Правильный ответ: 9.
Введение
Вот такие отметки на дороге (рис. 1) выполняют сразу три функции.
Рис. 1. Отметки на дороге
- Измерение расстояний. Мы знаем, на сколько мы удалились от города. Или от другой подобной отметки.
- Адрес, имя. Мы знаем, где находимся. По телефону легко передать числовой адрес нашего места.
- Направление. Глядя на эти отметки, легко понять, в какой стороне находится город – начало отсчета.
Где ещё числа помогают нам ориентироваться? В кинотеатре. В зрительном зале все ряды и все кресла пронумерованы. И на нашем билете написаны номер ряда и номер места. С помощью двух этих чисел мы легко находим свое место (рис. 2).
Рис. 2. Место в кинотеатре
Раньше дома не имели номеров. Вы приезжаете в город и ищете дом купца Елисеева. Когда людей и домов не очень много, то это не очень трудно. Особенно, если вы ищете дом известного человека (рис. 3).
Рис. 3. Дом без номера
Но в современном городе с сотнями тысяч и миллионами жителей ориентироваться нам помогает нумерация домов (рис. 4).
Рис. 4. Нумерация домов
Но вернемся к дороге. Представьте, что вы вдруг оказались на дороге перед отметкой (рис. 5).
Рис. 5. Отметка
Понятно ли, где вы находитесь? Пока нет. Нужно знать еще вот что:
- В каких единицах это измерено: может, это километры, может, версты, а может, мы в Англии и это мили.
- Точка отсчета. А в какой стороне начало, город от которого отсчитывается? В какую сторону увеличиваются эти отметки?
Когда нам будут известны эти две вещи, то мы точно будем знать, где находимся.
Координатная (числовая) прямая
Моделью дороги в математике является прямая.
Две идеи (присвоить точкам имена и измерять расстояния) объединяются в одну – координатная (или числовая) прямая. Можно имена присваивать буквенные. Там даже функцию порядка можно сохранить – за идет
, за
идет
и т.д. Но с измерением расстояний тут не понятно, как поступить. Поэтому удобнее присвоить точкам на прямой числовые имена.
Для этого требуется три действия.
- Отмечаем точку, относительно которой все будет считаться, начало отсчета. Самое разумное – поставить там отметку ноль, ведь если мы находимся в этой точке, то расстояние до начала отсчета равно нулю (рис. 6).
Рис. 6. Начало отсчета
- Выбираем единицы, в которых будем измерять. Для этого нужно указать длину отрезка, которую мы будем считать единичной (рис. 7).
Рис. 7. Единичный отрезок
- Выбираем направления, куда будут увеличиваться отметки. Отметим его стрелкой. Координатная прямая готова (рис. 8).
Рис. 8. Координатная прямая
Теперь каждой точке соответствует число, адрес этой точки. Это число называют координатой.
Модель дороги
Когда мы говорим «модель дороги в математике – прямая», может возникнуть резонный вопрос: но дорога далеко не всегда бывает прямой, она может быть какой угодно формы (рис. 9).
Рис. 9. Извилистая дорога
Уточним: мы говорим о модели дороги в том случае, если речь идёт не об удобстве, а только о расстоянии и порядке.
Если мы можем двигаться исключительно по дороге (не можем срезать и т.п.), то нам неважно, какой формы дорога: за столбом с номером будет идти столб с номером
и т.д. Таким образом, для описания движения автомобиля, например, дорогу можно «выпрямить» и рассматривать модель – прямую
Координатная плоскость
В жизни мы часто сталкиваемся с ситуациями, когда упорядочивания по одному параметру недостаточно.
Например, в кинотеатре места занумерованы не от до нескольких тысяч (что значительно усложнило бы поиск места зрителем), а обозначены номером ряда и номером места в этом ряду. Таким образом, каждому месту мы ставим в соответствие две координаты (а не одну) – ряд и место (рис. 10).
Рис. 10. Ряд и место
В этом случае нам уже не будет хватать координатной прямой, понадобится координатная плоскость.
Посмотреть урок про координатную плоскость можно по ссылке: Координатная плоскость.
Определение координат точки
Давайте потренируемся определять эти координаты для разных точек.
Определим координату точки (рис. 11).
Рис. 11. Точка
Для этого измерим, сколько раз единичный отрезок уложится от начала отсчета до точки
.
раза. Точке
соответствует число
. Или точка
имеет координату
(рис. 12).
Рис. 12. Координата точки
Иногда координату записывают в скобках после названия точки (рис. 13).
Рис. 13. Запись координаты
Определим координату точки (рис. 14).
Рис. 14. Точка
Единичный отрезок поместился раз. Координата
(рис. 15).
Рис. 15. Координата точки
Можно поступить наоборот: найти точку по ее координате. Точка имеет координату
. Тогда от нуля нужно отложить
целых единичных отрезков и
(рис. 16).
Рис. 16. Расположение точки
Пусть теперь точка левее начала отсчета. Точка . Отрезок укладывается
раза. Но координата
уже занята для точки
справа (рис. 17).
Рис. 17. Расположение точки
Да и все остальные положительные числа уже использованы для координат тех точек, что находятся справа от нуля.
Но у нас остались еще отрицательные числа. Их и будем использовать для таких точек. То есть точка имеет координату
.
Две координаты, отличающиеся только знаками (то есть противоположные числа), соответствуют точкам, симметричным относительно начала координат. Например, и
соответствуют двум симметричным точкам
и
(рис. 18).
Рис. 18. Симметричные точки
Названия числовых прямых
Если числовых прямых две или больше, то, чтобы отличать одну от другой, их обозначают буквами, ,
,
и т.д. Например, в прямоугольной системе координат на плоскости две оси. Их обозначают обычно
и
. В нашем случае, хоть прямая и одна, ее все равно обычно обозначают буквой
. Кроме того, чтобы не откладывать каждый раз единичные отрезки до нужной точки, на прямой часто сразу ставят несколько отметок, соответствующих целым числам.
Определение
Итак, координатная прямая (числовая прямая) – это прямая, на которой выбраны начало отсчета, направление, масштаб (единичный отрезок).
Каждой точке соответствует число, которое называют координатой. Координата является адресом точки. По этой координате можно точно найти, где находится точка, как дом по адресу. И, наоборот, по точке можно однозначно сказать, какая у нее координата (рис. 19).
Рис. 19. Координатная прямая
Использование координатной прямой
Итак, когда же мы используем координатную прямую? Представьте, что вам по телефону нужно объяснить, где находятся эти точки на прямой (рис. 20).
Рис. 20. Точки на прямой
Мы можем взять линейку, измерить все расстояния между точками и передать по телефону.
А теперь, пусть это числовая прямая. Теперь у каждой точки есть координата, ее можно продиктовать по телефону, а на том конце ваш собеседник по этим координатам может точно так же расставить точки (рис. 21).
Рис. 21. Точки на координатной прямой
Сравнение чисел и арифметические операции с помощью числовой прямой
Итак, у нас каждой точке соответствует число и наоборот. Но соответствие распространяется и дальше – на сравнение чисел и на арифметические операции.
То, что , означает, что точка с большой координатой находится правее (рис. 22).
Рис. 22. Сравнение координат
Прибавить к числу положительное число
на прямой будет означать, что от исходной точки с координатой
отступить вправо на
единичных отрезка. Придем в точку
(рис. 23).
Рис. 23. Сложение положительных чисел
Прибавить отрицательное число (вычесть положительное) означает сдвиг влево (рис. 24).
Рис. 24. Вычитание
Свойство противоположных чисел: их сумма равна нулю. Двум противоположным числам соответствуют симметричные относительно нуля точки. Например, и
. Можно к
прибавить
, то есть сдвинуться на
единиц вправо, придем в точку ноль. Или, наоборот, от точки
можно сдвинуться на
единиц влево (прибавить отрицательное число
или вычесть
) (рис. 25).
Рис. 25. Свойство противоположных чисел
Задача
Замена в задаче чисел точками, а сложения – сдвигом может облегчить решение. Чему равна сумма бесконечного числа слагаемых: ?
Решение
Изобразим точку на прямой. Она находится посредине между
и
(рис. 26).
Рис. 26. Расположение точки
Добавить одну четвертую – значит найти точку, сдвинутую на единичного отрезка вправо, то есть на половину оставшегося до единицы (рис. 27).
Рис. 27. Добавили
Добавим к нему , то есть еще движемся вправо на
, половину оставшегося отрезка (рис. 28).
Рис. 28. Добавили
Этот процесс будет продолжаться до бесконечности, но новая точка всегда будет левее единицы, но все ближе и ближе к ней.
То есть сумма становится всё ближе к единице, но не превосходит ее. Поэтому такую бесконечную сумму считают равной единице: .
Заключение
Мы выяснили, что числовая прямая устанавливает соответствие между точками и числами. Такое взаимно-однозначное соответствие позволяет заменить работу с точками на работу с числами или наоборот. Переход от одних объектов к другим часто позволяет упростить задачу, облегчить понимание.
- Зубарева И.И., Мордкович А.Г. Математика. 6 класс. М.: ИОЦ «Мнемозина», 2014.
- Дорофеев Г.В., Петерсон Л.Г. Математика. 6 класс. Учебник в 3 частях. Ч. 2. М. «Просвещение», 2010.
- Виленкин Н.Я. и др. Математика. Учебник для 6 класса. М.: ИОЦ «Мнемозина», 2013.
Рекомендованные ссылки на ресурсы сети Интернет
- Yaklass.ru (Источник).
- Math-prosto.ru (Источник).
- School-assistant.ru (Источник).
Домашнее задание
- Укажите координату точки
(рис. 1).
Рис. 1. Иллюстрация к заданию
Найдем с помощью координатной прямой сумму чисел – 4 и 3 :
1) отметим точку А (–4) ;
2) отсчитаем вправо 3 единичных отрезка;
3) поставим точку В (–1).
Прибавить к числу а число b — значит изменить число а на b единиц.
Найдем с помощью координатной прямой разность чисел 2 и 4 :
1) отметим точку А (2) ;
2) отсчитаем влево 4 единичных отрезка;
3) поставим точку В (–2).
2 – 4 = 2 + ( – 4 ) = – 2 .
Любое число от прибавления положительного числа увеличивается,
а от прибавления отрицательного (вычитания) числа уменьшается.
Найдем с помощью координатной прямой разность чисел 12 и 1 :
1) отметим точку А ( 12) ;
2) отсчитаем влево 1 единичный отрезок (4 черточки);
3) поставим точку В (– 12).
Сумма двух противоположных чисел равна нулю: а + (–а) = 0 .
3 + (–3) = 0 ; 7 – 7 = 0 .
От прибавления нуля число не изменяется: а + 0 = а .
5 + 0 = 5 ; 9 – 0 = 9 .
Расстояние между точками на координатной прямой
Расстояние между двумя точками на координатной прямой равно модулю разности их координат.
Формула расстояния между точками на координатной прямой:
AB = |a — b|,
где A и B — это произвольные точки, расстояние между которыми надо найти, то есть, найти длину отрезка AB, a и b — координаты точек.
Выражение |a — b| можно заменить выражением |b — a|, так как a — b и b — a являются противоположными числами и их модули равны.
Следовательно, чтобы найти расстояние между точками координатной прямой надо из координаты одной точки вычесть координату другой точки.
Пример 1. Найти расстояние между точками L(-3) и M(5), отмеченными на координатной прямой.
Решение. Чтобы найти расстояние между точками L и M надо из координаты точки L вычесть координату точки M или наоборот, а в качестве ответа взять модуль полученного результата:
|-3 — 5| = |-8| = 8
или
|5 — (-3)| = |5 + 3| = 8.
Ответ. Расстояние между точками L и M равно 8.
Пример 2. Найдите координаты середины отрезка AB, если A(-5) и B(5).
Решение. Обозначим середину отрезка точкой C. Так как C — середина отрезка AB, то |AC| = |CB|. Значит, чтобы найти координату точки C, надо сначала вычислить длину отрезка AB и разделить её на 2, то есть, на две равные части AC и CB:
AB = |-5 — 5| = |-10| = 10;
10 : 2 = 5, значит |AC| = |CB| = 5.
Как видно из чертежа, чтобы найти координату середины отрезка, надо половину длины отрезка либо прибавить к точке с наименьшей координатой, либо отнять от точки с наибольшей координатой:
-5 + 5 = 0
или
5 — 5 = 0.
Ответ. Координата середины отрезка C(0).
Пример 3. Найдите координату точки C, которая является серединой отрезка с концами в точках A(7) и B(25).
Решение.
AB = |7 — 25| = |-18| = 18;
AC = CB = 18 : 2 = 9;
7 + 9 = 16
или
25 — 9 = 16.
Ответ. Координата точки C — 16.
Геометрический способ решения уравнений и неравенств с модулем, 9-й класс
Разделы: Математика
Класс: 9
Цель: рассмотреть геометрическое определение модуля. Уметь применять его для решения уравнений и неравенств с модулем, развивать умение исследовать уравнения с параметрами.
1. Организационная часть (Цель занятия)
2. Актуализация знаний
-
Алгебраическое определение модуля
|a| =
Практика. Решение задач. Часть 1. Уравнения прямой
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
Мы изучили новые инструменты – координаты и действия с векторами в координатах, операцию скалярного умножения векторов. Этот урок мы посвятим решению задач и потренируемся применять эти новые инструменты на практике.
Общее уравнение прямой: описание, примеры, решение задач
Данная статья продолжает тему уравнения прямой на плоскости: рассмотрим такой вид уравнения, как общее уравнение прямой. Зададим теорему и приведем ее доказательство; разберемся, что такое неполное общее уравнение прямой и как осуществлять переходы от общего уравнения к другим типам уравнений прямой. Всю теорию закрепим иллюстрациями и решением практических задач.
Общее уравнение прямой: основные сведения
Пусть на плоскости задана прямоугольная система координат O x y .
Любое уравнение первой степени, имеющее вид A x + B y + C = 0 , где А , В , С – некоторые действительные числа ( А и В не равны одновременно нулю) определяет прямую линию в прямоугольной системе координат на плоскости. В свою очередь, любая прямая в прямоугольной системе координат на плоскости определяется уравнением, имеющим вид A x + B y + C = 0 при некотором наборе значений А , В , С .
указанная теорема состоит из двух пунктов, докажем каждый из них.
- Докажем, что уравнение A x + B y + C = 0 определяет на плоскости прямую.
Пусть существует некоторая точка М 0 ( x 0 , y 0 ) , координаты которой отвечают уравнению A x + B y + C = 0 . Таким образом: A x 0 + B y 0 + C = 0 . Вычтем из левой и правой частей уравнений A x + B y + C = 0 левую и правую части уравнения A x 0 + B y 0 + C = 0 , получим новое уравнение, имеющее вид A ( x — x 0 ) + B ( y — y 0 ) = 0 . Оно эквивалентно A x + B y + C = 0 .
Полученное уравнение A ( x — x 0 ) + B ( y — y 0 ) = 0 является необходимым и достаточным условием перпендикулярности векторов n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) . Таким образом, множество точек M ( x , y ) задает в прямоугольной системе координат прямую линию, перпендикулярную направлению вектора n → = ( A , B ) . Можем предположить, что это не так, но тогда бы векторы n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) не являлись бы перпендикулярными, и равенство A ( x — x 0 ) + B ( y — y 0 ) = 0 не было бы верным.
Следовательно, уравнение A ( x — x 0 ) + B ( y — y 0 ) = 0 определяет некоторую прямую в прямоугольной системе координат на плоскости, а значит и эквивалентное ему уравнение A x + B y + C = 0 определяет ту же прямую. Так мы доказали первую часть теоремы.
- Приведем доказательство, что любую прямую в прямоугольной системе координат на плоскости можно задать уравнением первой степени A x + B y + C = 0 .
Зададим в прямоугольной системе координат на плоскости прямую a ; точку M 0 ( x 0 , y 0 ) , через которую проходит эта прямая, а также нормальный вектор этой прямой n → = ( A , B ) .
Пусть также существует некоторая точка M ( x , y ) – плавающая точка прямой. В таком случае, векторы n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) являются перпендикулярными друг другу, и их скалярное произведение есть нуль:
n → , M 0 M → = A ( x — x 0 ) + B ( y — y 0 ) = 0
Перепишем уравнение A x + B y — A x 0 — B y 0 = 0 , определим C : C = — A x 0 — B y 0 и в конечном результате получим уравнение A x + B y + C = 0 .
Так, мы доказали и вторую часть теоремы, и доказали всю теорему в целом.
Уравнение, имеющее вид A x + B y + C = 0 – это общее уравнение прямой на плоскости в прямоугольной системе координат O x y .
Опираясь на доказанную теорему, мы можем сделать вывод, что заданные на плоскости в фиксированной прямоугольной системе координат прямая линия и ее общее уравнение неразрывно связаны. Иначе говоря, исходной прямой соответствует ее общее уравнение; общему уравнению прямой соответствует заданная прямая.
Из доказательства теоремы также следует, что коэффициенты А и В при переменных x и y являются координатами нормального вектора прямой, которая задана общим уравнением прямой A x + B y + C = 0 .
Рассмотрим конкретный пример общего уравнения прямой.
Пусть задано уравнение 2 x + 3 y — 2 = 0 , которому соответствует прямая линия в заданной прямоугольной системе координат. Нормальный вектор этой прямой – это вектор n → = ( 2 , 3 ) . Изобразим заданную прямую линию на чертеже.
Также можно утверждать и следующее: прямая, которую мы видим на чертеже, определяется общим уравнением 2 x + 3 y — 2 = 0 , поскольку координаты всех точек заданной прямой отвечают этому уравнению.
Мы можем получить уравнение λ · A x + λ · B y + λ · C = 0 , умножив обе части общего уравнения прямой на число λ , не равное нулю. Полученное уравнение является эквивалентом исходного общего уравнения, следовательно, будет описывать ту же прямую на плоскости.
Неполное уравнение общей прямой
Полное общее уравнение прямой – такое общее уравнение прямой A x + B y + C = 0 , в котором числа А , В , С отличны от нуля. В ином случае уравнение является неполным.
Разберем все вариации неполного общего уравнения прямой.
- Когда А = 0 , В ≠ 0 , С ≠ 0 , общее уравнение принимает вид B y + C = 0 . Такое неполное общее уравнение задает в прямоугольной системе координат O x y прямую, которая параллельна оси O x , поскольку при любом действительном значении x переменная y примет значение — C B . Иначе говоря, общее уравнение прямой A x + B y + C = 0 , когда А = 0 , В ≠ 0 , задает геометрическое место точек ( x , y ) , координаты которых равны одному и тому же числу — C B .
- Если А = 0 , В ≠ 0 , С = 0 , общее уравнение принимает вид y = 0 . Такое неполное уравнение определяет ось абсцисс O x .
- Когда А ≠ 0 , В = 0 , С ≠ 0 , получаем неполное общее уравнение A x + С = 0 , задающее прямую, параллельную оси ординат.
- Пусть А ≠ 0 , В = 0 , С = 0 , тогда неполное общее уравнение примет вид x = 0 , и это есть уравнение координатной прямой O y .
- Наконец, при А ≠ 0 , В ≠ 0 , С = 0 , неполное общее уравнение принимает вид A x + B y = 0 . И это уравнение описывает прямую, которая проходит через начало координат. В самом деле, пара чисел ( 0 , 0 ) отвечает равенству A x + B y = 0 , поскольку А · 0 + В · 0 = 0 .
Графически проиллюстрируем все вышеуказанные виды неполного общего уравнения прямой.
Известно, что заданная прямая параллельна оси ординат и проходит через точку 2 7 , — 11 . Необходимо записать общее уравнение заданной прямой.
Решение
Прямая, параллельная оси ординат, задается уравнением вида A x + C = 0 , в котором А ≠ 0 . Также условием заданы координаты точки, через которую проходит прямая, и координаты этой точки отвечают условиям неполного общего уравнения A x + C = 0 , т.е. верно равенство:
Из него возможно определить C , если придать A какое-то ненулевое значение, к примеру, A = 7 . В таком случае получим: 7 · 2 7 + C = 0 ⇔ C = — 2 . Нам известны оба коэффициента A и C , подставим их в уравнение A x + C = 0 и получим требуемое уравнение прямой: 7 x — 2 = 0
Ответ: 7 x — 2 = 0
На чертеже изображена прямая, необходимо записать ее уравнение.
Решение
Приведенный чертеж позволяет нам легко взять исходные данные для решения задачи. Мы видим на чертеже, что заданная прямая параллельна оси O x и проходит через точку ( 0 , 3 ) .
Прямую, которая параллельна очи абсцисс, определяет неполное общее уравнение B y + С = 0 . Найдем значения B и C . Координаты точки ( 0 , 3 ) , поскольку через нее проходит заданная прямая, будут удовлетворять уравнению прямой B y + С = 0 , тогда справедливым является равенство: В · 3 + С = 0 . Зададим для В какое-то значение, отличное от нуля. Допустим, В = 1 , в таком случае из равенства В · 3 + С = 0 можем найти С : С = — 3 . Используем известные значения В и С , получаем требуемое уравнение прямой: y — 3 = 0 .
Ответ: y — 3 = 0 .
Общее уравнение прямой, проходящей через заданную точку плоскости
Пусть заданная прямая проходит через точку М 0 ( x 0 , y 0 ) , тогда ее координаты отвечают общему уравнению прямой, т.е. верно равенство: A x 0 + B y 0 + C = 0 . Отнимем левую и правую части этого уравнения от левой и правой части общего полного уравнения прямой. Получим: A ( x — x 0 ) + B ( y — y 0 ) + C = 0 , это уравнение эквивалентно исходному общему, проходит через точку М 0 ( x 0 , y 0 ) и имеет нормальный вектор n → = ( A , B ) .
Результат, который мы получили, дает возможность записывать общее уравнение прямой при известных координатах нормального вектора прямой и координатах некой точки этой прямой.
Даны точка М 0 ( — 3 , 4 ) , через которую проходит прямая, и нормальный вектор этой прямой n → = ( 1 , — 2 ) . Необходимо записать уравнение заданной прямой.
Решение
Исходные условия позволяют нам получить необходимые данные для составления уравнения: А = 1 , В = — 2 , x 0 = — 3 , y 0 = 4 . Тогда:
A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 1 · ( x — ( — 3 ) ) — 2 · y ( y — 4 ) = 0 ⇔ ⇔ x — 2 y + 22 = 0
Задачу можно было решить иначе. Общее уравнение прямой имеет вид A x + B y + C = 0 . Заданный нормальный вектор позволяет получить значения коэффициентов A и B , тогда:
A x + B y + C = 0 ⇔ 1 · x — 2 · y + C = 0 ⇔ x — 2 · y + C = 0
Теперь найдем значение С, используя заданную условием задачи точку М 0 ( — 3 , 4 ) , через которую проходит прямая. Координаты этой точки отвечают уравнению x — 2 · y + C = 0 , т.е. — 3 — 2 · 4 + С = 0 . Отсюда С = 11 . Требуемое уравнение прямой принимает вид: x — 2 · y + 11 = 0 .
Ответ: x — 2 · y + 11 = 0 .
Задана прямая 2 3 x — y — 1 2 = 0 и точка М 0 , лежащая на этой прямой. Известна лишь абсцисса этой точки, и она равна — 3 . Необходимо определить ординату заданной точки.
Решение
Зададим обозначение координат точки М 0 как x 0 и y 0 . В исходных данных указано, что x 0 = — 3 . Поскольку точка принадлежит заданной прямой, значит ее координаты отвечают общему уравнению этой прямой. Тогда верным будет равенство:
2 3 x 0 — y 0 — 1 2 = 0
Определяем y 0 : 2 3 · ( — 3 ) — y 0 — 1 2 = 0 ⇔ — 5 2 — y 0 = 0 ⇔ y 0 = — 5 2
Ответ: — 5 2
Переход от общего уравнения прямой к прочим видам уравнений прямой и обратно
Как мы знаем, существует несколько видов уравнения одной и той же прямой на плоскости. Выбор вида уравнения зависит от условий задачи; возможно выбирать тот, который более удобен для ее решения. Здесь очень пригодится навык преобразования уравнения одного вида в уравнение другого вида.
Для начала рассмотрим переход от общего уравнения вида A x + B y + C = 0 к каноническому уравнению x — x 1 a x = y — y 1 a y .
Если А ≠ 0 , тогда переносим слагаемое B y в правую часть общего уравнения. В левой части выносим A за скобки. В итоге получаем: A x + C A = — B y .
Это равенство возможно записать как пропорцию: x + C A — B = y A .
В случае, если В ≠ 0 , оставляем в левой части общегь уравнения только слагаемое A x , прочие переносим в правую часть, получаем: A x = — B y — C . Выносим – В за скобки, тогда: A x = — B y + C B .
Перепишем равенство в виде пропорции: x — B = y + C B A .
Конечно, заучивать полученные формулы нет необходимости. Достаточно знать алгоритм действий при переходе от общего уравнения к каноническому.
Задано общее уравнение прямой 3 y — 4 = 0 . Необходимо преобразовать его в каноническое уравнение.
Решение
Запишем исходное уравнение как 3 y — 4 = 0 . Далее действуем по алгоритму: в левой части остаётся слагаемое 0 x ; а в правой части выносим — 3 за скобки; получаем: 0 x = — 3 y — 4 3 .
Запишем полученное равенство как пропорцию: x — 3 = y — 4 3 0 . Так, мы получили уравнение канонического вида.
Ответ: x — 3 = y — 4 3 0 .
Чтобы преобразовать общее уравнение прямой в параметрические, сначала осуществляют переход к каноническому виду, а затем переход от канонического уравнения прямой к параметрическим уравнениям.
Прямая задана уравнением 2 x — 5 y — 1 = 0 . Запишите параметрические уравнения этой прямой.
Решение
Осуществим переход от общего уравнения к каноническому:
2 x — 5 y — 1 = 0 ⇔ 2 x = 5 y + 1 ⇔ 2 x = 5 y + 1 5 ⇔ x 5 = y + 1 5 2
Теперь примем обе части полученного канонического уравнения равными λ , тогда:
x 5 = λ y + 1 5 2 = λ ⇔ x = 5 · λ y = — 1 5 + 2 · λ , λ ∈ R
Ответ: x = 5 · λ y = — 1 5 + 2 · λ , λ ∈ R
Общее уравнение можно преобразовать в уравнение прямой с угловым коэффициентом y = k · x + b , но только тогда, когда В ≠ 0 . Для перехода в левой части оставляем слагаемое B y , остальные переносятся в правую. Получим: B y = — A x — C . Разделим обе части полученного равенство на B , отличное от нуля: y = — A B x — C B .
Задано общее уравнение прямой: 2 x + 7 y = 0 . Необходимо преобразовать то уравнение в уравнение с угловым коэффициентом.
Решение
Произведем нужные действия по алгоритму:
2 x + 7 y = 0 ⇔ 7 y — 2 x ⇔ y = — 2 7 x
Ответ: y = — 2 7 x .
Из общего уравнения прямой достаточно просто получить уравнение в отрезках вида x a + y b = 1 . Чтобы осуществить такой переход, перенесем число C в правую часть равенства, разделим обе части полученного равенства на – С и, наконец, перенесем в знаменатели коэффициенты при переменных x и y :
A x + B y + C = 0 ⇔ A x + B y = — C ⇔ ⇔ A — C x + B — C y = 1 ⇔ x — C A + y — C B = 1
Необходимо преобразовать общее уравнение прямой x — 7 y + 1 2 = 0 в уравнение прямой в отрезках.
Решение
Перенесем 1 2 в правую часть: x — 7 y + 1 2 = 0 ⇔ x — 7 y = — 1 2 .
Разделим на -1/2 обе части равенства: x — 7 y = — 1 2 ⇔ 1 — 1 2 x — 7 — 1 2 y = 1 .
Преобразуем далее в необходимый вид: 1 — 1 2 x — 7 — 1 2 y = 1 ⇔ x — 1 2 + y 1 14 = 1 .
Ответ: x — 1 2 + y 1 14 = 1 .
В общем, несложно производится и обратный переход: от прочих видов уравнения к общему.
Уравнение прямой в отрезках и уравнение с угловым коэффициентом легко преобразовать в общее, просто собрав все слагаемые в левой части равенства:
x a + y b ⇔ 1 a x + 1 b y — 1 = 0 ⇔ A x + B y + C = 0 y = k x + b ⇔ y — k x — b = 0 ⇔ A x + B y + C = 0
Каноническое уравнение преобразуется к общему по следующей схеме:
x — x 1 a x = y — y 1 a y ⇔ a y · ( x — x 1 ) = a x ( y — y 1 ) ⇔ ⇔ a y x — a x y — a y x 1 + a x y 1 = 0 ⇔ A x + B y + C = 0
Для перехода от параметрических сначала осуществляется переход к каноническому, а затем – к общему:
x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x — x 1 a x = y — y 1 a y ⇔ A x + B y + C = 0
Заданы параметрические уравнения прямой x = — 1 + 2 · λ y = 4 . Необходимо записать общее уравнение этой прямой.
Решение
Осуществим переход от параметрических уравнений к каноническому:
x = — 1 + 2 · λ y = 4 ⇔ x = — 1 + 2 · λ y = 4 + 0 · λ ⇔ λ = x + 1 2 λ = y — 4 0 ⇔ x + 1 2 = y — 4 0
Перейдем от канонического к общему:
x + 1 2 = y — 4 0 ⇔ 0 · ( x + 1 ) = 2 ( y — 4 ) ⇔ y — 4 = 0
Ответ: y — 4 = 0
Задано уравнение прямой в отрезках x 3 + y 1 2 = 1 . Необходимо осуществить переход к общему виду уравнения.
Решение:
Просто перепишем уравнение в необходимом виде:
x 3 + y 1 2 = 1 ⇔ 1 3 x + 2 y — 1 = 0
Ответ: 1 3 x + 2 y — 1 = 0 .
Составление общего уравнения прямой
Выше мы говорили о том, что общее уравнение возможно записать при известных координатах нормального вектора и координатах точки, через которую проходит прямая. Такая прямая определяется уравнением A ( x — x 0 ) + B ( y — y 0 ) = 0 . Там же мы разобрали соответствующий пример.
Сейчас рассмотрим более сложные примеры, в которых для начала необходимо определить координаты нормального вектора.
Задана прямая, параллельная прямой 2 x — 3 y + 3 3 = 0 . Также известна точка M 0 ( 4 , 1 ) , через которую проходит заданная прямая. Необходимо записать уравнение заданной прямой.
Решение
Исходные условия говорят нам о том, что прямые параллельны, тогда, как нормальный вектор прямой, уравнение которой требуется записать, возьмем направляющий вектор прямой n → = ( 2 , — 3 ) : 2 x — 3 y + 3 3 = 0 . Теперь нам известны все необходимые данные, чтобы составить общее уравнение прямой:
A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 2 ( x — 4 ) — 3 ( y — 1 ) = 0 ⇔ 2 x — 3 y — 5 = 0
Ответ: 2 x — 3 y — 5 = 0 .
Заданная прямая проходит через начало координат перпендикулярно прямой x — 2 3 = y + 4 5 . Необходимо составить общее уравнение заданной прямой.
Решение
Нормальный вектором заданной прямой будет направляющий вектор прямой x — 2 3 = y + 4 5 .
Тогда n → = ( 3 , 5 ) . Прямая проходит через начало координат, т.е. через точку О ( 0 , 0 ) . Составим общее уравнение заданной прямой:
A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 3 ( x — 0 ) + 5 ( y — 0 ) = 0 ⇔ 3 x + 5 y = 0
http://interneturok.ru/lesson/geometry/9-klass/effektivnye-kursy/praktika-reshenie-zadach-chast-1-uravneniya-pryamoy
http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/obschee-uravnenie-prjamoj/