Как найти радиус вписанной окружности правильного многоугольника

Радиус вписанной окружности в правильный многоугольник


Радиус вписанной окружности в правильный многоугольник

a — сторона многоугольника

N — количество сторон многоугольника

Формула радиуса вписанной окружности в правильный многоугольник, (r):

Формула радиуса вписанной окружности в правильный многоугольник

Калькулятор — вычислить, найти радиус вписанной окружности в правильный многоугольник

Подробности

Автор: Administrator

Опубликовано: 10 сентября 2011

Обновлено: 13 августа 2021

Радиус вписанной окружности в правильный многоугольник, формула

Правильный многоугольник — это многоугольник с равными сторонами и углами. Угол между двумя соседними вершинами правильного n-угольника равен:

[AOB = α = frac{360°}{n}]

Радиус вписанной окружности правильного многоугольника
Описанный многоугольник

Построим треугольник AOB отдельно. Об этом треугольнике мы знаем: он равнобедренный, и высота этого треугольника это радиус вписанной окружности правильного многоугольника. Также нам известна длина основания a этого треугольника — которое является стороной исходного правильного многоугольника.

Также известен угол между бедрами — по формуле (1).
Опустим высоту на основание и рассмотрим получившийся прямоугольный треугольник.
При помощи тригонометрических функций острого угла получим:

[tgbigg(frac{360°}{2n}bigg) = frac{a}{2r}]

отсюда получим формулу радиуса вписанной окружности правильного многоугольника:

[r = frac{a}{2 tg(frac{360°}{2n})}]

(a — сторонa правильного многоугольника; n — число сторон правильного многоугольника; r — радиус вписанной окружности правильного многоугольника)

Вычислить, найти радиус вписанной окружности в правильный многоугольник по формуле (3)

Радиус вписанной окружности в правильный многоугольник

стр. 256

Правильный многоугольник. Формулы, признаки и свойства правильного многоугольника

Определение. Правильный многоугольник — это многоугольник, у которого все стороны и углы одинаковые.

Многоугольником называется часть площади, которая ограничена замкнутой ломаной линией, не пересекающей сама себя.

Многоугольники отличаются между собой количеством сторон и углов.

Признаки правильного многоугольника

Многоугольник будет правильным, если выполняется следующее условие:

Все стороны и углы одинаковы:

a1 = a2 = a3 = … = an-1 = an

α1 = α2 = α3 = … = αn-1 = αn

Основные свойства правильного многоугольника

1. Все стороны равны:

a1 = a2 = a3 = … = an-1 = an

2. Все углы равны:

α1 = α2 = α3 = … = αn-1 = αn

3. Центр вписанной окружности Oв совпадает з центром описанной окружности Oо, что и образуют центр многоугольника O

4. Сумма всех углов n-угольника равна:

180° · (n — 2)

5. Сумма всех внешних углов n-угольника равна 360°:

β1 + β2 + β3 + … + βn-1 + βn = 360°

6. Количество диагоналей (Dn) n-угольника равна половине произведения количества вершин на количество диагоналей, выходящих из каждой вершины:

7. В любой многоугольник можно вписать окружность и описать круг при этом площадь кольца, образованная этими окружностями, зависит только от длины стороны многоугольника:

8. Все биссектрисы углов между сторонами равны и проходят через центр правильного многоугольника O

Правильный n-угольник — формулы

Формулы длины стороны правильного n-угольника

1. Формула стороны правильного n-угольника через радиус вписанной окружности:

2. Формула стороны правильного n-угольника через радиус описанной окружности:

Формула радиуса вписанной окружности правильного n-угольника

Формула радиуса вписанной окружности n-угольника через длину стороны:

Формула радиуса описанной окружности правильного n-угольника

Формула радиуса описанной окружности n-угольника через длину стороны:

Формулы площади правильного n-угольника

1. Формула площади n-угольника через длину стороны:

2. Формула площади n-угольника через радиус вписанной окружности:

3. Формула площади n-угольника через радиус описанной окружности:

Формула периметра правильного многоугольника:

Формула периметра правильного n-угольника:

P = na

Формула определения угла между сторонами правильного многоугольника:

Формула угла между сторонами правильного n-угольника:

Изображение правильного треугольника с обозначениями
Рис.3

Правильный треугольник

Формулы правильного треугольника:

1. Формула стороны правильного треугольника через радиус вписанной окружности:

a = 2r 3

2. Формула стороны правильного треугольника через радиус описанной окружности:

a = R√3

3. Формула радиуса вписанной окружности правильного треугольника через длину стороны:

4. Формула радиуса описанной окружности правильного треугольника через длину стороны:

5. Формула площади правильного треугольника через длину стороны:

6. Формула площади правильного треугольника через радиус вписанной окружности:

S = r2 3√3

7. Формула площади правильного треугольника через радиус описанной окружности:

8. Угол между сторонами правильного треугольника:

α = 60°

Изображение правильного четырехугольнику с обозначениями
Рис.4

Правильный четырехугольник

Правильный четырехугольнику — квадрат.

Формулы правильного четырехугольника:

1. Формула стороны правильного четырехугольника через радиус вписанной окружности:

a = 2r

2. Формула стороны правильного четырехугольника через радиус описанной окружности:

a = R√2

3. Формула радиуса вписанной окружности правильного четырехугольника через длину стороны:

4. Формула радиуса описанной окружности правильного четырехугольника через длину стороны:

5. Формула площади правильного четырехугольника через длину стороны:

S = a2

6. Формула площади правильного четырехугольника через радиус вписанной окружности:

S = 4 r2

7. Формула площади правильного четырехугольника через радиус описанной окружности:

S =  2 R2

8. Угол между сторонами правильного четырехугольника:

α = 90°

Правильный шестиугольник

Формулы правильного шестиугольника:

1. Формула стороны правильного шестиугольника через радиус вписанной окружности:

2. Формула стороны правильного шестиугольника через радиус описанной окружности:

a = R

3. Формула радиуса вписанной окружности правильного шестиугольника через длину стороны:

4. Формула радиуса описанной окружности правильного шестиугольника через длину стороны:

R = a

5. Формула площади правильного шестиугольника через длину стороны:

6. Формула площади правильного шестиугольника через радиус вписанной окружности:

S = r2 2√3

7. Формула площади правильного шестиугольника через радиус описанной окружности:

8. Угол между сторонами правильного шестиугольника:

α = 120°

Правильный восьмиугольник

Формулы правильного восьмиугольника:

1. Формула стороны правильного восьмиугольника через радиус вписанной окружности:

a = 2r · (√2 — 1)

2. Формула стороны правильного восьмиугольника через радиус описанной окружности:

a = R√2 — √2

3. Формула радиуса вписанной окружности правильного восьмиугольника через длину стороны:

4. Формула радиуса описанной окружности правильного восьмиугольника через длину стороны:

5. Формула площади правильного восьмиугольника через длину стороны:

S = a2 2(√2 + 1)

6. Формула площади правильного восьмиугольника через радиус вписанной окружности:

S = r2 8(√2 — 1)

7. Формула площади правильного восьмиугольника через радиус описанной окружности:

S = R2 2√2

8. Угол между сторонами правильного восьмиугольника:

α = 135°

В публикации представлена формула, с помощью которой можно найти радиус окружности, вписанной в правильный многоугольник, а также приведен пример решения задачи для лучшего понимания представленного материала.

  • Формула расчета радиуса окружности

  • Пример задачи

Формула расчета радиуса окружности

Правильный многоугольник со вписанной окружностью

На рисунке изображен правильный шестиугольник со вписанной в него окружностью, но формула ниже подходит для любого правильного n-угольника.

Формула расчета радиуса вписанной в правильный многоугольник окружности

где a – длина стороны.

Примечание: зная радиус вписанного круга можно найти сторону равностороннего n-угольника:

Формула расчета стороны правильного многоугольника через радиус вписанной окружности

Пример задачи

Вычислите радиус вписанной в правильный восьмиугольник окружности, если длина его стороны составляет 12 см.

Решение:
Воспользуемся первой формулой, подставив в нее известное значение.

Примера расчета радиуса вписанной в правильный многоугольник окружности

  • Радиус вписанной окружности правильного многоугольника

    Правильный многоугольник - сторона, площадь, периметр, радиус вписанной окружности, радиус описанной окружности, угол, внешний угол

    Свойства

    Зная радиус вписанной окружности в правильный – равносторонний многоугольник и количество сторон в нем, можно найти длину одной стороны, как произведение удвоенного радиуса на тангенс угла 180 градусов, деленных на количество сторон.
    a=2r tan⁡〖(180°)/n〗

    Если подставить полученное для стороны выражение в формулу радиуса описанной окружности, то получится радиус вписанной окружности, разделенный на косинус того же угла.
    R=a/(2 sin⁡〖(180°)/n〗 )=(2r tan⁡〖(180°)/n〗)/(2 sin⁡〖(180°)/n〗 )=r/cos⁡〖(180°)/n〗

    Чтобы найти площадь правильного многоугольника через радиус вписанной окружности, нужно полученное выражение возвести во вторую степень, и преобразовать формулу, упростив ее.
    S=(na^2)/(4 tan⁡〖(180°)/n〗 )=(n(2r tan⁡〖(180°)/n〗 )^2)/(4 tan⁡〖(180°)/n〗 )=nr^2 tan⁡〖(180°)/n〗

    Периметр правильного многоугольника, как и любой другой фигуры, равен сумме длин всех ее сторон, поэтому чтобы его вычислить через радиус, нужно произведение удвоенного радиуса и указанного угла умножить еще на количество сторон.
    P=na=2rn tan⁡〖(180°)/n〗

    Угол правильного многоугольника зависит исключительно от количества сторон и никоим образом от их длины, и доказательством этому служит формула величины внутреннего угла, включающая в себя только одну переменную.
    α=(n-2) (180°)/n

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Office 2007 как найти файл
  • Как найти на авито жену
  • Как найти в инстаграм сохраненные публикации
  • Как исправить кифоз дома
  • Как найти объем пара при кипении

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии