В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около произвольного (любого), прямоугольного или равностороннего треугольника. Также разберем примеры решения задач для закрепления представленного теоретического материала.
-
Формулы вычисления радиуса описанной окружности
- Произвольный треугольник
- Прямоугольный треугольник
- Равносторонний треугольник
-
Примеры задач
Формулы вычисления радиуса описанной окружности
Произвольный треугольник
Радиус окружности, описанной вокруг любого треугольника, рассчитывается по формуле:
где a, b, c – стороны треугольника, S – его площадь.
Прямоугольный треугольник
Радиус окружности, описанной около прямоугольного треугольника, равен половине его гипотенузы или высоте, проведенной к гипотенузе.
Равносторонний треугольник
Радиус описанной около правильного треугольника окружности вычисляется по формуле:
где a – сторона треугольника.
Примеры задач
Задание 1
Дан треугольник со сторонами 4, 6 и 9 см. Найдите радиус описанной около него окружности.
Решение
Для начала нам необходимо найти площадь треугольника. Т.к. нам известны длины всех его сторон, можно применить формулу Герона:
Теперь мы можем воспользоваться первой формулой из перечисленных выше для расчета радиуса круга:
Задание 2
Дан треугольник, у которого известны две стороны из трех: 6 и 8 см. Найдите радиус описанной вокруг него окружности.
Решение
Треугольник со сторонами 6 и 8 см может быть только прямоугольным, причем известные по условиям задачи стороны являются его катетами. Таким образом, мы можем найти гипотенузу фигуры, воспользовавшись теоремой Пифагора:
Как мы знаем, радиус круга, описанного вокруг прямоугольного треугольника, равняется половине его гипотенузы, следовательно: R = 10 : 2 = 5.
Правильный треугольник. Площадь правильного треугольника
Правильный треугольник — треугольник, у которого все стороны равны. Каждый угол правильного треугольника равен градусов.
Правильный треугольник называют еще равносторонним.
Каждая из высот правильного треугольника является также его медианой и биссектрисой.
Центры вписанной и описанной окружностей правильного треугольника совпадают.
Пусть сторона правильного треугольника равна .
Высота правильного треугольника:
Радиус окружности, вписанной в правильный треугольник:
Радиус описанной окружности в два раза больше:
Площадь правильного треугольника:
Все эти формулы легко доказать. Если вы нацелены на решение задач части — докажите их самостоятельно.
. Сторона правильного треугольника равна
. Найдите радиус окружности, вписанной в этот треугольник.
Задача решается в одну строчку. Радиус вписанной окружности .
. Найдите радиус окружности, вписанной в правильный треугольник, высота которого равна
.
Сравним формулы для высоты правильного треугольника и радиуса вписанной окружности. Очевидно, радиус вписанной окружности равен высоты.
Ответ: .
. Сторона правильного треугольника равна
. Найдите радиус окружности, описанной около этого треугольника.
Радиус окружности, описанной вокруг правильного треугольника, равен .
Ответ: .
Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Правильный треугольник. Площадь правильного треугольника» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена:
08.05.2023
Радиус вписанной окружности правильного треугольника, формула
Радиус вписанной окружности правильного треугольника вычисляется по классической формуле
[r = sqrt{frac{(p-a)(p-a)(p-a)}{p}}]
где
[p=frac{1}{2}(a+a+a)]
(a — сторона правильного треугольника;
r — радиус вписанной окружности правильного треугольника)
После подстановок, преобразований и упрощений получается следующая формула:
[r = frac{a}{2sqrt{3}}]
Вычислить, найти радиус вписанной окружности правильного треугольника по формуле (3)
Радиус вписанной окружности правильного треугольника |
стр. 263 |
---|
Радиус описанной окружности равностороннего треугольника
— сторона треугольника
— высота
— радиус описанной окружности
Формула радиуса описанной окружности равностороннего треугольника через его сторону:
Калькулятор — вычислить, найти радиус описанной окружности равностороннего треугольника по стороне
Формула радиуса описанной окружности равностороннего треугольника через высоту:
Калькулятор — вычислить, найти радиус описанной окружности равностороннего треугольника по стороне
- Подробности
-
Автор: Administrator
-
Опубликовано: 09 сентября 2011
-
Обновлено: 13 августа 2021
Нахождение радиуса описанной вокруг треугольника окружности
В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около произвольного (любого), прямоугольного или равностороннего треугольника. Также разберем примеры решения задач для закрепления представленного теоретического материала.
Формулы вычисления радиуса описанной окружности
Произвольный треугольник
Радиус окружности, описанной вокруг любого треугольника, рассчитывается по формуле:
где a, b, c – стороны треугольника, S – его площадь.
Прямоугольный треугольник
Радиус окружности, описанной около прямоугольного треугольника, равен половине его гипотенузы или высоте, проведенной к гипотенузе.
Равносторонний треугольник
Радиус описанной около правильного треугольника окружности вычисляется по формуле:
где a – сторона треугольника.
Примеры задач
Задание 1
Дан треугольник со сторонами 4, 6 и 9 см. Найдите радиус описанной около него окружности.
Решение
Для начала нам необходимо найти площадь треугольника. Т.к. нам известны длины всех его сторон, можно применить формулу Герона:
Теперь мы можем воспользоваться первой формулой из перечисленных выше для расчета радиуса круга:
Задание 2
Дан треугольник, у которого известны две стороны из трех: 6 и 8 см. Найдите радиус описанной вокруг него окружности.
Решение
Треугольник со сторонами 6 и 8 см может быть только прямоугольным, причем известные по условиям задачи стороны являются его катетами. Таким образом, мы можем найти гипотенузу фигуры, воспользовавшись теоремой Пифагора:
Как мы знаем, радиус круга, описанного вокруг прямоугольного треугольника, равняется половине его гипотенузы, следовательно: R = 10 : 2 = 5.
Радиус описанной окружности равностороннего треугольника
— сторона треугольника
— высота
— радиус описанной окружности
Формула радиуса описанной окружности равностороннего треугольника через его сторону:
Калькулятор — вычислить, найти радиус описанной окружности равностороннего треугольника по стороне
Формула радиуса описанной окружности равностороннего треугольника через высоту:
Калькулятор — вычислить, найти радиус описанной окружности равностороннего треугольника по стороне
Радиус вписанной окружности в равносторонний треугольник онлайн
С помощю этого онлайн калькулятора можно найти радиус вписанной в любой треугольник окружности, в том числе радиус вписанной в равносторонний треугольник окружности. Для нахождения радиуса вписанной в треугольник окружности выберите тип треугольника, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.
Открыть онлайн калькулятор
1. Радиус вписанной в равносторонний треугольник окружности, если известна сторона треугольника
Пусть известна сторона a равностороннего треугольника (Рис.1). Выведем формулу вычисления радиуса вписанной в треугольник окружности.
Радиус вписанной в равнобедренный треугольник окружности через основание a и боковую сторону b вычисляется из следующей формулы:
(1) |
Учитывая, что у равностороннего треугольника все стороны равны (( small a=b )), имеем:
( small r=frac<large a> <large 2>cdot sqrt<frac<large 2a-a><large 2a+a>> ) ( small =frac<large a> <large 2>cdot sqrt<frac<large a><large 3a>> ) ( small =frac<large a><large 2 cdot sqrt<3>> )
( small r=frac<large a><large 2 cdot sqrt<3>> ) | (2) |
или, умножив числитель и знаменатель на ( small sqrt <3>):
( small r=frac<large sqrt<3>> <large 6 >cdot a ) | (3) |
Пример 1. Известна сторона a=17 равностороннего треугольника. Найти радиус окружности вписанной в треугольник.
Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся одним из формул (2) и (3). Подставим значения ( small a=17 ) в (3):
Ответ:
2. Радиус вписанной в равносторонний треугольник окружности, если известна высота треугольника
Пусть известна высота h равностороннего треугольника (Рис.2). Выведем формулу радиуса вписанной в треугольник окружности.
Выведем формулу стороны равностороннего треугольника через высоту. Из Теоремы Пифагора имеем:
( small h^2+left( frac<large a> <large 2>right) ^2=a^2.)
( small h^2+ frac<large a^2> <large 4>=a^2; ; ) ( small frac<large 3><large 4>a^2 =h^2; ; ) ( small a^2=frac<large4h^2><large 3>.)
( small a= frac<large 2h><large sqrt<3>> .) | (4) |
Формула радиуса вписанной в равнобедренный треугольник окружности по основанию и высоте вычисляется из формулы
( small r= large frac> ) | (5) |
Подставляя (4) в (5), получим:
( small r= large frac<frac<large 2h^2><large sqrt<3>>><frac<large 2h><large sqrt<3>>+sqrt<frac<large 4h^2><large 3>+4h^2>> ) ( small = large frac<frac<large 2h^2><large sqrt<3>>><frac<large 2h><large sqrt<3>>+sqrt<frac<large 16h^2><large 3>>> ) ( small = large frac<frac<large 2h^2><large sqrt<3>>><frac<large 2h><large sqrt<3>>+frac<large 4h><large sqrt<3>>> ) ( small = large frac< 2h^2>< 6h>small =large frac<1> <3>small cdot h )
То есть, радиус вписанной в равносторонний треугольник окружности по высоте вычисляется из формулы:
( small r = large frac<1> <3>small cdot h ) | (6) |
Пример 2. Известна высота ( small h=39 ) равностороннего треугольника. Найти радиус окружности вписанной в треугольник.
Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (6). Подставим значение ( small h=39 ) в (6):
Ответ:
3. Радиус вписанной в равносторонний треугольник окружности, если известна площадь треугольника
Пусть известна площадь S равностороннего треугольника (Рис.3). Найдем формулу радиуса вписанной в треугольник окружности.
Площадь равностороннего треугольника по радиусу вписанной окружности вычисляется из следующей формулы:
( small S= 3cdot sqrt<3>r^2.)
( small r= large frac <sqrt[4]<3>> <3>small cdot sqrt |
(7) |
Пример 3. Известна площадь равностороннего треугольника: ( small S=42 . ) Найти радиус окружности вписанной в треугольник.
Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (7). Подставим значение ( small S=42 ) в (7):
Ответ:
http://www-formula.ru/2011-09-22-04-51-34
http://matworld.ru/geometry/radius-vpisannoj-okruzhnosti-v-ravnostoronnij-treugolnik.php