В данной публикации представлены формулы, с помощью которых можно найти радиус шара (сферы), вписанного в правильную пирамиду: треугольную, четырехугольную, шестиугольную и тетраэдр.
-
Формулы расчета радиуса шара (сферы)
- Правильная треугольная пирамида
- Правильная четырехугольная пирамида
- Правильная шестиугольная пирамида
Формулы расчета радиуса шара (сферы)
Приведенная ниже информация применима только к правильным пирамидам. Формула для нахождения радиуса зависит от вида фигуры, рассмотрим самые распространенные варианты.
Правильная треугольная пирамида
На рисунке:
- a – ребро основания пирамиды, т.е. это равные отрезки AB, AC и BC;
- DE – высота пирамиды (h).
Если известны значения этих величин, то найти радиус (r) вписанного шара/сферы можно по формуле:
Частный случай правильной треугольной пирамиды – это правильный тетраэдр. Для него формула нахождения радиуса выглядит следующим образом:
Правильная четырехугольная пирамида
На рисунке:
- a – ребро основания пирамиды, т.е. AB, BC, CD и AD;
- EF – высота пирамиды (h).
Радиус (r) вписанного шара/сферы рассчитывается так:
Правильная шестиугольная пирамида
На рисунке:
- a – ребро основания пирамиды, т.е. AB, BC, CD, DE, EF, AF;
- GL – высота пирамиды (h).
Радиус (r) вписанного шара/сферы вычисляется по формуле:
Чтобы легко справиться с решением задач на шар, вписанный в пирамиду, полезно разобрать небольшой теоретический материал.
Шар вписан в пирамиду (или сфера вписана в пирамиду) — значит, шар (сфера) касаются каждой грани пирамиды. Плоскости, содержащие грани пирамиды, являются касательными плоскостями шара. Отрезки, соединяющие центр шара с точками касания, перпендикуляры к касательным плоскостям. Их длины равны радиусу шара. Центр вписанного в пирамиду шара — точка пересечения бисекторных плоскостей двугранных углов при основании (то есть плоскостей, делящих эти углы пополам).
Чаще всего в задачах речь идет о шаре, вписанном в правильную пирамиду. Шар можно вписать в любую правильную пирамиду. Центр шара в этом случае лежит на высоте пирамиды. При решении задачи удобно провести сечение пирамиды и шара плоскостью, проходящей через апофему и высоту пирамиды.
Если пирамида четырехугольная или шестиугольная, сечение представляет собой равнобедренный треугольник, боковые стороны которого — апофемы, а основание — диаметр вписанной в основание окружности.
Если пирамида треугольная или пятиугольная, достаточно рассмотреть лишь часть этого сечения — прямоугольный треугольник, катеты которого — высота пирамиды и радиус вписанной в основание пирамиды окружности, а гипотенуза — апофема.
В любом случае, в итоге приходим к рассмотрению соответствующего прямоугольного треугольника и других связанных с ним треугольников.
Итак, в прямоугольном треугольнике SOF катет SO=H — высота пирамиды, катет OF=r — радиус вписанной в основание пирамиды окружности, гипотенуза SF=l — апофема пирамиды. O1- центр шара и, соответственно, окружности, вписанной в треугольник, полученный в сечении (мы рассматриваем его часть). Угол SFO — линейный угол двугранного угла между плоскостью основания и плоскостью боковой грани SBC. Точки K и O — точки касания, следовательно, O1K перпендикулярен SF. OO1=O1K=R — радиусу шара.
Прямоугольные треугольники OO1F и KO1F равны (по катетам и гипотенузе). Отсюда KF=OF=r.
Прямоугольные треугольники SKO1 и SOF подобны (по острому углу S), откуда следует, что
В треугольнике SOF применим свойство биссектрисы треугольника:
Из прямоугольного треугольника OO1F
При решении задач на шар, вписанный в правильную пирамиду, будет полезным еще одно рассуждение.
Теперь найдем отношение объема пирамиды к площади ее поверхности:
Таким образом, радиус вписанного шара выражается через объем пирамиды и ее полную поверхность:
Все эти рассуждения верны не только для правильной пирамиды, но и для пирамиды, основание высоты которой совпадает с центром вписанной в основание окружности (то есть для пирамиды, у которой все двугранные углы при основании равны).
Задача 4.
Найти радиус шара, вписанного в правильную треугольную пирамиду, сторона основания которой равна а и двугранный угол пирамиды при ребре основания равен альфа.
Ответ:
Формула радиуса, вписанного в правильную четырехугольную пирамиду, шара.
a—ребро основания, h — высота
Периметр основания 96. Основание правильной четырехугольной пирамиды — квадрат. Периметр квадрата P=4a
Радиус вписанного шара 6
�������
� ����������� �������� SABC ��������, ��� AB = AC = 10 , BC =
16 . ������ ��������, ��������� �� ������� S , �������� ����� �������
B � ����� 4. ������� ������ ����������� �������� � ������ ����,
���������� � ��������.
�������
����� Q – ������� ������ ����������� ������ ��������, V –
ţ ��ߣ�, r – ������ ���������� � �������� ����, AK � BM – ������
������������ ABC . ����� K – �������� ��������� BC ���������������
������������ ABC . �������
AK = =
= 6,
BM = =
=
.
��� ��� SB – ������������� � ��������� ��������� ABC , �� BM –
������������� �������� ��������� SM �� ��������� ��������� ABC , �
�.�. BM AC , �� �� ������� � �ң� ��������������� SM
AC ,
�.�. SM – ������ ������������ ASC . �� �������������� ������������ SBM
�������, ���
SM = =
=
4 = 4·
=
.
�������������,
Q = SΔ SBC + SΔ SAB + SΔ SAC + SΔ ABC =
= BC· SB +
AB· SB +
AC· SM +
BC · AK =
= · 16· 4 +
· 10· 4 +
· 10·
+
· 16 · 6 =
32 + 20 + 52 + 48 = 152,
�� ��������� V = Q· r =
SΔ ABC· SB �������, ���
r = =
=
.
�����
152; .
��������� � ���������� �������������
web-���� | |
�������� | ������� ����� �� ��������� �.�.������� |
URL | http://zadachi.mccme.ru |
���������� | |
����� | 7943 |