Радиус вписанной сферы куба
Свойства
Радиус вписанной сферы куба представляет собой половину ребра куба, так как диаметр такой сферы точно совпадает с самим ребром. Поэтому чтобы найти ребро куба через радиус вписанной сферы, нужно умножить последний на два. (рис.2.2) a=2r
Найти площадь стороны куба можно как площадь квадрата, стороной которого является ребро куба. Тогда, вместо того чтобы возводить во вторую степень ребро, нужно возвести удвоенный радиус вписанной в куб сферы. Площадь боковой поверхности куба и площадь полной поверхности куба будут равны четырем и шести таким площадям соответственно, так как они представлены эти количеством граней куба. S=a^2=4r^2 S_(б.п.)=4S=16r^2 S_(п.п.)=6S=24r^2
Чтобы вычислить объем, необходимо возвести в куб ребро a или удвоенный радиус вписанной сферы. Таким образом, мы получим, что объем куба через радиус сферы, вписанной в него, равен кубу этого радиуса, умноженному на 8. V=a^3=8r^3
Периметр куба, как сумма длин всех ребер по одной стороне, равен произведению длины одного ребра и двенадцать. Периметр, выраженный через радиус вписанной окружности, равен 24 таким радиусам. P=12a=24r
Диагональ стороны куба, то есть диагональ квадрата, вычисляется как произведение ребра куба на корень из двух, в данном случае она будет выглядеть как произведение радиуса вписанной сферы на 2 корня из двух. d=a√2=2√2 r
Чтобы найти диагональ куба через радиус вписанной сферы, воспользуемся готовой формулой для диагонали куба через ребро и подставим вместо него удвоенный радиус. (рис.2.1.) D=a√3=2√3 r
Радиус окружности, описанной вокруг куба, равен половине диагонали, как видно из рисунка. Так как диагональ куба равна удвоенному произведению радиуса и корня из трех, то разделив это выражение на два, коэффициенты сократятся, и останется только радиус, умноженный на корень из трех. (рис.2.3.) R=D/2=(2√3 r)/2=√3 r
Нахождение радиуса вписанного в куб шара
В данной публикации мы рассмотрим, как можно найти радиус вписанного в куб шара (сферы), если известна длина ребра куба или его диагональ.
Примечание: Напомним, что в любой куб можно вписать шар.
Для начала выполним чертеж.
- шар касается всех 6 граней куба (на рисунке показаны только 4 точки касания);
- центр шара – точка O, которая также является центром куба.
Радиус шара (R), вписанного в куб, равняется половине его ребра, т.е.:
R = a/2, где “a” – ребро куба (является стороной его грани).
Чтобы было понятнее, выполним сечение, параллельное одной из граней куба и проходящее через точки касания шара двух других параллельных друг другу граней. Это сечение, в том числе, проходит через середины соответствующих сторон.
Таким образом, мы получим квадрат со вписанной окружностью, радиус которой равняется половине его стороны, которая в свою очередь равна ребру куба.
Радиус вписанного шара через диагональ куба
Если известна длина диагонали куба (примем ее за “d”), радиус вписанного в него шара (R) можно вычислить так:
Все формулы для радиуса вписанной окружности
Радиус вписанной окружности в треугольник
a , b , c — стороны треугольника
p — полупериметр, p=( a + b + c )/2
Формула радиуса вписанной окружности в треугольник ( r ):
Радиус вписанной окружности в равносторонний треугольник
a — сторона треугольника
r — радиус вписанной окружности
Формула для радиуса вписанной окружности в равносторонний треугольник ( r ):
Радиус вписанной окружности равнобедренный треугольник
1. Формулы радиуса вписанной окружности если известны: стороны и угол
a — равные стороны равнобедренного треугольника
b — сторона ( основание)
α — угол при основании
О — центр вписанной окружности
r — радиус вписанной окружности
Формула радиуса вписанной окружности в равнобедренный треугольник через стороны ( r ) :
Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и угол ( r ) :
2. Формулы радиуса вписанной окружности если известны: сторона и высота
a — равные стороны равнобедренного треугольника
b — сторона ( основание)
h — высота
О — центр вписанной окружности
r — радиус вписанной окружности
Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и высоту ( r ) :
http://www-formula.ru/2011-09-24-00-40-48
В данной публикации мы рассмотрим, как можно найти радиус вписанного в куб шара (сферы), если известна длина ребра куба или его диагональ.
Примечание: Напомним, что в любой куб можно вписать шар.
Для начала выполним чертеж.
- шар касается всех 6 граней куба (на рисунке показаны только 4 точки касания);
- центр шара – точка O, которая также является центром куба.
Радиус шара (R), вписанного в куб, равняется половине его ребра, т.е.:
R = a/2, где “a” – ребро куба (является стороной его грани).
Чтобы было понятнее, выполним сечение, параллельное одной из граней куба и проходящее через точки касания шара двух других параллельных друг другу граней. Это сечение, в том числе, проходит через середины соответствующих сторон.
Таким образом, мы получим квадрат со вписанной окружностью, радиус которой равняется половине его стороны, которая в свою очередь равна ребру куба.
Радиус вписанного шара через диагональ куба
Если известна длина диагонали куба (примем ее за “d”), радиус вписанного в него шара (R) можно вычислить так:
Радиус вписанной сферы куба представляет собой половину ребра куба, так как диаметр такой сферы точно совпадает с самим ребром. Поэтому чтобы найти ребро куба через радиус вписанной сферы, нужно умножить последний на два. (рис.2.2)
a=2r
Найти площадь стороны куба можно как площадь квадрата, стороной которого является ребро куба. Тогда, вместо того чтобы возводить во вторую степень ребро, нужно возвести удвоенный радиус вписанной в куб сферы. Площадь боковой поверхности куба и площадь полной поверхности куба будут равны четырем и шести таким площадям соответственно, так как они представлены эти количеством граней куба.
S=a^2=4r^2
S_(б.п.)=4S=16r^2
S_(п.п.)=6S=24r^2
Чтобы вычислить объем, необходимо возвести в куб ребро a или удвоенный радиус вписанной сферы. Таким образом, мы получим, что объем куба через радиус сферы, вписанной в него, равен кубу этого радиуса, умноженному на 8.
V=a^3=8r^3
Периметр куба, как сумма длин всех ребер по одной стороне, равен произведению длины одного ребра и двенадцать. Периметр, выраженный через радиус вписанной окружности, равен 24 таким радиусам.
P=12a=24r
Диагональ стороны куба, то есть диагональ квадрата, вычисляется как произведение ребра куба на корень из двух, в данном случае она будет выглядеть как произведение радиуса вписанной сферы на 2 корня из двух.
d=a√2=2√2 r
Чтобы найти диагональ куба через радиус вписанной сферы, воспользуемся готовой формулой для диагонали куба через ребро и подставим вместо него удвоенный радиус. (рис.2.1.)
D=a√3=2√3 r
Радиус окружности, описанной вокруг куба, равен половине диагонали, как видно из рисунка. Так как диагональ куба равна удвоенному произведению радиуса и корня из трех, то разделив это выражение на два, коэффициенты сократятся, и останется только радиус, умноженный на корень из трех. (рис.2.3.)
R=D/2=(2√3 r)/2=√3 r
Как найти радиусы вписанной и описанной сфер для куба (гексаэдра)?
Популярные ответы
- Когда буквы е, ё, ю, я обозначают два звука?
- Каким членом предложения может быть местоимение?
- Как правильно произносятся слова термин, шинель, темп?
- Как найти точки экстремума функции по графику производной?
- Как правильно: по средам (ударение на «а» или на «е»)?
- Какой официальный сайт Московского энергетического института (МЭИ)?
- На какие вопросы отвечает наречие?
- Где найти примеры сравнительных оборотов и других конструкций со словом «как»?
- Как в физике обозначается скорость движения?
- Где скачать задания по английскому языку олимпиады для школьников «Покори Воробьевы горы!»?
Куб, или гексаэдр (шестигранник) — правильный многогранник, каждая грань которого представляет собой квадрат.
- У куба 8 вершин, 12 ребер и 6 граней.
- В каждой вершине сходится 3 ребра.
- Каждая грань ограничена 4 ребрами.
У куба все грани — правильные четырехугольники (квадраты). Кубами можно замостить (покрыть без перекрытия) все пространство.
Угловые параметры куба:
- Угол между любыми двумя пересекающимися ребрами — 90°.
- Угол между непересекающимися ребрами — 0 или 90°.
- Угол наклона ребра к грани — 90°.
- Двугранный угол между двумя смежными гранями — 90°.
- Телесный угол при вершине — π/2 ≈ 1,5708 стерадиана.
Линейные параметры куба со стороной a:
- Площадь поверхности — 6·a2.
- Объём — a3.
- Высота — a.
- Большая диагональ — √3·a.
- Радиус вписаной сферы — a/2.
- Радиус описанной сферы — (√3/2)·a.
Ссылки:
- ru.wikipedia.org — Википедия: правильный многогранник;
- ru.wikipedia.org — Википедия: куб;
- ndspaces.narod.ru — свойства куба.
Дополнительно в базе данных Генона:
- Сколько существует правильных многогранников?
- Чему равна площадь поверхности куба?
- Что такое куб?
- Сколько вершин, ребер и граней у тетраэдра?
Последнее редактирование ответа: 25.03.2012
-
Оставить отзывОставить отзыв
Вы можете написать свои замечания к ответу, предложения об улучшении или просто поблагодарить автора. Комментарий, после проверки, увидят автор и редактор ответа. Будьте, пожалуйста, вежливыми. Спасибо!
Если Вы хотите получить уведомление об
исправлении ответа укажите свой e-mail:Неправильный формат адреса электронной почты
Похожие вопросы
В соответствии с пользовательским соглашением администрация не несет ответственности за содержание материалов, которые размещают пользователи. Для урегулирования спорных вопросов и претензий Вы можете связаться с администрацией сайта genon.ru.
Размещенные на сайте материалы могут содержать информацию, предназначенную для пользователей старше 18 лет, согласно Федерального закона №436-ФЗ от 29.12.2010 года «О защите детей от информации, причиняющей вред их здоровью и развитию». Обращение к пользователям 18+.
Вписанная окружность — в какую фигуру нельзя вписать
Для решения геометрических задач можно использовать различные формулы и приемы, которые помогут облегчить поиск искомых показателей. Один из способов найти различные неизвестные в многогранной фигуре – сделать это через вписанную окружность.
Вписанная окружность — окружность, которая лежит внутри угла и касается его сторон. Касание происходит в одной точке с каждой стороны.
Вписанная в фигуру окружность, например, в треугольник или многоугольник, будет касаться всех его сторон. Это главное свойство окружности, которая будет называться вписанной. Сама фигура в таком случае называется описанной вокруг окружности.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Следствие
Из этого следует, что вписанная окружность не будет таковой, если не будет касаться всех сторон фигуры.
Окружность точно можно вписать в следующие геометрические фигуры:
- треугольник;
- выпуклый правильный многоугольник;
- квадрат;
- равнобедренная трапеция;
- ромб.
При этом окружность в данные фигуры может быть вписана лишь единожды.
Четырехугольник является неоднозначной фигурой при процессе вписывания в нее окружности. Для того, чтобы окружность была вписанной в четырехугольник, суммы длин его противоположных сторон должны быть равны.
Окружность точно нельзя вписать в следующие геометрические фигуры:
- прямоугольник;
- параллелограмм (если он не является ромбом).
Ни один из видов данных фигур не сможет иметь вписанную окружность, так как она не сможет соприкасаться со всеми их сторонами, что является главным признаком вписанной окружности.
Теорема о вписанной окружности
Теорема о вписанной окружности гласит, что в любой треугольник и в любой выпуклый многоугольник и четырехугольник с равными суммами длин противоположных сторон можно вписать окружность, но только одну.
Правило о центре вписанной окружности
Центр окружности при этом будет находиться в точке пересечения биссектрис фигуры. Чтобы определить центр, нужно построить биссектрисы из каждого угла и найти пересечение.
Формула нахождения радиуса вписанной окружности
Вычисление радиуса вписанной окружности ведется по формулам, которые зависят от фигуры и известных данных. Главным условием является тот факт, что фигура должна подходить под список тех, в которые можно вписать окружность.
Радиус — перпендикуляр, соединяющий центр окружности с любой точкой, лежащей на окружности. По длине радиус составляет половину диаметра.
Треугольник
Формула нахождения радиуса окружности, вписанной в треугольник через все стороны:
(r=sqrt{frac{left(p-aright)left(p-bright)left(p-cright)}p},)
где r — радиус,
a, b и c — стороны треугольника,
p — полупериметр, (p=frac{a+b+c}2.)
Формула нахождения радиуса окружности, вписанной в треугольник через сторону и высоту:
(r=frac{btimes h}{b+sqrt{4times h^2+b^2}},)
(r=frac{htimessqrt{a^2-h^2}}{a+sqrt{a^2-h^2}},)
где r — радиус,
a и b — стороны треугольника,
h — высота.
Равносторонний треугольник
Формула нахождения радиуса окружности, вписанной в равносторонний треугольник:
(r=frac a{2sqrt3},)
где r — радиус,
a — сторона треугольника.
Равнобедренный треугольник
Формула нахождения радиуса окружности, вписанной в равнобедренный треугольник через значения сторон:
(r=frac b2sqrt{frac{2a-b}{2a+b}},)
где r — радиус,
a и b — стороны треугольника.
Формула нахождения радиуса окружности, вписанной в равнобедренный треугольник через сторону и угол:
(r=Atimesfrac{sinleft(aright)timescosleft(aright)}{1+cosleft(aright)}= Atimescosleft(aright)timestanleft(frac a2right),)
(r=frac b2timesfrac{sinleft(aright)}{1+cosleft(aright)}=frac b2timestanleft(frac a2right),)
где r — радиус,
A и b — стороны треугольника,
a — угол при основании.
Прямоугольный треугольник
Формула нахождения радиуса окружности, вписанной в прямоугольный треугольник:
(r=frac{atimes b}{a+b+c}=frac{a+b-c}2,)
где r — радиус,
a и b — катеты треугольника,
c — гипотенуза.
Равнобедренная трапеция
Формула нахождения радиуса окружности, вписанной в равнобедренную трапецию:
(r=frac h2=frac{sqrt{ctimes b}}2,)
где r — радиус,
с — нижнее основание,
b — верхнее,
а — боковые стороны,
h — высота.
Квадрат
Формула нахождения радиуса окружности, вписанной в квадрат:
(r=frac a2,)
где r — радиус,
а — сторона квадрата.
Ромб
Формула нахождения радиуса окружности, вписанной в ромб через значения диагоналей:
(r=frac{Dtimes d}{4times a}=frac{Dtimes d}{2sqrt{D^2+d^2}}.)
Формула нахождения радиуса окружности, вписанной в ромб через значения стороны и угла:
(r=frac{atimessinleft(aright)}2.)
Формула нахождения радиуса окружности, вписанной в ромб через диагональ и угол:
(r=frac d2timescosleft(frac a2right)=frac d{2sqrt2}timessqrt{1+cosleft(aright)},)
(r=frac D2timessinleft(frac a2right)=frac D{2sqrt2}timessqrt{1-cosleft(aright)}.)
Формула нахождения радиуса окружности, вписанной в ромб через диагональ и сторону:
(r=frac{Dsqrt{a^2-{displaystylefrac{D^2}4}}}{2a},)
(r=frac{dsqrt{a^2-{displaystylefrac{d^2}4}}}{2a}.)
Формула нахождения радиуса окружности, вписанной в ромб через высоту:
(r=frac h2,)
где r — радиус,
а — сторона ромба,
D — большая диагональ,
d — меньшая диагональ,
a — острый угол,
h — высота.
Многоугольник
Формула нахождения радиуса окружности, вписанной в правильный многоугольник:
(r=frac a{2timestanleft({displaystylefrac{180^circ}N}right)},)
где r — радиус,
N — количество сторон многоугольника.
Шестиугольник
Формула нахождения радиуса окружности, вписанной в шестиугольник:
(r=frac{sqrt3}2times a,)
где r — радиус,
a — сторона шестиугольника.