Как найти работу в термодинамике формула

Физическая дисциплина «Термодинамика», имеющая дословный перевод с греческого как θέρμη — «тепло», δύναμις — «сила», занимается изучением общих характеристик макросистем и обращения энергии внутри них. Эту науку относят к феноменологическому типу, хотя опирается она на факты, полученные опытным путем.

Термодинамическая система, рассматриваемая в данном ракурсе, имеет конкретные характеристики, не применимые к единичным атомам и молекулам. К ним относят температуру, энергию, объем, концентрацию растворов, давление.

Определение таких параметров происходит по формулам термодинамики.

Основные формулы

Источник: en.ppt-online.org

Основные формулы термодинамики

Особенностью термодинамики является то, что ее постулаты не касаются взаимодействия отдельных единиц (атомов, молекул), как в молекулярной физике. Предметом изучения предстают общие взаимопревращения энергии, образование теплоты, теплопередача и совершение работы.

Исходя из этого, выделяют основные формулы термодинамики, к которым относятся:

  1. Уравнение Менделеева-Клайперона: (PV=(m/M)*RT). Его смысл — в изменениях трех входящих величин, которые направлены на характеристику состояния идеального газа.
  2. Количество вещества, обозначаемое буквой (ν). (nu=N/NA=m/mu)

    Величина, выражающая, сколько одинаковых структурных компонентов (единиц) находится в веществе.

  3. Закон Дальтона: давление смеси газов на стенку сосуда равно сумме давлений каждого входящего в смесь элемента: (p=p1+p2+…pn.)
  4. Главное уравнение МКТ (молекулярно-кинетической теории): (p=2n/3<varepsilon>n=N/V). Выражает математическое соотношение таких параметров, как давление газа и микропараметров: массы молекул, их скорости движения, концентрации.
  5. Средняя кинетическая энергия поступательного движения молекулы газа. Для обозначения применяется (E_k),  выражается через формулу: (E_k=E_{моля}/NA=3/2ast RT/NA). Ее мерой является абсолютная температура идеального газа, поскольку потенциальная энергия (вследствие взаимодействия молекул друг с другом) равна нулю. Зная, что R/NA=k, получается формула: (E_k=3/2ast kT).
  6. Давление идеального газа прямо пропорционально концентрации и его температуре: (P=nkT.)
  7. Скорость молекул определяется по формулам:
    (V=surd(2kT/m_o)=surd(2RT/mu)) — наиболее вероятная;
    (<V>=surd(8kT/pi m_o)=surd(8RT/pimu)) — среднеарифметическая;
    (<Vкв>surd(3kT/m_o)=surd(3RT/mu)) — средняя квадратичная.
  8. Сумма кинетических энергий всех молекул определяет внутреннюю энергию всего идеального газа. Математически выражение выглядит так: (U=i/2ast(m/mu)ast RT.)
  9. Формула для определения работы, которую совершает идеальный газ при расширении:( A=P(V_2-V_1).)
  10. Формула первого закона термодинамики: (Q=Delta U+A.)
  11. Для определения удельной теплоемкости вещества применяется математическое выражение: (С=Delta Q/mdT.)
  12. Кроме удельной теплоемкости, существует понятие молярной теплоемкости. Для ее определения применяется формула: (C=cmu). Для изохорного процесса правильная формула принимает вид: (C_v=1/2ast R), для изобарного: (C_p=((i+2)/2)ast R).

Первое начало термодинамики

Согласно первому закону термодинамики, (Q) (количество внутренней теплоты), которое получил газ извне, расходуется на совершение работы (А) и изменение внутренней энергии (U). Формула закона: (Q=Delta U+A).

Первый закон термодинамики

Источник: obrazovaka.ru

На практике газ может быть нагрет либо охлажден. Однако в данном случае рассматривается изотермический процесс, в котором один из характеризующих параметров остается неизменным.

Если процесс изотермичен, в химии включается закон Бойля-Мариота. В нем говорится, что давление газа соотносится к изначальному объему, при стабильной температуре, обратно пропорционально.

(Q=A)

Когда процесс происходит при неизменном объеме, говорят об изохорности. Здесь вступает в действие закон Шарля. В обозначенных условиях то тепло, которое поступило к газу, расходуется на изменение внутренней энергии. Другими словами, (P) пропорционально (T).

(Q=Delta U)

Протекание процессов в идеальном газе при неизменном давлении носит характер изобарного. Здесь действует закон Гей-Люссака, который выражается уравнением:

(Q=Delta U=pDelta V)

Полная формулировка закона гласит: полученное тепло при изобарном процессе расходуется на совершение работы газом, а также изменяет его внутреннюю энергию.

Часть процессов происходят изолированно от внешней среды. Газ не получает дополнительной энергии. Такая ситуация носит название адиабатной и математически записывается: (Q=0). Работа (А) в таком случае выражается: (A=-Delta U.)

Уравнение идеального газа в термодинамике

Молекулы идеального газа постоянно движутся. От того насколько велика скорость их движения, зависит общее состояние газа, а также величина его воздействия, например, на стенки сосуда. Поэтому одним из основных уравнений термодинамики является Клайперона-Менделеева:

(PV=(m/M)ast RT)

В уравнении (m) — единица массы газа, (M) — его молекулярная масса, (R) — универсальная величина, называемая газовой постоянной. Ее значение = 8,3144598. Измеряется в Дж/(моль*кг).

В основе термодинамики лежат и другие газовые постоянные, например, число Авогадро, постоянная Больцмана. Таким образом, (R=kNA.)

Из уравнения Клайперона-Менделеева можно также вычислить массу. Она будет равна произведению плотности на объем: (m=rho V).

Основное уравнение молекулярно-кинетической теории (МКТ)

Решение части задач зависит от знания особенностей взаимосвязи между давлением газа и характеристикой кинетической энергии его молекул. Математическое выражение такой зависимости носит название основного уравнения МКТ:

(p=2/3ast nE)

В данном выражении кинетическая энергия обозначена буквой (Е), а концентрация молекул — (n). Каждую из этих величин физики можно найти исходя из соответствующих формул, после чего уравнение для молекулярно-кинетической теории (МКТ) приобретает вид:

(p=nkT)

Куб

Источник: encrypted-tbn0.gstatic.com

Формула теплоемкости и главная формула КПД в термодинамике

Когда теплообмен проявляется передачей телу определенного количества теплоты, его энергия, как и температура, меняются.

То количество теплоты, обозначаемое (Q), которое понадобится для того, чтобы 1 кг определенного вещества нагреется на 1 К, носит определение теплоемкости вещества и обозначается с.

Математическое выражение относительно переданного количества теплоты выглядит формулой:

(Q=cm(t_2-t_1)=cmDelta t)

Измеряется величина в Дж/(кг∙К).

При t2⟩t1, количество теплоты со знаком плюс, следовательно, вещество нагревается. Если наоборот, то Q — со знаком минус, и вещество остывает.

В физике, характеризуя свойства вещества, говорят о его теплоемкости. Это имеет значение, например, при выборе стройматериалов или сырья для изготовления нагревательных приборов. Теплоемкость равна произведению массы на удельную теплоемкость данного тела:

(C=cm)

Учитывая, что в величине теплоемкости уже отражена масса, то сокращенная формула для определения (Q) выглядит так:

 (Q=C(t_2-t_1))

С другой стороны, то количество теплоты, которое отдает источник, можно высчитать по формуле: 

(Q=Pt.)

В выражении буквой (P) обозначается мощность нагревателя, а (t) — время их контакта.

Конструкция, состоящая из нагревателя, тела-реципиента теплоты и охладителя, носит название тепловой машины. В качестве примера рассматривается двигатель внутреннего сгорания. Как и любой механизм, она имеет такую характеристику, как КПД — коэффициент полезного действия. Для его расчета применяется формула:

(eta=(Q_н-Q_x)/Q_н)

Внутренняя энергия одноатомного и двухатомного идеального газа

Характерной особенностью идеального газа является отсутствие у его составляющих частей потенциальной энергии. Вся внутренняя энергия — это сумма кинетических энергий всех молекул. Она является величиной, прямо пропорциональной температуре идеального газа:

(mw2/2=alpha T)

В этом уравнении:

(alpha T=3Rmu/2Nmu)

Исходя из приведенных формул, величина кинетической энергии поступательного движения идеального газа должна определяться исходя из выражения:

(mv2/2=(3Rmu/2Nmu)ast T)

Поступательное движение характеризуется тремя степенями свободы. На каждую из них приходится одна треть общей кинетической энергии.

Внутренняя энергия газа

Источник: cf.ppt-online.org

Двух- и более атомные молекулы газа характеризуются степенями свободы, касающимися вращательного движения.

Если обозначить число молекул в одном киломоле за (Nμ), то внутренняя энергия идеального газа будет измеряться по формуле:

(Umu=1/2(Rmu Ti))

В формуле (i) — число степеней свобод.

Если газ одноатомный, (i=3), двуатомный — 5, трех- и более — 6.

Внутренняя энергия газа 2

Источник: uslide.ru

Задачи на термодинамику характеризуют распространенные физические процессы, поэтому часть включаются в программы экзаменов. Если для их решения не хватает времени, можно обратиться за помощью в Феникс.Хелп. На профильном сайте вам помогут справиться с любой, даже запутанной задачей, экономя ваши время и силы.

Основные формулы термодинамики и молекулярной физики, которые вам пригодятся. Еще один отличный день для практических занятий по физике. Сегодня мы соберем вместе формулы, которые чаще всего используются при решении задач в термодинамике и молекулярной физике.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Итак, поехали. Попытаемся изложить законы и формулы термодинамики кратко.

Идеальный газ

Идеальный газ – это идеализация, как и материальная точка. Молекулы такого газа являются материальными точками, а соударения молекул – абсолютно упругие. Взаимодействием же молекул на расстоянии пренебрегаем. В задачах по термодинамике реальные газы часто принимаются за идеальные. Так гораздо легче жить, и не нужно иметь дела с массой новых членов в уравнениях.

Итак, что происходит с молекулами идеального газа? Да, они движутся! И резонно спросить, с какой скоростью? Конечно, помимо скорости молекул нас интересует еще и общее состояние нашего газа. Какое давление P он оказывает на стенки сосуда, какой объем V занимает, какая у него температура T.

Для того, чтобы узнать все это, есть уравнение состояния идеального газа, или уравнение Клапейрона-Менделеева

Уравнение Клапейрона-Менделеева

Здесь m – масса газа, M – его молекулярная масса (находим по таблице Менделеева), R – универсальная газовая постоянная, равная 8,3144598(48) Дж/(моль*кг).

Универсальная газовая постоянная может быть выражена через другие константы (постоянная Больцмана и число Авогадро)

Универсальная газовая постоянная

Массу, в свою очередь, можно вычислить, как произведение плотности и объема.

Масса

Основное уравнение молекулярно-кинетической теории (МКТ)

Как мы уже говорили, молекулы газа движутся, причем, чем выше температура – тем быстрее. Существует связь между давлением газа и средней кинетической энергией E его частиц. Эта связь называется основным уравнением молекулярно-кинетической теории и имеет вид:

Уравнение МКТ

Здесь n – концентрация молекул (отношение их количества к объему), E – средняя кинетическая энергия. Найти их, а также среднюю квадратичную скорость молекул можно, соответственно, по формулам:

Формулы термодинамики

Подставим энергию в первое уравнение, и получим еще один вид основного уравнения МКТ

Уравнение МКТ

Первое начало термодинамики. Формулы для изопроцессов

Напомним Вам, что первый закон термодинамики гласит: количество теплоты, переданное газу, идёт на изменение внутренней энергии газа U и на совершение газом работы A. Формула первого закона термодинамики записывается так:

Первое начало термодинамики

Как известно, с газом что-то происходит, мы можем сжать его, можем нагреть. В данном случае нас интересуют такие процессы, которые протекают при одном постоянном параметре. Рассмотрим, как выглядит первое начало термодинамики в каждом из них.

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы

Изотермический процесс протекает при постоянной температуре. Тут работает закон Бойля-Мариотта: в изотермическом процессе давление газа обратно пропорционально его объёму. В изотермическом процессе:

Изотермический процесс

Изохорный процесс протекает при постоянном объеме. Для этого процесса характерен закон Шарля: При постоянном объеме давление прямо пропорционально температуре. В изохорном процессе все тепло, подведенное к газу, идет на изменение его внутренней энергии.

Изохорный процесс

Изобарный процесс идет при постоянном давлении. Закон Гей-Люссака гласит, что при постоянном давлении газа его объём прямо пропорционален температуре. При изобарном процессе тепло идет как на изменение внутренней энергии, так и на совершение газом работы.

Изобарный процесс

Адиабатный процесс. Адиабатный процесс – это такой процесс, который проходит без теплообмена с окружающей средой. Это значит, что формула первого закона термодинамики для адиабатного процесса выглядит так:

Адиабатный процесс

Внутренняя энергия одноатомного и двухатомного идеального газа

Внутренняя энергия

Теплоемкость

Удельная теплоемкость равна количеству теплоты, которое необходимо для нагревания одного килограмма вещества на один градус Цельсия.

Теплоемкость газа

Помимо удельной теплоемкости, есть молярная теплоемкость (количество теплоты, необходимое для нагревания одного моля вещества на один градус) при постоянном объеме, и молярная теплоемкость при постоянном давлении. В формулах ниже, i – число степеней свободы молекул газа. Для одноатомного газа i=3, для двухатомного – 5.

Молярная теплоемкость

Тепловые машины. Формула КПД в термодинамике

Тепловая машина, в простейшем случае, состоит из нагревателя, холодильника и рабочего тела. Нагреватель сообщает тепло рабочему телу, оно совершает работу, затем охлаждается холодильником, и все повторяется вновь. Типичным примером тепловой машины является двигатель внутреннего сгорания.

Коэффициент полезного действия тепловой машины вычисляется по формуле

КПД

Вот мы и собрали основные формулы термодинамики, которые пригодятся в решении задач. Конечно, это не все все формулы из темы термодинамика, но их знание действительно может сослужить хорошую службу. А если возникнут вопросы  – помните о студенческом сервисе, специалисты которого готовы в любой момент прийти на выручку.

Содержание:

Работа в термодинамике:

В 9 классе вы узнали, что работа силы (механическая работа) связана с превращением одного вида энергии в другой, например, механической энергии во внутреннюю. Работу силы рассматривают как меру изменения энергии физической системы. А как определить работу в термодинамике? Как может быть выражена эта работа через макроскопические параметры — давление и об1

Рассмотрим газ, находящийся в цилиндрическом сосуде с площадью основания S, закрытом подвижным поршнем (рис. 52).

Работа в термодинамике в физике - формулы и определение с примерами

Взаимодействие газа с поршнем, а также со стенками сосуда можно характеризовать давлением р, которое газ оказывает на них. Допустим, что в результате изобарного расширения газа поршень переместился из положения 1 в положение 2 на расстояние Работа в термодинамике в физике - формулы и определение с примерами

Модуль силы давления газа, действующей на поршень, F = pS. Эта сила совершает работу по перемещению поршня

Работа в термодинамике в физике - формулы и определение с примерами (10.1)

где а — угол между направлениями силы и перемещения. В рассматриваемом примере а = 0, тогда

Работа в термодинамике в физике - формулы и определение с примерами

Произведение Работа в термодинамике в физике - формулы и определение с примерамиопределяет приращение объёма Работа в термодинамике в физике - формулы и определение с примерами (см. рис. 52), поэтому работа газа при его изобарном расширении

Работа в термодинамике в физике - формулы и определение с примерами  (10.2)

где Работа в термодинамике в физике - формулы и определение с примерами— начальный объём газа, Работа в термодинамике в физике - формулы и определение с примерами — объём газа в конечном состоянии.

Так как давление р газа всегда величина положительная, из формулы (10.2) следует, что, если газ расширяется Работа в термодинамике в физике - формулы и определение с примерами, работа, совершённая силой давления газа, положительная (Работа в термодинамике в физике - формулы и определение с примерами), а в случае сжатия (Работа в термодинамике в физике - формулы и определение с примерами) работа отрицательная (Работа в термодинамике в физике - формулы и определение с примерами).

Процесс медленного изобарного сжатия газа из состояния 2 с начальным объёмом Работа в термодинамике в физике - формулы и определение с примерамив состояние 1 с конечным объёмом Работа в термодинамике в физике - формулы и определение с примерами можно характеризовать работой Работа в термодинамике в физике - формулы и определение с примерамивнешних сил над газом:
Работа в термодинамике в физике - формулы и определение с примерами (10.З)

Из сравнения равенств (10.2) и (10.3) вытекает соотношение между работой Работа в термодинамике в физике - формулы и определение с примерамиу совершённой внешними силами, и работой Работа в термодинамике в физике - формулы и определение с примерами совершённой силой давления газа:Работа в термодинамике в физике - формулы и определение с примерамиЭто соотношение согласуется с третьим законом Ньютона (внешняя сила Работа в термодинамике в физике - формулы и определение с примерамидействующая на газ со стороны поршня, имеет
направление, противоположное силе давления Работа в термодинамике в физике - формулы и определение с примерами действующей на поршень со стороны газа). Из формулы (10.3) видно, что работа, совершённая внешними силами, положительная Работа в термодинамике в физике - формулы и определение с примерами если происходит сжатие газа Работа в термодинамике в физике - формулы и определение с примерами
Если газ расширяется Работа в термодинамике в физике - формулы и определение с примерами), то работа, совершённая внешними силами отрицательная Работа в термодинамике в физике - формулы и определение с примерами

Геометрическое толкование работы

Построим график зависимости давления газа от его объёма при р = const. Как видно из рисунка 53, при изобарном расширении газа работа, совершённая силой давления газа, численно равна площади прямоугольника Работа в термодинамике в физике - формулы и определение с примерами

Работа в термодинамике в физике - формулы и определение с примерами

Если процесс перехода газа из начального состояния в конечное не является изобарным, то работа, совершённая силой давления газа при изменении его объёма от Работа в термодинамике в физике - формулы и определение с примерамичисленно равна площади фигуры, ограниченной графиком процесса (кривая 1—2), осью OV и прямыми, соответствующими значениям объёмов Работа в термодинамике в физике - формулы и определение с примерами (рис. 54).

Работа в термодинамике в физике - формулы и определение с примерами

Процесс, при котором термодинамическая система, прошедшая некоторую последовательность состояний, снова возвращается в исходное состояние, называют циклическим процессом или циклом (рис. 55). Работа, совершаемая системой при циклическом процессе, или работа цикла, равна площади фигуры, ограниченной линиями, которые изображают цикл:Работа в термодинамике в физике - формулы и определение с примерами

гдеРабота в термодинамике в физике - формулы и определение с примерами на рисунке 55, а и Работа в термодинамике в физике - формулы и определение с примерами на рисунке 55, б.

Работа в термодинамике в физике - формулы и определение с примерами

Работа в термодинамике в физике - формулы и определение с примерами

Если «кривая расширения» (изобараРабота в термодинамике в физике - формулы и определение с примерами) (см. рис. 55, а) расположена выше «кривой сжатия» (изотерма Работа в термодинамике в физике - формулы и определение с примерами), то полная работа, совершённая системой за цикл (работа цикла), положительная. Если же, как изображено на рисунке 55, б, «кривая сжатия» (изобара Работа в термодинамике в физике - формулы и определение с примерами) расположена выше «кривой расширения» (изотермаРабота в термодинамике в физике - формулы и определение с примерами), то работа цикла отрицательная.

Из рисунка 56 видно, что численное значение работы цикла определяется не только начальным и конечным состояниями системы, но и видом процесса. Например, газ из состояния 1 можно перевести в состояние 3 либо в результате изотермического расширения, либо сначала изохорно понизив его давление до значения Работа в термодинамике в физике - формулы и определение с примерамиа затем изобарно увеличив его объём от значения Работа в термодинамике в физике - формулы и определение с примерамидо значения Работа в термодинамике в физике - формулы и определение с примерами

Как видно из рисунка 56, в первом случае работа, совершённая силами давления газа, больше, чем во втором. Следовательно, работа, совершаемая при переходе термодинамической системы из одного состояния в другое, зависит не только от начального и конечного состояний системы, но и от вида процесса.

Количество теплоты и удельная теплоёмкость

Итак, существуют два способа передачи энергии от одного тела к другому. Первый характеризуется передачей энергии в процессе механического взаимодействия тел — механическая энергия одного тела переходит в энергию хаотического движения частиц вещества другого тела или, наоборот, убыль энергии хаотического движения частиц вещества одного тела сказывается на увеличении механической энергии другого тела. Такую форму передачи энергии в термодинамике (как и в механике) называют работой. Так, например, в рассмотренной нами ранее термодинамической системе (газ в цилиндрическом сосуде под поршнем) расширение газа приводит к перемещению поршня. При этом убыль внутренней энергии газа равна работе, совершённой силой давления газа, под действием которой поршень переместился.

Второй способ передачи энергии осуществляется при непосредственном обмене энергией между хаотически движущимися частицами взаимодействующих тел. За счёт переданной при этом энергии увеличивается внутренняя энергия одного тела и уменьшается внутренняя энергия другого. Если, например, привести в соприкосновение два тела с разными температурами, то частицы более нагретого тела будут передавать часть своей энергии частицам более холодного тела. В результате внутренняя энергия первого тела уменьшается, а второго тела увеличивается. Процесс передачи энергии от одного тела к другому без совершения работы называют теплопередачей. Как вы уже знаете, существуют три вида теплопередачи: теплопроводность, конвекция и излучение.

Количественной мерой энергии, переданной телу в процессе теплопередачи, является количество теплоты Q. В СИ единицей количества теплоты является джоуль (Дж). Иногда для измерения количества теплоты используют внесистемную единицу — калорию (1 кал = 4,19Дж).

Если процесс теплопередачи не сопровождается изменением агрегатного состояния вещества, то
Работа в термодинамике в физике - формулы и определение с примерами (10,4)
где m — масса тела, Работа в термодинамике в физике - формулы и определение с примерами — разность температур в конце и в начале процесса теплопередачи, с — удельная теплоёмкость вещества — физическая величина, численно равная количеству теплоты, которое получает или отдаёт вещество массой 1 кг при изменении его температуры на 1 К. Удельную
теплоемкость измеряют в джоулях, деленных на килограмм, кельвинРабота в термодинамике в физике - формулы и определение с примерами
Физическая величина, равная произведению массы тела на удельную теплоёмкость вещества, носит название теплоёмкости тела. Обозначают теплоёмкость тела С и измеряют в джоулях на кельвинРабота в термодинамике в физике - формулы и определение с примерамиТеплоёмкость, в отличие от удельной теплоёмкости, является тепловой характеристикой тела, а не вещества.
 

Удельная теплота плавления

Физическую величину, численно равную количеству теплоты, необходимому для превращения кристаллического вещества массой 1 кг, взятого при температуре плавления, в жидкость той же температуры, называют удельной теплотой плавления Работа в термодинамике в физике - формулы и определение с примерамиДля плавления тела массой m, предварительно нагретого до температуры плавления, ему необходимо сообщить количество теплоты Работа в термодинамике в физике - формулы и определение с примерамиПри кристаллизации тела выделяется количество теплоты Работа в термодинамике в физике - формулы и определение с примерами

Удельная теплота парообразования

Физическую величину, численно равную количеству теплоты, которое необходимо передать жидкости массой 1 кг, находящейся при температуре кипения, для превращения её при постоянной температуре в пар, называют удельной теплотой парообразования L. Количество теплоты, необходимое для превращения жидкости массой m, предварительно нагретой до температуры кипения, в пар, определяют по формулеРабота в термодинамике в физике - формулы и определение с примерамиКонденсация пара сопровождается выделением количества теплоты Работа в термодинамике в физике - формулы и определение с примерами

Удельная теплота сгорания топлива

Физическую величину, численно равную количеству теплоты, выделяющемуся при полном сгорании топлива массой 1 кг, называют удельной теплотой сгорания топлива q. Количество теплоты, выделившееся при полном сгорании некоторой массы m топлива, определяют по формулеРабота в термодинамике в физике - формулы и определение с примерамиОно передаётся телам, образующим термодинамическую систему, и по отношению к ним является положительной величиной.

Отметим, что в результате теплопередачи могут изменяться как обе составляющие внутренней энергии тела, так и одна из них. При нагревании (охлаждении) изменяются кинетическая энергия хаотического движения частиц, которые составляют тело, и потенциальная энергия их взаимодействия. При плавлении (кристаллизации), кипении (конденсации) изменяется только потенциальная энергия взаимодействия частиц вещества.

При совершении работы также может изменяться как кинетическая, так и потенциальная энергия частиц вещества. Следовательно, как при теплопередаче, так и при совершении работы происходит изменение кинетической и потенциальной энергий частиц вещества, что приводит к изменению внутренней энергии тела.

1. Работу газа при изобарном процессе выражают через макроскопические параметры термодинамической системы:

Работа в термодинамике в физике - формулы и определение с примерами

2.    Работа газа численно равна площади фигуры, ограниченной графиком зависимости давления от объёма, осью OV и прямыми, соответствующими значениям объёмов Работа в термодинамике в физике - формулы и определение с примерами

3.    Работа, совершаемая при переходе системы из одного состояния в другое, зависит не только от начального и конечного состояний, но и от вида процесса.

4.    Процесс передачи энергии от одного тела к другому без совершения работы называют теплопередачей.

Пример №1

Определите работу, совершаемую силой давления идеального газа определённой массы при изобарном повышении его температуры от Работа в термодинамике в физике - формулы и определение с примерами= 12 °С до Работа в термодинамике в физике - формулы и определение с примерами= 87 °С, если давление газа и его начальный объём соответственно p=190кПа и Работа в термодинамике в физике - формулы и определение с примерами = 6,Одм’5.

Дано:

Пример №2

Состояние идеального газа, взятого в количестве v=l,0 моль при температуре Работа в термодинамике в физике - формулы и определение с примерамиизменяется так, как показано на рисунке 57. Определите работу газа в ходе всего процесса, если на изохоре Работа в термодинамике в физике - формулы и определение с примерами его давление уменьшается в три раза, а точки 1 и 3 лежат на одной изотерме.

Работа в термодинамике в физике - формулы и определение с примерами

Дано:

v = 1,0 моль

Работа в термодинамике в физике - формулы и определение с примерами = 300 к

Работа в термодинамике в физике - формулы и определение с примерами

Работа в термодинамике в физике - формулы и определение с примерами

А — ?

Решение. Работа Л газа в ходе всего процесса равна сумме работ на участках Работа в термодинамике в физике - формулы и определение с примерами Так как при переходе из состояния 1 в состояние 2 объём газа не меняется (процесс изохорный Работа в термодинамике в физике - формулы и определение с примерами), то работа газа Работа в термодинамике в физике - формулы и определение с примерами. Давление газа при переходе из состояния 2 в состояние 3 остаётся постоянным (Работа в термодинамике в физике - формулы и определение с примерами)следовательно, работа газа Работа в термодинамике в физике - формулы и определение с примерами Тогда Работа в термодинамике в физике - формулы и определение с примерами
Так как по условию Работа в термодинамике в физике - формулы и определение с примерами то воспользуемся уравнением Клапейрона (5.2):

Работа в термодинамике в физике - формулы и определение с примерамиоткуда Работа в термодинамике в физике - формулы и определение с примерами Следовательно, Работа в термодинамике в физике - формулы и определение с примерами
Работа в термодинамике в физике - формулы и определение с примерамиСогласно уравнению Клапейрона—Менделеева Работа в термодинамике в физике - формулы и определение с примерами

Тогда Работа в термодинамике в физике - формулы и определение с примерами

Работа в термодинамике в физике - формулы и определение с примерами

Ответ: А = 1,7 кДж.

Работа в термодинамике

В 9-м классе вы узнали, что передача энергии путём совершения работы происходит в процессе силового взаимодействия тел. То есть работа, совершённая над рассматриваемым телом, есть не что иное, как работа сил, приложенных к этому телу со стороны всех остальных (внешних) тел, с которыми оно взаимодействует. Работа, совершённая над телом, может непосредственно изменить любой вид энергии этого тела, например внутреннюю энергию, поэтому работу силы рассматривают как меру изменения энергии физической системы.

Одним из способов изменения внутренней энергии термодинамической системы является совершение работы. Этот способ характеризуется передачей энергии в процессе механического взаимодействия тел. При этом механическая энергия одного тела переходит во внутреннюю энергию другого тела или, наоборот, убыль внутренней энергии одного тела сказывается на увеличении механической энергии другого тела.

Таким образом, при совершении работы происходит превращение энергии из одной формы в другую.

Поскольку для описания термодинамических систем используют макропараметры (давление, объём, температура), то работу в термодинамике необходимо выражать, применяя эти параметры.

Работа в термодинамике в физике - формулы и определение с примерами

Рассмотрим газ в цилиндре, закрытом поршнем, площадь которого S (рис. 66). Давление газа в цилиндре Работа в термодинамике в физике - формулы и определение с примерами В результате изобарного расширения газа поршень переместился из положения 1 в положение 2 на расстояние Работа в термодинамике в физике - формулы и определение с примерами Модуль силы давления газа  на поршень Работа в термодинамике в физике - формулы и определение с примерами Эта сила совершила работу по перемещению поршня, равную    

Работа в термодинамике в физике - формулы и определение с примерами

где Работа в термодинамике в физике - формулы и определение с примерами — угол между направлениями силы Работа в термодинамике в физике - формулы и определение с примерами и перемещения поршня Работа в термодинамике в физике - формулы и определение с примерами Поскольку в рассматриваемом примере Работа в термодинамике в физике - формулы и определение с примерами и Работа в термодинамике в физике - формулы и определение с примерами то

Работа в термодинамике в физике - формулы и определение с примерами

Произведение Работа в термодинамике в физике - формулы и определение с примерами определяет изменение объёма Работа в термодинамике в физике - формулы и определение с примерами — начальный объём газа; Работа в термодинамике в физике - формулы и определение с примерами — объём газа в конечном состоянии (см. рис. 66).

Таким образом, работа силы давления газа при его изобарном расширении:

Работа в термодинамике в физике - формулы и определение с примерами

Так как давление р газа — величина положительная, то из формулы (12.1) следует, что Работа в термодинамике в физике - формулы и определение с примерами

При изобарном расширении газа из состояния 1 в состояние 2 работа силы Работа в термодинамике в физике - формулы и определение с примерами (см. рис. 66):

Работа в термодинамике в физике - формулы и определение с примерами

где Работа в термодинамике в физике - формулы и определение с примерами— модуль силы, действующей на газ со стороны поршня (внешняя сила); Работа в термодинамике в физике - формулы и определение с примерами — угол между направлениями силы Работа в термодинамике в физике - формулы и определение с примерами и перемещения Работа в термодинамике в физике - формулы и определение с примерами поршня.

Перемещение Работа в термодинамике в физике - формулы и определение с примерами поршня одно и то же, а сила давления Работа в термодинамике в физике - формулы и определение с примерами газа на поршень и сила давления Работа в термодинамике в физике - формулы и определение с примерами поршня на газ — силы, подчиняющиеся третьему закону Ньютона:

Работа в термодинамике в физике - формулы и определение с примерами

Следовательно, работы Работа в термодинамике в физике - формулы и определение с примерами отличаются только знаком Работа в термодинамике в физике - формулы и определение с примерами

Работа в термодинамике в физике - формулы и определение с примерами

Таким образом, можно сделать следующие выводы.

Работа в термодинамике в физике - формулы и определение с примерами
 

Геометрическое толкование работы:

Работу газа можно определить графически. Изобразим график зависимости давления газа от его объёма при Работа в термодинамике в физике - формулы и определение с примерами (рис. 68). Если процесс перехода газа из начального состояния в конечное является изобарным (АВ — изобара), то работа силы давления газа численно равна площади прямоугольника Работа в термодинамике в физике - формулы и определение с примерами

Если процесс перехода газа из начального состояния в конечное не является изобарным (рис. 69), то работа силы давления газа при изменении объёма от Работа в термодинамике в физике - формулы и определение с примерами численно равна площади фигуры, ограниченной графиком процесса (кривая 1—2), осью OV и прямыми, соответствующими значениям объёмов Работа в термодинамике в физике - формулы и определение с примерами

Работу газа определяют не только начальное и конечное состояния системы, но и вид процесса. Например, газ из состояния 1 можно перевести в состояние 3 либо в результате изотермического расширения (рис. 70), либо сначала изохорно понизив его давление до значения Работа в термодинамике в физике - формулы и определение с примерами а затем изобарно увеличив его объём до значения Работа в термодинамике в физике - формулы и определение с примерами В первом случае работа газа больше, чем во втором.
Работа в термодинамике в физике - формулы и определение с примерами

Следовательно, работа, совершаемая термодинамическом системой при переходе из одного состояния в другое, зависит не только от начального и конечного состояний системы, но и от вида процесса.

Работа в термодинамике в физике - формулы и определение с примерами

Пример №3

Определите работу, совершаемую силой давления идеального газа определённой 200 массы при переходе из состояния 1 в состояние 3 (рис. 73).   Работа в термодинамике в физике - формулы и определение с примерами

Решение. 1 способ. Работа А газа в ходе всего процесса равна сумме работ на участках Работа в термодинамике в физике - формулы и определение с примерами и Работа в термодинамике в физике - формулы и определение с примерами Поскольку при переходе газа из состояния 1 в состояние 2 его объём не изменяется (изохорный процесс Работа в термодинамике в физике - формулы и определение с примерами), то работа, совершаемая силой давления газа, Работа в термодинамике в физике - формулы и определение с примерами В процессе изобарного расширения (переход газа из состояния 2 в состояние 3) сила давления газа совершает работу

Работа в термодинамике в физике - формулы и определение с примерами

Тогда при переходе из состояния 1 в состояние 3 работа

Работа в термодинамике в физике - формулы и определение с примерами

Работа в термодинамике в физике - формулы и определение с примерами

Работа в термодинамике в физике - формулы и определение с примерами

2 способ. Работа газа численно равна площади заштрихованной фигуры, ограниченной графиком зависимости давления от объёма, осью OV и прямыми, соответствующими значениям объёма Работа в термодинамике в физике - формулы и определение с примерами и Работа в термодинамике в физике - формулы и определение с примерами (закрашенная область на рисунке 74).

Работа в термодинамике в физике - формулы и определение с примерами

Ответ: Работа в термодинамике в физике - формулы и определение с примерами

Пример №4

Определите работу, совершаемую силой давления идеального газа определённой массы при изобарном повышении его температуры от Работа в термодинамике в физике - формулы и определение с примерами если давление газа Работа в термодинамике в физике - формулы и определение с примерами а его начальный объём Работа в термодинамике в физике - формулы и определение с примерами

Работа в термодинамике в физике - формулы и определение с примерами
Решение. Сила давления газа совершает положительную работу, поскольку при изобарном нагревании увеличивается его объём. Поэтому

Работа в термодинамике в физике - формулы и определение с примерами

Согласно уравнению Клапейрона—Менделеева, Работа в термодинамике в физике - формулы и определение с примерами
Работа в термодинамике в физике - формулы и определение с примерами Следовательно,

Работа в термодинамике в физике - формулы и определение с примерами

Работа в термодинамике в физике - формулы и определение с примерами

Ответ: Работа в термодинамике в физике - формулы и определение с примерами

Как определить работу в термодинамике

В конце XVIII в. английский физик Бенджамин Томпсон (граф Румфорд) исследовал тепло, выделяющееся при сверлении бронзовых пушек. Румфорд успевал вскипятить поставленные на пушки котлы с водой за счет тепла, которое выделялось, пока лошади приводили в движение очень тупое сверло. В данном случае энергия механического движения сверла превращалась в энергию хаотического движения молекул бронзы и воды. А можно ли сделать наоборот?

Почему при изменении объема газа изменяется его внутренняя энергия

Внутренняя энергия газа может изменяться, если действующие на него внешние силы совершают работу (положительную или отрицательную). Например, если газ сжимают (газ совершает отрицательную работу) (рис. 37.1) и он при этом не отдает энергию окружающей среде, то скорость движения молекул газа, а соответственно, и внутренняя энергия, и температура газа увеличиваются. И наоборот: если газ расширяется (то есть совершает положительную работу), то скорость движения молекул, температура и внутренняя энергия газа уменьшаются.

Работа в термодинамике в физике - формулы и определение с примерами

Рис. 37.1. При сжатии газа скорость его молекул после столкновения с поршнем увеличивается (v > Работа в термодинамике в физике - формулы и определение с примерами) — газ нагревается. (Аналогично увеличивается скорость мяча после удара волейболиста, когда его рука движется навстречу мячу.)

Как вычислить работу газа

Вычислим работу, которую совершает сила давления газа при изменении его объема от Работа в термодинамике в физике - формулы и определение с примерами По определению работы: A=Fscosα. Если газ расширяется изобарно, то сила, действующая со стороны газа на поршень, постоянна: F=pS (p — давление газа; S — площадь поршня); модуль перемещения поршня Работа в термодинамике в физике - формулы и определение с примерами (рис. 37.2, а); α = 0.

Работа в термодинамике в физике - формулы и определение с примерами

Таким образом, работа газа при его изобарном расширении равна:

Работа в термодинамике в физике - формулы и определение с примерами

Работе газа при изобарном расширении (или сжатии) можно дать простое геометрическое толкование: работа газа численно равна площади прямоугольника под графиком зависимости p(V) (рис. 37.3).

Работа в термодинамике в физике - формулы и определение с примерами

Пусть некоторый газ переходит из состояния 1 в состояние 2 (рис. 37.4). Если изменение объема газа (∆V) достаточно мало, то давление газа можно считать неизменным. Тогда работа газа численно равна площади выделенной на рисунке полосы. Полная работа при изменении объема от Работа в термодинамике в физике - формулы и определение с примерами будет равна сумме площадей всех полос, то есть площади криволинейной трапеции под графиком зависимости p (V).

Работа в термодинамике в физике - формулы и определение с примерамиРабота в термодинамике в физике - формулы и определение с примерами

Очевидно, что при изохорном процессе (V = const) площадь фигуры под графиком зависимости p (V) равна нулю (рис. 37.5), — газ работу не совершает (A = 0) . Работа газа зависит от того, каким образом происходил переход газа из начального состояния в конечное (рис. 37.6).

Работа в термодинамике в физике - формулы и определение с примерами

Рис. 37.6. три пути перехода газа из состояния 1 в состояние 2: а — газ изобарно расширяется (участок 1k), затем изохорно охла ждается (участок k2); б — газ изотермически расширяется; в — газ изохорно охлаждается (участок 1l), затем изобарно расширяется (участок l2). сравнив площади фигур под графиками, видим, что: Работа в термодинамике в физике - формулы и определение с примерами

Пример №5

На рисунке графически изображен циклический процесс, совершаемый идеальным газом. Определите работу газа за цикл.

Работа в термодинамике в физике - формулы и определение с примерами

Решение:

Полная работа за цикл равна сумме работ, совершенных газом в ходе каждого процесса цикла. Работа газа в ходе процесса 1–2 численно равна площади трапеции, основания которой равны Работа в термодинамике в физике - формулы и определение с примерами и Работа в термодинамике в физике - формулы и определение с примерами, а высота — Работа в термодинамике в физике - формулы и определение с примерами; объем газа увеличивается, поэтому работа газа положительна. Работа газа в ходе процесса 2–3 равна нулю, поскольку этот процесс изохорный. Работа газа в ходе процесса 3–1 численно равна площади прямоугольника со сторонами Работа в термодинамике в физике - формулы и определение с примерами и Работа в термодинамике в физике - формулы и определение с примерами; объем газа уменьшается, поэтому работа отрицательна. Следовательно, для определения работы за весь цикл нужно из площади трапеции вычесть площадь прямоугольника. То есть, как видно из рисунка, работа газа за цикл численно равна площади прямоугольного треугольника 1–2–3:

Работа в термодинамике в физике - формулы и определение с примерами

Работа в термодинамике в физике - формулы и определение с примерами

Выводы:

  • При отсутствии теплообмена с окружающей средой, если над газом совершают работу, внутренняя энергия газа увеличивается; если газ сам совершает работу, его внутренняя энергия уменьшается.
  • Если объем газа увеличивается, то газ совершает положительную работу. Если объем газа уменьшается, то работа газа отрицательна.
  • Работа газа численно равна площади фигуры под графиком зависимости p (V). При изобарном процессе работу газа можно определить по формуле A=p∆V, при изохорном процессе работа газа равна нулю: A = 0.
  • Первый закон термодинамики
  • Второй закон термодинамики
  • Тепловые двигатели и их КПД
  • Тепловое состояние тел
  • Термодинамика — основные понятия, формулы и определения
  • Необратимость тепловых процессов
  • Адиабатический процесс
  • Молекулярно-кинетическая теория

Работа в термодинамике

В термодинамике, в отличие от механики, рассматривается не движение тела как целого, а лишь относительное изменение частей термодинамической системы, в результате которого меняется ее объем.

Рассмотрим работу газа при изобарическом расширении.

Вычислим работу, совершаемую газом при его действии на поршень с силой ${F’}↖{→}$, равной по величине и противоположной по направлению силе ${F’}↖{→}$, действующей на газ со стороны поршня: ${F’}↖{→}=-{F’}↖{→}$ (согласно третьему закону Ньютона), $F’=pS$, где $p$ — давление газа, а $S$ — площадь поверхности поршня. Если перемещение поршня $∆h$ в результате расширения мало, то давление газа можно считать постоянным и работа газа равна:

$A’=F’∆h=pS∆h=p∆V$

Если газ расширяется, он совершает положительную работу, та к как перемещение поршня совпадает по направлению с силой ${F’}↖{→}$. Если газ сжимается, то работа газа отрицательна, поскольку перемещение поршня противоположно силе ${F’}↖{→}$. В формуле $A’=F’∆h=pS∆h=p∆V$ появится знак «минус»: $∆V < 0$, поскольку $∆h < 0$.

Работа внешних сил $А$, наоборот, положительна при сжатии газа и отрицательна при расширении:

$A=-A’=-p∆V$

Совершая над газом положительную работу, внешние тела передают ему часть своей энергии. При расширении газа внешние тела отбирают у газа часть его энергии — работа внешних сил отрицательна.

На графике зависимости давления от объема $р(V)$ работа определяется как площадь, ограниченная кривой $р(V)$, осью $V$ и отрезками $ab$ и $cd$, равными давлениям $р_1$ в начальном ($V_1$) и $р_2$ в конечном ($V_2$) состояниях, как для изобарного, так и для изотермического процессов.

Первый закон термодинамики

Первое начало (первый закон) термодинамики — это закон сохранения и превращения энергии для термодинамической системы.

Согласно первому началу термодинамики, работа может совершаться только за счет теплоты или какой-либо другой формы энергии. Следовательно, работу и количество теплоты измеряют в одних единицах — джоулях (как и энергию).

Первое начало термодинамики было сформулировано немецким ученым Ю. Л. Майером в 1842 г. и подтверждено экспериментально английским ученым Дж. Джоулем в 1843 г.

Первый закон термодинамики формулируется так:

Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:

$∆U=A+Q$

где $∆U$ — изменение внутренней энергии, $А$ — работа внешних сил, $Q$ — количество теплоты, переданной системе.

Из $∆U=A+Q$ следует закон сохранения внутренней энергии. Если систему изолировать от внешних воздействий, $A=0$ и $Q=0$,а следовательно, $∆U=0$.

При любых процессах, происходящих в изолированной системе, ее внутренняя энергия остается постоянной.

Если работу совершает система, а не внешние силы, то уравнение ($∆U=A+Q$) записывается в виде:

$Q=∆U+A’$

где $А’$ — работа, совершаемая системой ($А’=-А$).

Количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами.

Первое начало термодинамики может быть сформулировано как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника, т. е. только за счет внутренней энергии.

Действительно, если к телу не поступает теплота ($Q=0$), то работа $А’$, согласно уравнению $Q=∆U+A’$, совершается только за счет убыли внутренней энергии $A’=-∆U$. После того, как запас энергии окажется исчерпанным, двигатель перестает работать.

Следует помнить, что как работа, так и количество теплоты являются характеристиками процесса изменения внутренней энергии, поэтому нельзя говорить, что в системе содержится определенное количество теплоты или работы. Система в любом состоянии обладает лишь определенной внутренней энергией.

Применение первого закона термодинамики к различным процессам

Рассмотрим применение первого закона термодинамики к различным термодинамическим процессам.

Изохорный процесс. Зависимость $р(Т)$ на термодинамической диаграмме изображается изохорой.

Изохорный (изохорический) процесс — термодинмический процесс, происходящий в системе при постоянном объеме.

Изохорный процесс можно осуществить в газах и жидкостях, заключенных в сосуд с постоянным объемом.

При изохорном процессе объем газа не меняется ($∆V=0$), и, согласно первому началу термодинамики $Q=∆U+A’$,

$∆U=Q$

т. е. изменение внутренней энергии равно количеству переданного тепла, т. к. работа ($A=p∆V=0$) газом не совершается.

Если газ нагревается, то $Q > 0$ и $∆U > 0$, его внутренняя энергия увеличивается. При охлаждении газа $Q < 0$ и $∆U < 0$, внутренняя энергия уменьшается.

Изотермический процесс графически изображается изотермой.

Изотермический процесс — это термодинамический процесс, происходящий в системе при постоянной температуре.

Поскольку при изотермическом процессе внутренняя энергия газа не меняется ($T=const$), то все переданное газу количество теплоты идет на совершение работы:

$Q=A’$

При получении газом теплоты ($Q > 0$) он совершает положительную работу ($А’ > 0$). Если газ отдает тепло окружающей среде, $Q < 0$ и $А’ < 0$. В этом случае над газом совершается работа внешними силами. Для внешних сил работа положительна. Геометрически работа при изотермическом процессе определяется площадью под кривой $р(V)$.

Изобарный процесс на термодинамической диаграмме изображается изобарой.

Изобарный (изобарический) процесс — термодинамический процесс, происходящий в системе с постоянным давлением $p$.

Примером изобарного процесса является расширение газа в цилиндре со свободно ходящим нагруженным поршнем.

При изобарном процессе согласно формуле $Q=∆U+A’$ передаваемое газу количество теплоты идет на изменение его внутренней энергии $∆U$ и на совершение им работы $A’$ при постоянном давлении:

$Q=∆U+A’$

Работа идеального газа определяется по графику зависимости $p(V)$ для изобарного процесса ($A’=p∆V$).

Для идеального газа при изобарном процессе объем пропорционален температуре, в реальных газах часть теплоты расходуется на изменение средней энергии взаимодействия частиц.

Адиабатический процесс

Адиабатический процесс (адиабатный процесс) — это термодинамический процесс, происходящий в системе без теплообмена с окружающей средой ($Q=0$).

Адиабатическая изоляция системы приближенно достигается в сосудах Дьюара, в так называемых адиабатных оболочках. На адиабатически изолированную систему не оказывает влияния изменение температуры окружающих тел. Ее внутренняя энергия и может меняться только за счет работы, совершаемой внешними телами над системой, или самой системой.

Согласно первому началу термодинамики ($∆U=A+Q$), в адиабатной системе

$∆U=A$

где $А$ — работа внешних сил.

При адиабатном расширении газа $А < 0$.

Следовательно,

$∆U={i}/{2}·{m}/{M}R∆T < 0,$

что означает уменьшение температуры при адиабатном расширении. Оно приводит к тому, что давление газа уменьшается более резко, чем при изотермическом процессе.

На рисунке адиабата $1—2$, проходящая между двумя изотермами, наглядно иллюстрирует сказанное. Площадь под адиабатой численно равна работе, совершаемой газом при его адиабатическом расширении от объема $V_1$ до $V_2$.

Адиабатное сжатие приводит к повышению температуры газа, т. к. в результате упругих соударений молекул газа с поршнем их средняя кинетическая энергия возрастает, в отличие от расширения, когда она уменьшается (в первом случае скорости молекул газа увеличиваются, во втором — уменьшаются).

Резкое нагревание воздуха при адиабатическом сжатии используется в двигателях Дизеля.

Принцип действия тепловых двигателей

Тепловой двигатель — это устройство, преобразующее внутреннюю энергию топлива в механическую энергию.

Согласно второму началу термодинамики, тепловой двигатель может непрерывно совершать периодически повторяющуюся механическую работу за счет охлаждения окружающих тел, если он не только получает теплоту от более горячего тела (нагревателя), но при этом отдает теплоту менее нагретому телу (холодильнику). Следовательно, на совершение работы идет не все количество теплоты, полученное от нагревателя, а только часть ее.

Таким образом, основными элементами любого теплового двигателя являются:

  1. рабочее тело (газ или пар), совершающее работу;
  2. нагреватель, сообщающий энергию рабочему телу;
  3. холодильник, поглощающий часть энергии от рабочего тела.

Коэффициент полезного действия теплового двигателя

Согласно закону сохранения энергии, работа, совершаемая двигателем, равна:

$A’=|Q_1|-|Q_2|$

где $Q_1$ — количество теплоты, полученное от нагревателя, $Q_2$ — количество теплоты, отданное холодильнику.

Коэффициентом полезного действия (КПД) теплового двигателя называется отношение работы $А’$, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

$η={A’}/{|Q_1|}={|Q_1|-|Q_2|}/{|Q_1|}=1-{|Q_2|}/{|Q_1|}$

Так как у всех двигателей некоторое количество теплоты передается холодильнику, то $η < 1$.

КПД теплового двигателя пропорционален разности температур нагревателя и холодильника. При $T_1 — T_2=0$ двигатель не может работать.

Цикл Карно

Цикл Карно — это круговой обратимый процесс, состоящий из двух изотермических и двух адиабатических процессов.

Впервые этот процесс был рассмотрен французским инженером и ученым Н. Л. С. Карно в 1824 г. в книге «Размышления о движущей силе огня и о машинах, способных развивать эту силу».

Целью исследований Карно было выяснение причин несовершенства тепловых машин того времени (они имели КПД $< 5%$)и поиски путей их усовершенствования.

Выбор двух изотермических и двух адиабатических процессов был обусловлен тем, что работа газа при изотермическом расширении совершается за счет внутренней энергии нагревателя, а при адиабатном процессе — за счет внутренней энергии расширяющегося газа. В этом цикле исключен контакт тел с разной температурой, следовательно, исключена теплопередача без совершения работы.

Цикл Карно — самый эффективный из всех возможных. Его КПД максимален.

На рисунке изображены термодинамические процессы цикла. В процессе изотермического расширения ($1-2$) при температуре $Т_1$ работа совершается за счет изменения внутренней энергии нагревателя, т. е. за счет подведения к газу количества теплоты $Q_1$:

$A_{12}=Q_1.$ Охлаждение газа перед сжатием ($3-4$) происходит при адиабатном расширении ($2-3$). Изменение внутренней энергии $∆U_{23}$ при адиабатном процессе ($Q=0$) полностью преобразуется в механическую работу:

$A_{23}=-∆U_{23}$

Температура газа в результате адиабатического расширения ($2-3$) понижается до температуры холодильника $Т_2 < Т_1$. В процессе ($3-4$) газ изотермически сжимается, передавая холодильнику количество теплоты $Q_2$:

$A_{34}=Q_2,$

Цикл завершается процессом адиабатического сжатия ($4—1$), при котором газ нагревается до температуры $Т_1$.

Максимальное значение КПД тепловых двигателей, работающих на идеальном газе, по циклу Карно:

$η={T_1-T_2}/{T_1}=1-{T_2}/{T_1}$

Суть формулы $η={T_1-T_2}/{T_1}=1-{T_2}/{T_1}$ выражена в доказанной С. Карно теореме о том, что КПД любого теплового двигателя не может превышать КПД цикла Карно, осуществляемого при той же температуре нагревателя и холодильника.

Термодинамика

Термодинамика – это раздел физики, изучающий тепловые свойства макроскопических тел и систем тел, находящихся в состоянии теплового равновесия, на основе закона сохранения энергии, без учета внутреннего строения тел, составляющих систему.

Термодинамика не рассматривает микроскопические величины – размеры атомов и молекул, их массы и количество.

Законы термодинамики устанавливают связи между непосредственно наблюдаемыми физическими величинами, характеризующими состояние системы, такими как давление ​( p )​, объем ​( V )​, температура ​( T )​.

Содержание

  • Внутренняя энергия
  • Тепловое равновесие
  • Теплопередача
  • Количество теплоты. Удельная теплоемкость вещества
  • Работа в термодинамике
  • Уравнение теплового баланса
  • Первый закон термодинамики
  • Второй закон термодинамики
  • КПД тепловой машины
  • Принципы действия тепловых машин
  • Проблемы энергетики и охрана окружающей среды

Внутренняя энергия

Внутренняя энергия – это физическая величина, равная сумме кинетической энергии теплового движения частиц тела и потенциальной энергии их взаимодействия друг с другом.

Обозначение – ​( U )​, в СИ единица измерения – Джоуль (Дж).

В термодинамике внутренняя энергия зависит от температуры и объема тела.

Внутренняя энергия тел зависит от их температуры, массы и агрегатного состояния. С ростом температуры внутренняя энергия увеличивается. Наибольшая внутренняя энергия у вещества в газообразном состоянии, наименьшая – в твердом.

Внутренняя энергия идеального газа представляет собой только кинетическую энергию теплового движения его частиц; потенциальная энергия взаимодействия частиц равна нулю.

Внутренняя энергия идеального газа прямо пропорциональна его температуре, а от объема не зависит (молекулы идеального газа не взаимодействуют друг с другом):

где ​( i )​ – коэффициент, равный числу степеней свободы молекулы, ​( nu )​ – количество вещества, ​( R )​ – универсальная газовая постоянная, ​( T )​ – абсолютная температура.

Число степеней свободы равно числу возможных движений частицы.

Важно!
Для одноатомных газов коэффициент ​( i )​ = 3, для двухатомных газов ​( i )​ = 5.

На практике часто важно уметь находить изменение внутренней энергии:

При решении задач можно записать формулу для вычисления внутренней энергии, используя уравнение Менделеева–Клапейрона:

где ​( p )​ – давление, ​( V )​ – объем газа.

Внутренняя энергия реальных газов зависит как от температуры, так и от объема.

Изменить внутреннюю энергию можно за счет изменения температуры (при теплопередаче) и за счет изменения давления и объема (при совершении работы).

Тепловое равновесие

Тепловое равновесие – это состояние системы, при котором все ее макроскопические параметры остаются неизменными сколь угодно долго.

Величины, характеризующие состояние макроскопических тел без учета их молекулярного строения, называются макроскопическими параметрами. К ним относятся давление и температура, объем, масса, концентрация отдельных компонентов смеси газа и др. В состоянии теплового равновесия отсутствует теплообмен с окружающими телами, отсутствуют переходы вещества из одного агрегатного состояния в другое, не меняются температура, давление, объем.

Любая термодинамическая система переходит самопроизвольно в состояние теплового равновесия. Каждому состоянию теплового равновесия, в которых может находиться термодинамическая система, соответствует определенная температура.

Важно!
В состоянии теплового равновесия объем, давление могут быть различными в разных частях термодинамической системы, и только температура во всех частях термодинамической системы, находящейся в состоянии теплового равновесия, является одинаковой. Микроскопические процессы внутри тела не прекращаются и при тепловом равновесии: меняются положения молекул, их скорости при столкновениях.

Теплопередача

Теплопередача – процесс изменения внутренней энергии тела без совершения работы.

Существуют три вида теплопередачи: теплопроводность, конвекция и излучение (лучистый теплообмен). Теплопередача происходит между телами, имеющими разную температуру. Тепло передается от тела с более высокой температурой к телу с более низкой температурой.

Теплопроводность – это процесс переноса энергии от более нагретых тел (частей тела) к менее нагретым в результате движения и взаимодействия частиц тела. Высокую теплопроводность имеют металлы – так, лучшие проводники тепла – медь, золото, серебро. Теплопроводность жидкостей меньше, а газы являются плохими проводниками тепла. Пористые тела плохо проводят тепло, так как в порах содержится воздух. Вещества с низкой теплопроводностью используют в качестве теплоизоляторов. Теплопроводность невозможна в вакууме. При теплопроводности не происходит переноса вещества.

Явление теплопроводности газов аналогично явлению диффузии. Быстрые молекулы из слоя с более высокой температурой перемещаются в более холодный слой, а молекулы из холодного слоя перемещаются в более нагретый. За счет этого средняя кинетическая энергия молекул более теплого слоя уменьшается, и его температура становится ниже.

В жидкостях и твердых телах при повышении температуры какого-либо участка твердого тела или жидкости его частицы начинают колебаться сильнее. Соударяясь с соседними частицами, где температура ниже, эти частицы передают им часть своей энергии, и температура этого участка возрастает.

Конвекция – перенос энергии потоками жидкости или газа.

Объяснить механизм конвекции можно на основе теплового расширения тел и закона Архимеда. При нагревании объем жидкости увеличивается, а плотность уменьшается. Нагретый слой под действием силы Архимеда поднимается вверх, а холодный опускается вниз. Это естественная конвекция. Она возникает при неравномерном нагревании жидкости или газа снизу в поле тяготения.

При вынужденной конвекции перемещение вещества происходит под действием насосов, лопастей вентилятора. Такая конвекция применяется в состоянии невесомости. Интенсивность конвекции зависит от разности температур слоев среды и агрегатного состояния вещества. Конвекционные потоки поднимаются вверх. При конвекции происходит перенос вещества.

В твердых телах конвекция невозможна, так как частицы не могут из-за сильного взаимодействия покидать свои места. В вакууме конвекция также невозможна.

Примером конвективных потоков в природе являются ветры (бризы дневной и ночной, муссоны).

Излучение (лучистый теплообмен) – перенос энергии электромагнитными волнами. Перенос тепла излучением возможен в вакууме. Источником излучения является любое тело, температура которого отлична от нуля К. При поглощении энергия теплового излучения переходит во внутреннюю энергию. Темные тела быстрее нагреваются излучением, чем тела с блестящей поверхностью, но и остывают быстрее. Мощность излучения зависит от температуры тела. С увеличением температуры тела энергия излучения увеличивается. Чем больше площадь поверхности тела, тем интенсивнее излучение.

Количество теплоты. Удельная теплоемкость вещества

Количество теплоты – это скалярная физическая величина, равная энергии, которую тело получило или отдало при теплопередаче.

Обозначение – ​( Q )​, в СИ единица измерения – Дж.

Удельная теплоемкость – это скалярная физическая величина, численно равная количеству теплоты, которое тело массой 1 кг получает или отдает при изменении его температуры на 1 К.

Обозначение – ​( c )​, в СИ единица измерения – Дж/(кг·К).

Удельная теплоемкость определяется не только свойствами вещества, но и тем, в каком процессе осуществляется теплопередача. Поэтому выделяют удельную теплоемкость газа при постоянном давлении – ​( c_P )​ и удельную теплоемкость газа при постоянном объеме – ​( c_V )​. Для нагревания газа на 1 К при постоянном давлении требуется большее количество теплоты, чем при постоянном объеме – ​( c_P > c_V )​.

Формула для вычисления количества теплоты, которое получает тело при нагревании или отдает при охлаждении:

где ​( m )​ – масса тела, ​( c )​ – удельная теплоемкость, ​( T_2 )​ – конечная температура тела, ​( T_1 )​ – начальная температура тела.

Важно!
При решении задач на расчет количества теплоты при нагревании или охлаждении можно не переводить температуру в кельвины. Так как 1К=1°С, то​( Delta T=Delta t )​.

Работа в термодинамике

Работа в термодинамике равна изменению внутренней энергии тела.

Обозначение работы газа – ​( A’ )​, единица измерения в СИ – джоуль (Дж). Обозначение работы внешних сил над газом – ​( A )​.

Работа газа ​( A’ =-A )​.

Работой расширения идеального газа называют работу, которую газ совершает против внешнего давления.

Работа газа положительна при расширении и отрицательна при его сжатии. Если объем газа не изменяется (изохорный процесс), то работы газ не совершает.

Графически работа газа может быть вычислена как площадь фигуры под графиком зависимости давления от объема в координатных осях ​( (p,V) )​, ограниченная графиком, осью ​( V )​ и перпендикулярами, проведенными из точек начального и конечного значений объема.

Формула для вычисления работы газа:

в изобарном процессе ​( A’=pcdotDelta V. )

в изотермическом процессе ( A’=frac{m}{M}RTlnfrac{V_2}{V_1}. )

Уравнение теплового баланса

Если система тел является теплоизолированной, то ее внутренняя энергия не будет изменяться несмотря на изменения, происходящие внутри системы. Если ​( A )​ = 0, ​( Q )​ = 0, то и ​( Delta U )​ = 0 .

При любых процессах, происходящих в теплоизолированной системе, ее внутренняя энергия не изменяется (закон сохранения внутренней энергии).

Рассмотрим теплоизолированную систему из двух тел с разными температурами. При контакте между ними будет проходить теплообмен. Тело с большей температурой будет отдавать некоторое количество теплоты, а тело с меньшей температурой – получать, пока температуры тел не станут равными. Так как суммарная внутренняя энергия не должна изменяться, то, на сколько уменьшится внутренняя энергия более нагретого тела, на столько должна увеличиться внутренняя энергия второго тела. Так как работа не совершается, то изменение внутренней энергии равно количеству теплоты.

Количество теплоты, отданное при теплообмене телом с большей температурой, равно по модулю количеству теплоты, полученному телом с меньшей температурой:

Другая формулировка: если тела образуют замкнутую систему и между ними происходит только теплообмен, то алгебраическая сумма отданных ​( Q_{отд} )​ и полученных ( Q_{пол} ) количеств теплоты равна нулю:

Первый закон термодинамики

Закон сохранения и превращения энергии, распространенный на тепловые явления, называется первым законом (началом) термодинамики.

Можно дать формулировку этого закона исходя из способов изменения внутренней энергии.

Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:

Если рассматривать работу самой системы над внешними телами, то закон может быть сформулирован так:

количество теплоты, переданное системе, идет на изменение ее внутренней энергии и совершение системой работы над внешними телами:

Если система изолирована и над ней не совершается работа и нет теплообмена с внешними телами, то в этом случае внутренняя энергия не изменяется. Если к системе не поступает теплота, то работа системой может совершаться только за счет уменьшения внутренней энергии. Это значит, что невозможно создать вечный двигатель – устройство, способное совершать работу без каких-либо затрат топлива.

Первый закон термодинамики для изопроцессов

Изотермический процесс: ( Q=A’,(T=const, Delta U=0) )
Физический смысл: все переданное газу тепло идет на совершение работы.

Изобарный процесс: ( Q=Delta U+A’ )
Физический смысл: подводимое к газу тепло идет на увеличение его внутренней энергии и на совершение газом работы.

Изохорный процесс: ( Q=Delta U,(V=const, A’=0) )
Физический смысл: внутренняя энергия газа увеличивается за счет подводимого тепла.

Адиабатный процесс: ​( Delta U=-A’ )​ или ​( A=Delta U,mathbf{(Q=0)} )
Физический смысл: внутренняя энергия газа уменьшается за счет совершения газом работы. Температура газа при этом понижается.

Задачи об изменении внутренней энергии тел

Такие задачи можно разделить на группы:

  • При взаимодействии тел изменяется их внутренняя энергия без совершения работы над внешней средой.
  • Рассматриваются явления, связанные с превращением одного вида энергии в другой при взаимодействии двух тел. В результате происходит изменение внутренней энергии одного тела вследствие совершенной им или над ним работы.

При решении задач первой группы:

  • установить, у каких тел внутренняя энергия уменьшается, а у каких – возрастает;
  • составить уравнение теплового баланса ​( (Delta U=0) ), при записи которого в выражении ​( Q =cm(t_2 – t_1) )​ для изменения внутренней энергии нужно вычитать из конечной температуры тела начальную и суммировать члены с учетом получающегося знака;
  • решить полученное уравнение относительно искомой величины;
  • проверить решение.

При решении задач второй группы:

  • убедиться, что в процессе взаимодействия тел теплота извне к ним не подводится, т.е. действительно ли ​( Q = 0 )​;
  • установить, у какого из двух взаимодействующих тел изменяется внутренняя энергия и что является причиной этого изменения – работа, совершенная самим телом, или работа, совершенная над телом;
  • записать уравнение ​( Q = Delta U + A )​ для тела, у которого изменяется внутренняя энергия, учитывая знак перед работой и КПД рассматриваемого процесса;
  • если работа совершается за счет уменьшения внутренней энергии одного из тел, то ​( А= -Delta U )​, а если внутренняя энергия тела увеличивается за счет работы, совершенной над телом, то ​( A=Delta U )​;
  • найти выражения для ​( Delta U )​ и ​( A )​;
  • подставить в исходное уравнение вместо ( Delta U ) и ( A ) выражения для них, получить окончательное соотношение для определения искомой величины;
  • решить полученное уравнение относительно искомой величины;
  • проверить решение.

Второй закон термодинамики

Все процессы в природе протекают только в одном направлении. В обратном направлении самопроизвольно они протекать не могут. Необратимым называется процесс, обратный которому может протекать только как составляющая более сложного процесса.

Примеры необратимых процессов:

  • переход тепла от более нагретого тела к менее нагретому телу;
  • переход механической энергии во внутреннюю энергию.

Первый закон термодинамики ничего не говорит о направлении процессов в природе.

Второй закон термодинамики выражает необратимость процессов, происходящих в природе. Существует несколько его формулировок.

Второй закон термодинамики (формулировка Клаузиуса):
невозможно перевести тепло от более холодной системы к более горячей при отсутствии одновременных изменений в обеих системах или окружающих телах.

Второй закон термодинамики (формулировка Кельвина):
невозможно осуществить такой периодический процесс, единственным результатом которого было бы получение работы за счет теплоты, взятой от одного источника.

Эта формулировка говорит также и о том, что невозможно построить вечный двигатель второго рода, то есть двигатель, совершающий работу за счет охлаждения какого-либо одного тела.

Важно!
В формулировке второго закона термодинамики большое значение имеют слова «единственным результатом». Если процессы, о которых идет речь, не являются единственными, то запреты снимаются. Например, в холодильнике происходит передача тепла от более холодного тела к нагретому и при этом осуществляется компенсирующий процесс превращения механической энергии окружающих тел во внутреннюю энергию.

Второй закон термодинамики выполняется для систем с огромным числом частиц. В системах с малым количеством частиц возможны флуктуации – отклонения от равновесия.

КПД тепловой машины

Коэффициентом полезного действия (КПД) тепловой машины (двигателя) называется отношение работы ​( A )​, совершаемой двигателем за цикл, к количеству теплоты ​( Q_1 )​, полученному за цикл от нагревателя:

Тепловая машина с максимальным КПД была создана Карно. В машине осуществляется круговой процесс (цикл Карно), при котором после ряда преобразований система возвращается в начальное состояние.

Цикл Карно состоит из четырех стадий:

  1. Изотермическое расширение (на рисунке — процесс 1–2). В начале процесса рабочее тело имеет температуру ​( T_1 )​, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передает ему количество теплоты ​( Q_1 )​. При этом объем рабочего тела увеличивается.
  2. Адиабатное расширение (на рисунке — процесс 2–3). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника ​( T_2 )​.
  3. Изотермическое сжатие (на рисунке — процесс 3–4). Рабочее тело, имеющее к тому времени температуру ​( T_2 )​, приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты ​( Q_2 )​.
  4. Адиабатное сжатие (на рисунке — процесс 4–1). Рабочее тело отсоединяется от холодильника. При этом его температура увеличивается до температуры нагревателя ​( T_1 )​.

КПД цикла Карно:

Отсюда видно, что КПД цикла Карно с идеальным газом зависит только от температуры нагревателя ​( (T_1) )​ и холодильника ( (T_2) ).

Из уравнения следуют выводы:

  • для повышения КПД тепловой машины нужно увеличить температуру нагревателя и уменьшить температуру холодильника;
  • КПД тепловой машины всегда меньше 1.

Цикл Карно обратим, так как все его составные части являются равновесными процессами.

КПД тепловых двигателей: двигатель внутреннего сгорания — 30%, дизельный двигатель — 40%, паровая турбина — 40%, газовая турбина — 25–30%.

Принципы действия тепловых машин

Тепловым двигателем называют устройство, преобразующее внутреннюю энергию топлива в механическую энергию.

Основные части теплового двигателя:

  • Нагреватель – тело с постоянной температурой, преобразующее внутреннюю энергию топлива в энергию газа. В каждом цикле работы двигателя нагреватель передает рабочему телу некоторое количество теплоты.
  • Рабочее тело – это газ, совершающий работу при расширении.
  • Холодильник – тело с постоянной температурой, которому рабочее тело передает часть тепла.

Любая тепловая машина получает от нагревателя некоторое количество теплоты ​( Q_1 )​ и передает холодильнику количество теплоты ​( Q_2 )​. Так как ​( Q_1 > Q_2 )​, то совершается работа ​( A’ = Q_1 – Q_2 )​.

Тепловой двигатель должен работать циклически, поэтому расширение рабочего тела должно сменяться его сжатием. Работа расширения газа должна быть больше работы сжатия, совершаемой внешними силами (условие совершения полезной работы). Температура газа при расширении должна быть выше, чем температура при сжатии. Тогда давление газа во всех промежуточных состояниях при сжатии будет меньше, чем при расширении.

В реальных тепловых машинах нагревателем является камера сгорания. В них рабочее тело нагревается за счет тепла, выделяющегося при сгорании топлива. Количество теплоты, выделяющееся при сгорании топлива, вычисляется по формуле:

где ​( q )​ – удельная теплота сгорания топлива, ​( m )​ – масса топлива.

Холодильником чаще всего у реальных двигателей служит атмосфера.

Виды тепловых двигателей:

  • паровой двигатель;
  • турбина (паровая, газовая);
  • двигатель внутреннего сгорания (карбюраторный, дизельный);
  • реактивный двигатель.

Тепловые двигатели широко используются на всех видах транспорта: на автомобилях – двигатели внутреннего сгорания; на железнодорожном транспорте – дизельные двигатели (на тепловозах); на водном транспорте – турбины; в авиации – турбореактивные и реактивные двигатели. На тепловых и атомных электростанциях тепловые двигатели приводят в движение роторы генераторов переменного тока.

Проблемы энергетики и охрана окружающей среды

Тепловые двигатели широко применяются на транспорте и в энергетике (тепловые и атомные электростанции). Использование тепловых двигателей сильно влияет на состояние биосферы Земли. Можно выделить следующие вредные факторы:

  • при сжигании топлива используется кислород из атмосферы, что приводит к снижению содержания кислорода в воздухе;
  • при сгорании топлива в атмосферу выделяется углекислый газ. Концентрация углекислого газа в атмосфере повышается. Это изменяет прозрачность атмосферы, так как молекулы углекислого газа поглощают инфракрасное излучение, что ведет к повышению температуры (парниковый эффект);
  • при сжигании угля в атмосферу поступают азотные, серные соединения и соединения свинца, вредные для здоровья человека.

Решение проблемы охраны окружающей среды от вредного воздействия предприятий тепловой энергетики требует комплексного подхода. Массовыми загрязнителями при работе тепловых электростанций являются летучая зола, диоксид серы и оксиды азота. Методы сокращения выбросов зависят от свойств топлива и условия его сжижения. Предотвращение загрязнения летучей золой достигается очисткой всего объема продуктов сгорания твердого топлива в высокоэффективных золоуловителях. Сокращение выбросов оксидов азота с продуктами сгорания топлива на тепловых электростанциях, а также в парогазовых и газотурбинных установках обеспечивается, главным образом, технологией сжигания топлива. Уменьшение выброса диоксида серы может быть достигнуто различными методами облагораживания и переработки топлива вне тепловых электростанций либо непосредственно на тепловых электростанциях, а также очисткой дымовых газов.

Контроль за выбросом вредных веществ электростанций осуществляется специальными приборами.

В ряде случаев достаточно эффективным решением вопросов очистки выбросов в атмосферу остается сооружение фильтров-уловителей и дымовых труб. У дымовой трубы два назначения: первое — создавать тягу и тем самым заставлять воздух — обязательный участник процесса горения — в нужном количестве и с должной скоростью входить в топку; второе — отводить продукты горения (вредные газы и имеющиеся в дыме твердые частицы) в верхние слои атмосферы. Благодаря непрерывному турбулентному движению вредные газы и твердые частицы уносятся далеко от источника их возникновения и рассеиваются.

Для рассеивания сернистого ангидрида, содержащегося в дымовых трубах тепловых электростанций, сооружаются дымовые трубы высотой 180, 250 и 320 м. Тепловые электростанции России, работающие на твердом топливе, за год выбрасывают в отвалы около 100 млн т золы и шлаков. Зола и шлаки занимают большие площади земель, неблагоприятно влияют на окружающую среду.

Более половины всех загрязнений создает транспорт. Один из путей решения проблемы защиты окружающей среды заключается в переходе на дизельные двигатели, электродвигатели, повышение КПД.

Алгоритм решения задач раздела «Термодинамика»:

  • выделить систему тел и определить ее тип (замкнутая, адиабатически замкнутая, замкнутая в механическом смысле, незамкнутая);
  • выяснить, как изменяются параметры состояния ​( (p,V,T) )​ и внутренняя энергия каждого тела системы при переходе из одного состояния в другое;
  • записать уравнения, связывающие параметры двух состояний системы, формулы для расчета изменения внутренней энергии каждого тела системы при переходе из одного состояния в другое;
  • определить изменение механической энергии системы и работу внешних сил по изменению ее объема;
  • записать формулу первого закона термодинамики или закона сохранения и превращения энергии;
  • решить систему уравнений относительно искомой величины;
  • проверить решение.

Основные формулы раздела «Термодинамика»

Термодинамика

3 (60.68%) 206 votes

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти неизвестное число при вычитании
  • Как найти амплитуду колебаний онлайн
  • Как найти работу специалисту без образования
  • Dirt 3 в оконном режиме как исправить
  • Как найти человека в геншине без uid

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии