(a > 0) (коэффициент (a) положительный) |
(a < 0) (коэффициент (a) отрицательный) |
|
Эскиз графика |
|
|
Расположение графика |
Ветви параболы направлены вверх |
Ветви параболы направлены вниз |
Интервалы возрастания и убывания функции |
Функция убывает, если x∈(−∞;0 , возрастает, если x∈0;+∞ |
Функция возрастает, если x∈(−∞;0 , убывает, если x∈0;+∞ |
Наибольшее значение функции |
нет | (y = 0) |
Наименьшее значение функции |
(y = 0) | нет |
Интервалы, в которых значение функции положительное |
Функция положительная ((y > 0)), если x∈(−∞;0)∪(0;+∞) (график находится выше оси (Ox)) |
нет |
Интервалы, в которых значение функции отрицательное | нет |
Функция отрицательная ((y < 0)), если x∈(−∞;0)∪(0;+∞) (график находится ниже оси (Ox)) |
Описание презентации Тема «Возрастание и убывание квадратичной функции» Найти по по слайдам
Тема «Возрастание и убывание квадратичной функции» Найти по графику промежутки возрастания и убывания квадратичной функции
Нахождение по графику промежутков возрастания и убывания квадратичной функции ху 0 11 Функция является убывающей на промежутке, если большему значению х соответствует меньшее значение у , т. е. при движении слева направо график идет вниз (просмотр по щелчку) Функция является возрастающей на промежутке, если большему значению х соответствует большее значение у , т. е. при движении слева направо график идет вверх (просмотр по щелчку)
8 у х0 11 Найти по графику и записать промежутки возрастания и убывания квадратичной функции Обратите внимание, что график квадратичной функции состоит из двух ветвей. Ветви соединяются между собой вершиной параболы. При записи промежутков возрастания и убывания самую главную роль будет играть абсцисса (х) вершины параболы Пример 1. Рассмотрим движение по каждой ветке параболы отдельно: • по левой ветке при движении слева направо график идет вниз, значит функция убывает ; • по правой ветке — график идет вверх, значит функция возрастает. Ответ: промежуток убывания (- ∞; -1 ] ; промежуток возрастания [ -1; +∞)
8 у х0 11 Найти по графику и записать промежутки возрастания и убывания квадратичной функции Пример 2. Рассмотрим движение по каждой ветке параболы отдельно: • по левой ветке при движении слева направо график идет вверх, значит функция возрастает ; • по правой ветке — график идет вниз, значит функция убывает. Ответ: промежуток возрастания (- ∞; 3 ] ; промежуток убывания [ 3; +∞).
Задания для самостоятельного решения (выполнять в тетради) Задание 1 Задание 2 Задание 3 Задание 4 Приложение
промежуток возрастания (- ∞; -1 ] ; промежуток убывания [ -1; +∞). сверить ответ. Найти по графику и записать промежутки возрастания и убывания квадратичной функции 88 у х0 1 11 просмотреть анимацию записать ответ самостоятельно
« промежуток убывания (- ∞; 3 ] ; промежуток возрастания [ 3; +∞). Найти по графику и записать промежутки возрастания и убывания квадратичной функции у х 11 0 8 2 просмотреть анимацию записать ответ самостоятельно сверить ответ
Найти по графику и записать промежутки возрастания и убывания квадратичной функции 8 у 0 1 1 х3 просмотреть анимацию записать ответ самостоятельно промежуток убывания (- ∞; 0 ] ; промежуток возрастания [ 0; +∞). сверить ответ
«Найти по графику и записать промежутки возрастания и убывания квадратичной функции 8 1 у 01 х4 просмотреть анимацию записать ответ самостоятельно промежуток возрастания (- ∞; — 0, 5 ] ; промежуток убывания [ — 0, 5; +∞). сверить ответ
Приложение • Граничная точка промежутков возрастания и убывания является абсциссой вершины параболы • Граничная точка промежутков возрастания и убывания всегда записывается в ответ с квадратной скобкой , т. к. квадратичная функция непрерывна
В предложенном Вами примере необходимо найти промежутки убывания и возрастания квадратичной функции, поэтому для начала Вам требуется найти абсциссу вершины параболы, являющейся графиком этой самой квадратичной функции. Формула для ее нахождения выглядит так:
Подставляя значения из нашего примера, получим х0=10. Поскольку коэффициент а в нашем случае положителен (он равен 1/4), то заданная функция убывает на промежутке (–∞, 10) и возрастает на промежутке (10, +∞).
Можно использовать и другой метод. Находим производную заданной функции:
f'(x)=x/2-5
и определяем ее нули:
х1=10.
Функция будет убывающей в интервале, в котором производная меньше нуля, и возрастает в интервале, в котором производная больше. В нашем случае получаем все тот же ответ: она убывает на промежутке (–∞, 10) и возрастает на промежутке (10, +∞).
Что такое возрастание функции
В начале прочитаем определение возрастания функции.
Запомните!
Функция « y(x) » называется возрастающей на некотором промежутке, если
для любых
« x1 » и « x2 »
принадлежащих данному промежутку, таких, что « x2 > x1 »
выполняется неравенство
« y( x2 ) > y( x1 )».
Определение сложно понять без наглядного примера.
Поэтому сразу перейдём к разбору задачи на возрастание функции.
По-другому можно сказать, что, если каждому бóльшему значению « x »
соответствует бóльшее значение « y », значит,
функция « y(x) » возрастает.
x2 > x1 |
Обязательное условие возрастания функции |
Давайте разберем определение возрастания функции на конкретном примере.
Разбор примера
Возрастающей или убывающей является функция « y = 9x − 4 » ?
Для начала определим
область определения функции
« y = 9x − 4 ».
y = 9x − 4
D(y): x ∈ R ,
то есть « x » —
любое действительное число.
Построим график функции
« y = 9x − 4 ».
Так как функция
« y = 9x − 4 »
линейная, ее график — прямая.
Используем правила построения графика линейной функции. Нам достаточно найти две точки, чтобы построить ее график.
Область определения функции
« y = 9x − 4 » — все действительные числа,
поэтому можно подставить любое число вместо « x » и вычислить « y » по
формуле функции
« y = 9x − 4 ». Например, возьмем
« x = 0 ».
x = 0
y(x) = 9x − 4
y(0) = 9 · 0 − 4 = −4
Для второй точки возьмем « x = 1 ».
x = 1
y(x) = 9x − 4
y(1) = 9 · 1 − 4 = 5
Отметим две полученные
точки «(0; −4)» и «(1; 5)» на
координатной плоскости
и проведем через них прямую.
Докажем, что функция
« y = 9x − 4 » возрастает на всей своей области определения двумя способами: по ее графику и
аналитически
(по ее формуле).
Как определить по графику, что функция возрастает
По определению возрастания функции мы знаем, что
если « x » увеличивается,
то « y » тоже должен увеличиваться.
На рисунке ниже видно, что график функции « y = 9x − 4 »
«идет в гору». Другими словами, при увеличении « x »
↑ растет
значение « y » ↑.
В этом можно убедиться, если взять две любые точки на графике. Например, точки, по
которым мы построили график функции. Назовем эти точки:
« (·)A » и « (·)B ».
У первой точки « (·)A »
координаты:
x1 = 0 ; y1 = − 4
У второй точки « (·)B » координаты:
x2 = 1 ; y2 = 5
На примере точек « (·)A » и « (·)B » видно, что
при увеличении
« x ↑ ( x2 > x1 )»
растет
« y ↑ ( y2 > y1 ) ».
Поэтому график зрительно «идет в гору».
Как по формуле доказать, что функция возрастает
Вернёмся к нашей функции
« y = 9x − 4 ».
По графику мы поняли, что
функция « y = 9x − 4 » возрастает,
так как ее график «идет в гору».
Но как доказать по формуле, что функция
возрастает на всей своей области определения?
Запомните!
Функция возрастает на всей области определения, когда при
« x2 > x1 »
выполняется условие
« y( x2 ) > y( x1 ) ».
Формулировка выше не самая простая для понимания. Давайте разберем ее на практике.
По определению возрастания функции нам нужно доказать, что при
« x2 > x1 » увеличивается значение функции
« y( x2 ) > y( x1 ) ».
Но как нам найти значения функции
« y( x1 )» и
«y( x2 ) »?
Для нахождения « y( x1 )» и
«y( x2 ) »
достаточно подставить « x1 » и
« x2 » в исходную формулу « y = 9x − 4 ».
y( x1 ) = 9x1 − 4
y( x2 ) = 9x2 − 4
Теперь запишем обязательное условие возрастания функции.
x2 > x1 |
Обязательное условие возрастания функции |
Подставим в неравенство
« y( x2 ) >
y( x1 ) » полученные формулы
« y( x1 ) = 9x1 − 4» и
« y( x2 ) = 9x2 − 4 » .
y( x2 ) > y( x1 )
9x2 − 4 > 9x1 − 4
Упростим полученное
неравенство.
9x2 − 9x1 > − 4 + 4
9x2 − 9x1 > 0
Вынесем общий множитель
в левой части неравенства.
9(x2 − x1) > 0
Разделим левую и правую часть на «9».
При делении нуля на любое число получается ноль.
x2 − x1 > 0
x2 > x1
Мы доказали, что выполняется исходное условие возрастания функции «x2 > x1».
Отсюда следует, что функция
« y = 9x − 4 » возрастает на всей области определения.
В завершении вместо ответа следует написать фразу:
«Что и требовалось доказать».
Посмотрим другой пример, где требуется доказать, что функция возрастает.
Разбор примера
Доказать, что функция возрастает на всей области определения: y = 13x − 1
По аналогии с предыдущим примером составим неравенства, которые доказывают, что функция возрастает.
x2 > x1 |
Обязательное условие возрастания функции |
Вместо « y( x1 )» и
«y( x2 ) » запишем
формулу функции « y = 13x − 1 » и упростим полученное неравенство.
y( x2 ) > y( x1 )
13x2 − 1 > 13x1 − 1
13x2 − 13x1 > 1 − 1
13(x2 − x1) > 0 |: 13
>
x2 − x1 > 0
x2 > x1
Что и требовалось доказать.
Что такое убывание функции
Запомните!
Функция « y(x) » называется убывающей на некотором промежутке, если для любых
« x1 » и « x2 »
принадлежащих данному промежутку, таких,
что « x2 > x1 »
выполняется неравенство « y( x2 ) < y( x1 )».
x2 > x1 |
Обязательное условие убывания функции |
Как по графику понять, что функция убывает
Разбор примера
Доказать, что функция убывает на всей области определения: y = 1 − 3x
По определению убывания функции мы знаем, что,
если « x »
↑ растет, то
« y » ↓ должен уменьшаться.
Построим график функции
« y = 1 − 3x ». Ее график — прямая, поэтому нам будет достаточно двух точек.
Область определения функции
« y = 1 − 3x » — все действительные числа,
поэтому можно поставить любое число вместо « x » и вычислить « у » по
формуле функции
« y = 1 − 3x ». Например, возьмем
« x = 0 »
и « x = 1 ».
x = 0
y(x) = 1 − 3x
y(0) = 1 − 3 · 0 = 1
(·) А (0; 1)
x = 1
y(1) = 1 − 3x
y(1) = 1 − 3 · 1 = 1 − 3 = −2
(·) B (1; −2)
Построим график функции
« y = 1 − 3x » по полученным точкам
« (·)A » и « (·)B ».
На графике функции видно, что зрительно график «спускается с горы», то есть функция убывает. Другими словами, при увеличении
« x »
↑ уменьшается
значение
« y » ↓.
Как по формуле доказать, что функция убывает
Вернёмся к нашей функции
« y = 1 − 3x ».
По ее графику мы поняли, что функция убывает, так как график «спускается с горы». Но как доказать по формуле,
что функция « y = 1 − 3x » убывает на всей области определения?
Запомните!
Чтобы доказать, что функция убывает требуется доказать, что при любых
« x2 > x1 » выполняется
« y( x2 ) < y( x1 ) ».
Давайте разберем на примере функции
« y = 1 − 3x ». Докажем, что она убывает
на всей своей области определения.
x2 > x1 |
Обязательное условие убывания функции |
Подставим « y( x1 )» и
«y( x2 ) » в
формулу функции « y = 1 − 3x » и упростим полученное неравенство.
y( x2 ) < y( x1 )
1 − 3x2 < 1 − 3x1
3x1 − 3x2 < 1 − 1
3(x1 − x2) < 0 | :3
<
x1 − x2 < 0
−x2 < −x1
Умножим на « −1 » левую и правую часть неравенства. При
умножении неравенства на отрицательное число знак неравенства поменяется на
противоположный.
−x2 < −x1 | · (−1)
x2 > x1
Что и требовалось доказать.
Как по графику функции определить
возрастание и убывание
Потренируемся только по графику функции определять промежутки возрастания и убывания функции.
Разбор примера
На рисунке ниже изображён график функции, определенной на множестве действительных чисел.
Используя график, найдите промежутки возрастания и промежутки убывания функции.
Отметим с помощью штриховых линий промежутки, где график функции убывает
(«спускается с горы») и где он возрастает («идет в гору»).
Запишем через знаки неравенств,
какие значения принимает « x » на полученных промежутках.
Обратите внимание, что во всех случаях при указании промежутков, мы указываем, что их
концы входят в промежуток, то есть используем знаки нестрогого неравенства.
Остаётся записать полученные промежутки возрастания и убывания функции в ответ.
Ответ:
- функция убывает при
x ≤ −2; 0 ≤ x ≤ 3,5 - функция возрастает при
−2 ≤ x ≤ 0 ; x ≥ 3,5
Более грамотно будет записать ответ с помощью специальных
математических символов.
Ответ:
- функция убывает на промежутках
x ∈ (−∞ ; −2] ∪ [0; 3,5] - функция возрастает на промежутках x ∈ [−2 ; 0] ∪ [3,5 ; +∞]
При каких значениях
« m »
функция является убывающей или возрастающей
Ещё один тип заданий, в которых требуется определить,
при каких
« m » ( « а, b » или других буквах) функция убывает или возрастает.
Разбор примера
При каких значениях « m » функция
« y = mx − m − 3 + 2x » является убывающей?
Обратимся снова к определению убывания функции. Вспомним, как записать условия убывания функции с точки зрения формул.
x2 > x1 |
Обязательное условие убывания функции |
Запишем эти условия, используя формулу функции « y = mx − m − 3 + 2x », заданную в
задаче. Вместо
« x »
подставим « x1 » и « x2 ».
y( x2 ) < y( x1 )
mx2 − m − 3 + 2x2 < mx1 − m − 3 + 2x1
Упростим полученное неравенство. Перенесем из правой части все члены неравенства в левую часть с противоположными знаками.
mx2 − m − 3 + 2x2 − mx1
+ m
+ 3
− 2x1
< 0
Упростим полученное выражение. Некоторые члены неравенства взаимоуничтожатся.
mx2 − mx1
− m + m − 3 + 3 + 2x2 − 2x1
< 0
mx2 − mx1 + 2x2 − 2x1
< 0
Вынесем общие множители за скобки.
m( x2 − x1) + 2(x2 − x1)
< 0
Теперь
вынесем общий множитель
« ( x2 − x1 ) ».
( x2 − x1) (m + 2)
< 0
Вспомним обязательное условие убывания функции.
x2 > x1 |
Обязательное условие убывания функции |
Преобразуем исходное условие убывания функции « x2 > x1 ».
Перенесем все в левую часть.
x2 > x1
x2 − x1 > 0
По условию убывания функции
« x2 − x1 > 0 »,
значит, чтобы
произведение
«( x2 − x1) (m + 2)
» было меньше нуля, требуется, чтобы множитель «(m + 2)» был меньше нуля. Так как по
правилу знаков:
плюс на минус даёт минус.
+ | · | − | < 0 |
(x2 − x1) | · | (m + 2) | < 0 |
Решим полученное неравенство.
m + 2 < 0
m < −2
Ответ: при «m < −2» функция
« y = mx − m − 3 + 2x »
является убывающей.
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий:
§ 14. Монотонность, промежутки знакопостоянства квадратичной функции
Промежутки монотонности квадратичной функции
Функция возрастает на некотором промежутке, если большему значению аргумента из этого промежутка соответствует большее значение функции.
Функция убывает на некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.
Промежутки убывания и возрастания функции называются промежутками монотонности функции.
В общем случае для функции f(x) = ax2 + bx + c:
● если a > 0 (ветви параболы направлены вверх), то функция убывает на промежутке (−∞; xв] и возрастает на промежутке [xв; +∞)
● если a < 0 (ветви параболы направлены вниз), то функция убывает на промежутке [xв; +∞) и возрастает на промежутке (−∞; xв]
Чтобы определить промежутки возрастания и убывания квадратичной функции, нужно:
1) Определить абсциссу вершины параболы xв = − b/2a.
2) Определить знак первого коэффициента.
3) Заполнить таблицу изменения функции в зависимости от изменения значений аргумента.
4) Записать ответ:
если a > 0, то функция убывает на промежутке (−∞; xв] и возрастает на промежутке [xв; +∞);
если a < 0, то функция убывает на промежутке [xв; +∞) и возрастает на промежутке (−∞; xв].
Пример 1. Найдите промежутки монотонности квадратичной функции, заданной формулой у = 5х2 − 24х − 1.
Видеорешение
Пример 2. Для квадратичной функции у = (5 − х)(х + 1) найдите множество значений и промежутки монотонности функции.
Видеорешение
Промежутки знакопостоянства квадратичной функции
Промежутки, на которых функция принимает только положительные или только отрицательные значения, называются промежутками знакопостоянства функции.
Квадратичная функция принимает только положительные значения при всех значениях аргумента, так как при всех x ∈ R график этой функции расположен выше оси абсцисс, т. е. y > 0 при x ∈ (−∞; +∞).
Квадратичная функция принимает только положительные значения при всех значениях аргумента, кроме x = xв, так как при всех x ≠ xв график функции расположен выше оси абсцисс. Значит, y > 0 при x ∈ (−∞; xв) U (xв; +∞).
Квадратичная функция принимает положительные значения на промежутках (−∞; x1) и (x2; +∞), отрицательные значения — между нулями функции, т. е. на промежутке (x1; x2).
Квадратичная функция принимает только отрицательные значения при всех значениях аргумента, так как при всех x ∈ R график этой функции расположен ниже оси абсцисс, т. е. y < 0 при x ∈ (−∞; +∞).
Квадратичная функция принимает только отрицательные значения при всех значениях аргумента, кроме x = xв, так как при всех x ≠ xв график функции расположен ниже оси абсцисс. Значит, y < 0 при x∈ (−∞; xв) U (xв; +∞).
Квадратичная функция принимает положительные значения между нулями функции, т. е. на промежутке (x1; x2). Отрицательные значения эта функция принимает на промежутках (−∞; x1) и (x2; +∞).
Пример 3. Найдите промежутки знакопостонства квадратичной функции, заданной формулой у = −х2 + 5х − 4.
Видеорешение