Таблица производных, правила нахождения производных
- Таблица производных основных функций
- Основные правила нахождения производной
- Правило дифференцирования сложной функции
- Логарифмическая производная
- Производная обратной функции
- Производная функции, заданной параметрически
- Производная неявной функции
Таблица производных основных функций
Основные правила нахождения производной
Если
– постоянная и
,
– функции, имеющие производные, то
1) Производная от постоянного числа равна нулю.
2) Производная от переменной равна единице
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
3) Производная суммы равна сумме производных
Пример 1
Найдем производную функции
4) Производная произведения постоянной на
некоторую функцию равна произведению этой постоянной на производную от заданной
функции.
Пример 2
Найдем производную функции
5) Производная
произведения функций
Пример 3
Найдем производную функции
6) Производная
частного:
Пример 4
Найдем производную функции
Правило дифференцирования сложной функции
или в других обозначениях:
Пример 5
Найдем производную функции
Пример 6
Найдем производную функции
Логарифмическая производная
Логарифмической производной функции
называется производная от логарифма этой
функции, то есть:
Применение предварительного логарифмирования функции иногда
упрощает нахождение ее производной.
Пример 7
Найдем производную функции
Прологарифмируем заданную
функцию:
Искомая производная:
Производная обратной функции
Если для функции
производная
,
то производная обратной функции
есть
или в других обозначениях:
Пример 8
Найдем производную
,
если
Имеем:
Следовательно:
Производная функции, заданной параметрически
Если зависимость функции
и аргумента
задана посредством параметра
то
или в других обозначениях:
Пример 9
Найдем производную функции
Воспользуемся формулой:
Производная неявной функции
Если зависимость между
и
задана в неявной форме
(*)
то для нахождения производной
в простейших случаях достаточно:
1) вычислить производную по
от левой части равенства (*), считая
функцией от
;
2) приравнять эту производную к нулю, то есть положить:
3) решить полученное уравнение относительно
.
Пример 10
Найдем производную функции
Вычисляем производную от
левой части равенства:
Решаем уравнение
относительно
:
Искомая производная:
Таблица производных и правила дифференцирования
О том, что такое производная, мы рассказали в статье «Геометрический смысл производной». Если функция задана графиком, её производная в каждой точке равна тангенсу угла наклона касательной к графику функции. А если функция задана формулой — вам помогут таблица производных и правила дифференцирования, то есть правила нахождения производной.
Для решения задач на исследование функции в вариантах ЕГЭ необходима таблица производных и правила дифференцирования, а также знания о том, как связана производная с поведением функции.
Смотри также, как решаются задачи ЕГЭ на применение производной: задача 7 и задача 11.
Прокомментируем несколько строк из таблицы производных.
1. Производная постоянной величины, то есть константы, равна ей самой. Так и должно быть. Ведь константа не меняется. Это постоянная величина, она всегда принимает одинаковые значения.
А производная функции, как мы знаем, – это скорость изменения функции. Подробнее об этом здесь:
Производная функции.
И поэтому производная константы равна нулю.
2. Производная функции у=х равна 1. Вспомним, что производная функции в точке – это тангенс угла наклона касательной, проведенной к графику функции в этой точке. График функции у=х образует угол 45 градусов с положительным направлением оси Х. А тангенс 45 градусов равен 1.
3. Производная функции равна самой этой функции. И действительно, чем больше значение х, тем больше значение функции
… и тем круче вверх идет график по отношению к оси Х. Вот такая это функция, экспонента. Чем дальше, тем быстрее она растет.
4. Производная синуса и косинуса – тоже тригонометрические функции. Например, производная синуса – это косинус. Как это отражается в физике? Если координата тела меняется по закону синуса, то производная координаты, скорость, будет меняться по закону косинуса. Это описание гармонических колебаний: и координата, и скорость, и ускорение тела меняются по законам синуса и косинуса.
5. Производная логарифма в точке обратно пропорциональна
. Чем дальше, тем медленнее растет логарифмическая функция.
Вспомним, как связаны производная и поведение функции.
Если производная положительна, то функция
возрастает.
Если производная отрицательная, то функция убывает.
В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».
В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».
Запишем эти выводы в виде таблицы:
возрастает | точка максимума | убывает | точка минимума | возрастает | |
+ | 0 | — | 0 | + |
Разберем задачи ЕГЭ по теме «Таблица производных, нахождение наибольших и наименьших значений функции, нахождение точек максимума и минимума». Во всех этих примерах мы пользуемся формулами из таблицы производных.
Задача 1. Найдите точки максимумам функции
Решение:
Область определения функции:
Найдем производную функции, пользуясь формулой производной частного из таблицы.
если
Точки х = 5 и х = -5, а также точка ноль, разбивают числовую прямую на интервалы, на каждом из которых производная сохраняет свой знак. Это метод интервалов.
Найдем знаки производной на каждом интервале.
В точке максимума производная равна нулю и меняет знак с «плюса» на «минус». Это точка 5 на рисунке.
Ответ: 5.
Задача 2. Найдите точки минимума функции
Решение:
Применим формулу производной произведения.
Приравняем производную к нулю:
, если
Если то
функция убывает.
Если то
функция возрастает, значит,
– точка минимума функции
В этой точке производная равна нулю и меняет знак с «минуса» на «плюс».
Ответ: -0,625.
Задача 3. Найдите значение функции в точке максимума.
Решение:
Найдем производную функции:
Мы применили формулы производной степени.
Решим уравнение:
Получили критические точки, в которых производная равна нулю. Отметим их на оси Х и найдём знаки производной.
– точка максимума.
Найдём значение функции в этой точке:
Ответ: 16.
Рассмотрим задачи ЕГЭ на нахождение наибольших и наименьших значений функций.
Мы помним, что наибольшее значение функции на отрезке может достигаться либо в точке максимума, либо на конце отрезка. Эти случаи показаны на рисунке:
Это значит, что у нас есть алгоритм для нахождения наибольших и наименьших значений функции на интервале.
Пусть функция f(x) определена на некотором интервале. Чтобы найти ее наибольшее или наименьшее значение, действуем следующим образом:
- Находим производную функции.
- Приравниваем производную к нулю, находим точки, в которых она равна нулю.
- Если производная меняет знак с «плюса» на «минус» в точке
, то
– точка максимума функции.
- Если производная меняет знак с «минуса» на «плюс» в точке
, то
– точка минимума функции.
- Чтобы найти наибольшее значение функции на отрезке, сравниваем значения в точке максимума и концах отрезка.
Чтобы найти наименьшее значение функции на отрезке, сравниваем значения в точке минимума и концах отрезка.
Задача 4. Найдите наибольшее значение функции на отрезке
Решение:
Найдем производную:
Приравняем производную к нулю:
Если то
Так как
Точка – точка максимума функции
В этой точке функция принимает наибольшее значение на указанном отрезке.
Ответ: 4.
Задача 5. Найдите наименьшее значение функции на отрезке
Решение:
Найдем производную функции:
при
Найдем знаки производной слева и справа от точки
Если то
Если то
Значит, – точка минимума. Наименьшее значение функции на отрезке достигается при
Это значение равно
Ответ: -1.
Задача 6. Найдите наибольшее значение функции на отрезке
Решение:
Область определения функции:
Найдем производную функции и приравняем ее к нулю:
если
или
Второй корень не принадлежит отрезку
Найдем знаки производной на отрезке:
В точке производная равна нулю и меняет знак с «плюса» на «минус». Значит, это точка максимума, и наибольшее значение функции на отрезке
достигается при
Найдем значение функции при
Ответ: -5.
В следующих задачах наименьшее значение функции достигается на конце отрезка.
Задача 7. Найдите наименьшее значение функции на отрезке
Решение:
Найдем производную функции и приравняем ее к нулю.
У этого уравнения нет решений, так как
Это значит, что при любых
то есть
а это означает, что
– убывает, наименьшее значение функции достигается в правом конце отрезка
Ответ: -3.
Задача 8. Найдите наибольшее значение функции на отрезке
Решение:
Найдем производную функции:
Производная функции не равна нулю ни при каком
.
Мы знаем, что Тогда
Прибавим 7 ко всем частям неравенства:
для всех
Значит, производная положительна при любом значении переменной, функция монотонно возрастает. Наибольшее значение функции будет достигаться в правом конце отрезка, то есть при
Ответ: 8.
Задача 9. Найдите наименьшее значение функции на отрезке
Решение:
Найдем производную функции и приравняем ее к нулю:
тогда
На указанном отрезке это уравнение имеет единственное решение
Слева от этой точки Если производная отрицательна.
Справа от этой точки производная положительна.
Значит, – точка минимума функции, и наименьшее значение функции на отрезке достигается в этой точке.
Найдем значения функции в этой точке:
Ответ: 7.
В задачах ЕГЭ встречаются сложные функции. И найти нужно их точки максимума или минимума, наибольшие или наименьшие значения. Но производную сложной функции в школьной программе по-настоящему не проходят. Как же быть? Покажем полезные приемы, помогающие решить такие задания ЕГЭ.
Задача 10. Найдите наименьшее значение функции
Решение:
Рассмотрим функцию
Так как функция монотонно возрастает, точка минимума функции
будет при том же значении
, что и точка минимума функции
А ее найти легко:
при
В точке производная
меняет знак с «минуса» на «плюс». Значит,
– единственная точка минимума функции
и функции
Ответ: -2.
Задача 11. Найдите наибольшее значение функции на отрезке
Решение:
Так как функция монотонно возрастает при
точка минимума функции
соответствует точке минимума подкоренного выражения
Заметим, что подкоренное выражение всегда положительно.
Функция задает квадратичную параболу с ветвями вверх и точкой минимума в вершине параболы, то есть при
Если – монотонно убывает.
Если – монотонно возрастает.
Значит, наибольшее значение функции на отрезке
достигается в одном из концов этого отрезка.
Сравним и
Ответ: 6.
Задача 12. Найдите точку максимума функции
Решение:
Рассмотрим функцию
Ее график – парабола с ветвями вниз, и точка максимума будет в вершине параболы, при Функция
монотонно возрастает, и значит, большему значению
будет соответствовать большее значение
Точка максимума функции будет такой же, как у функции
то есть
Ответ: 1.
Читайте также: Задание 11 на ЕГЭ по математике.
Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Таблица производных и правила дифференцирования» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.
Публикация обновлена:
08.05.2023
Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная — одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Геометрический и физический смысл производной
Пусть есть функция f(x), заданная в некотором интервале (a, b). Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0. Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:
Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.
Иначе это можно записать так:
Какой смысл в нахождении такого предела? А вот какой:
Геометрический смысл производной: производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.
Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.
Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t. Средняя скорость за некоторый промежуток времени:
Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:
Кстати, о том, что такое пределы и как их решать, читайте в нашей отдельной статье.
Приведем пример, иллюстрирующий практическое применение производной. Пусть тело движется то закону:
Нам нужно найти скорость в момент времени t=2c. Вычислим производную:
Правила нахождения производных
Сам процесс нахождения производной называется дифференцированием. Функция, которая имеет производную в данной точке, называется дифференцируемой.
Как найти производную? Согласно определению, нужно составить отношение приращения функции и аргумента, а затем вычислить предел при стремящемся к нулю приращении аргумента. Конечно, можно вычислять все производные так, но на практике это слишком долгий путь. Все уже давно посчитано до нас. Ниже приведем таблицу с производными элементарных функций, а затем рассмотрим правила вычисления производных, в том числе и производных сложных функций с подробными примерами.
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Правило первое: выносим константу
Константу можно вынести за знак производной. Более того — это нужно делать. При решении примеров по математике возьмите за правило — если можете упростить выражение, обязательно упрощайте.
Пример. Вычислим производную:
Правило второе: производная суммы функций
Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.
Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.
Найти производную функции:
Решение:
Правило третье: производная произведения функций
Производная произведения двух дифференцируемых функций вычисляется по формуле:
Пример: найти производную функции:
Решение:
Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.
В вышеуказанном примере мы встречаем выражение:
В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.
Правило четвертое: производная частного двух функций
Формула для определения производной от частного двух функций:
Пример:
Решение:
Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.
С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис. За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.
Заказать задачи по любым предметам можно здесь от 10 минут
Производная функции
Процесс нахождения производной функции называется дифференцированием. Производную приходится находить в ряде задач курса математического анализа. Например, при отыскании точек экстремума и перегиба графика функции.
Как найти?
Чтобы найти производную функции нужно знать таблицу производных элементарных функций и применять основные правила дифференцирования:
- Вынос константы за знак производной: $$ (Cu)’ = C(u)’ $$
- Производная суммы/разности функций: $$ (u pm v)’ = (u)’ pm (v)’ $$
- Производная произведения двух функций: $$ (u cdot v)’ = u’v + uv’ $$
- Производная дроби: $$ bigg (frac{u}{v} bigg )’ = frac{u’v — uv’}{v^2} $$
- Производная сложной функции: $$ ( f(g(x)) )’ = f'(g(x)) cdot g'(x) $$
Примеры решения
Пример 1 |
Найти производную функции $ y = x^3 — 2x^2 + 7x — 1 $ |
Решение |
Производная суммы/разности функций равна сумме/разности производных: $$ y’ = (x^3 — 2x^2 + 7x — 1)’ = (x^3)’ — (2x^2)’ + (7x)’ — (1)’ = $$ Используя правило производной степенной функции $ (x^p)’ = px^{p-1} $ имеем: $$ y’ = 3x^{3-1} — 2 cdot 2 x^{2-1} + 7 — 0 = 3x^2 — 4x + 7 $$ Так же было учтено, что производная от константы равна нулю. Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ y’ = 3x^2 — 4x + 7 $$ |
Пример 2 |
Найти производную функции $ y = sin x — ln 3x $ |
Решение |
По правилу производной разности: $$ y’ = (sin x — ln 3x)’ = (sin x)’ — (ln 3x)’ = $$ По таблице интегрирования находим: $$ (sin x)’ = cos x $$ $$ (ln x)’ = frac{1}{x} $$ С учетом того, что аргумент натурального логарифма отличен от $ x $, то нужно домножить ещё на производную самого аргумента: $$ y’ = (sin x)’ — (ln 3x)’ = cos x — frac{1}{3x} cdot (3x)’ = $$ После упрощения получаем: $$ = cos x — frac{1}{3x} cdot 3 = cos x — frac{1}{x} $$ |
Ответ |
$$ y’ = cos x — frac{1}{x} $$ |
Пример 3 |
Найти производную функции $ y = (3x-1) cdot 5^x $ |
Решение |
В данном примере стоит произведение двух функций, а производная произведения находится по формуле номер 3: $$ (u cdot v)’ = u’v + uv’ $$ $$ y’ = ( (3x-1) cdot 5^x )’ = (3x-1)’ 5^x + (3x-1) (5^x)’ = $$ Производная первой функции вычисляется как разность фунций: $$ (3x-1)’ = (3x)’ — (1)’ = 3(x)’ — (1)’ = 3 $$ Вторая функция является показательной, производная которой находится по формуле: $ (a^x)’ = a^x ln a $: $$ (5^x)’ = 5^x ln 5 $$ Продолжаем решение с учетом найденных производных: $$ y’ = (3x-1)’ 5^x + (3x-1) (5^x)’ = 3 cdot 5^x + (3x-1) 5^x ln 5 $$ |
Ответ |
$$ y’ = 3cdot 5^x + (3x-1) 5^x ln 5 $$ |
Пример 4 |
Найти производную функции $ y = frac{ln x}{sqrt{x}} $ |
Решение |
Производную дроби найдем по четвертой формуле. Положим $ u = ln x $ и $ v = sqrt{x} $. Тогда их производные по таблице основных элементарных функций равны: $$ u’ = (ln x)’ = frac{1}{x} $$ $$ v’ = (sqrt{x})’ = frac{1}{2sqrt{x}} $$ Используя формулу №4 получаем: $$ y’ = bigg ( frac{ln x}{sqrt{x}} bigg )’ = frac{ frac{1}{x} cdot sqrt{x} — ln x cdot frac{1}{2sqrt{x}} }{x} = $$ Выносим множитель $ frac{1}{2sqrt{x}} $ в числителе за скобку: $$ y’ = frac{2-ln x}{2xsqrt{x}} $$ |
Ответ |
$$ y’ = frac{2-ln x}{2xsqrt{x}} $$ |
Пример 5 |
Найти производную функции $ y = ln sin 3x $ |
Решение |
Данная функция является сложной, потому производную будем брать по цепочке. Сначала от внешней функции, затем от внутренней. При этом выполняя их перемножение. $$ y’ = (ln sin 3x )’ = frac{1}{sin 3x} cdot (sin 3x)’ = $$ Заметим, что аргумент синуса отличен от $ x $, поэтому тоже является сложной функцией: $$ = frac{1}{sin 3x} cdot cos 3x cdot (3x)’ = frac{1}{sin 3x} cdot cos 3x cdot 3 $$ Учитывая определение котангенса $ ctg x = frac{cos 3x}{sin 3x} $ перепишем полученную производную в удобном компактном виде: $$ y’ = 3ctg 3x $$ |
Ответ |
$$ y’ = 3ctg 3x $$ |
Таблица производных в алгебре нужна для решения целого ряда различных прикладных задач. Поскольку смысл производной иначе интерпретируется как “скорость изменения”, то, каждый раз, беря производную, мы находим величину на ступеньку более “быструю”, чем та, от которой мы берем производную. Например, беря производную от y(x) по x, мы фактически находим скорость изменения координаты y в зависимости от изменения координаты x, а беря производную от скорости изменения координаты y в зависимости от координаты x, мы находим ускорение.
Что такое производная функции
Например, при использовании производной в физике, мы знаем, что производная расстояния s по времени – это скорость. Потому что скорость – это величина, характеризующая быстроту изменения расстояния в зависимости от времени. А производная скорости – ничто иное как ускорение, так как ускорение – это величина, характеризующая быстроту изменения скорости.
Поскольку производная находится по формуле: , то бесконечное количество различных функций усложняют задачу дифференцирования, так как удобно функцию, которую можно представить из различных элементарных функций, дифференцировать основываясь на уже выведенных выражениях для производных этих элементарных функций.
Характеристика производной и ее смысл
Производная характеризует быстроту изменения функции в зависимости от изменения аргумента.
Таблица производных
Таким образом, чтобы работать с производными, необходима таблица производных элементарных функций. Руководствуясь этой таблицей, можно взять производную от какой угодно функции. Но прежде чем работать с таблицей – нужно знать как брать производную функции, есть определенные правила дифференцирования, которые представим в таблице.
Правила дифференцирования
№ правила | Название правила | Правило дифференцирования |
1 | Производная постоянной величины | |
2 | Производная суммы | |
3 | Производная произведения постоянной на функцию | |
4 | Производная переменной x | |
5 | Производная произведения двух функций | |
6 | Производная деления двух функций | |
7 | Производная сложной функции |
Таблица производных простых и сложных функций
Теперь таблица производных для элементарных и для сложных функций.
Номер формулы | Название производной | Основные элементарные функции | Сложные функции |
1 | Производная натурального логарифма по x | ||
2 | Производная логарифмической функции по основанию a | ||
3 | Производная по x в степени n | ||
4 | Производная квадратного корня | ||
5 | Производная a в степени x | ||
6 | Производная e в степени x | ||
7 | Производная синуса | ||
8 | Производная косинуса | ||
9 | Производная тангенса | ||
10 | Производная котангенса | ||
11 | Производная арксинуса | ||
12 | Производная арккосинуса | ||
13 | Производная арктангенса | ||
14 | Производная арккотангенса |
Примеры нахождения производных
Пример 1
Пользуясь формулами и правилами дифференцирования, найти производную функции: .
Решение:
Мы использовали правило 2 дифференцирования суммы. Теперь найдем производную каждого слагаемого:
По формуле 3 “производная по x в степени n” (у нас в степени 2).
По правилам дифференцирования 3 и 4.
По первому правилу дифференцирования “производная постоянной равна нулю”
Итак, получим: .
Пример 2
Найти производную функции
Решение:
Находим производную, пользуясь правилам дифференцирования 6.
Ответ:
Пример 3
Найти производную функции
Решение: здесь все просто, мы возьмем производную из таблицы производных.
Ответ:
Пример 4
Найдите производную функции
Решение: Здесь мы уже имеем не простую функцию, а сложную функцию и брать производную мы будем по формуле 8 таблицы производных для сложных функций.
Ответ:
Пример 5
Пользуясь правилами дифференцирования и таблицей производных, найдите производную функции
Решение: У нас сложная функция, так как под корнем стоит не просто , а квадратная функция.
То есть мы имеем функцию вида .
Возьмем производную этой функции:
Ответ:
Пример 6
Найдите скорость тела, если траектория его движения задана уравнением м
Решение: скорость тела – это первая производная траектории по времени: . м/с.
Находим скорость тела:
Ответ: 3 м/с.
Итак, таблица производных и правила дифференцирования дают возможность легко брать производные и простых, и сложных функций.