урок 3. Математика ЕГЭ
Как найти производную от функции
Как считать производные?
Никто не использует определение производной, чтобы ее вычислить. Как же тогда ее посчитать?
Оказывается, существуют специальные формулы, с помощью которых производная от функции вычисляется достаточно просто.
Формулы производной
Выпишем теперь все формулы производной функции и порешаем примеры.
Производная от константы
Производная от любого числа всегда равна (0):
$$(const)^{/}=0;$$
Пример 1
$$(5)^{/}=0;$$
Производная от (x)
Производная просто от (x) равна (1):
$$x^{/}=1;$$
Производная от степени
$$(x^n)^{/}=n*x^{n-1};$$
Пример 2
$$(x^4)^{/}=4*x^{4-1}=4*x^{3};$$
$$(x^{10})^{/}=10*x^{10-1}=10*x^{9};$$
$$(x^{-3})^{/}=-3*x^{-3-1}=-3*x^{-4};$$
$$(x^{frac{1}{3}})^{/}=frac{1}{3}*x^{1-frac{1}{3}}=frac{1}{3}*x^{frac{2}{3}};$$
Производная от квадратного корня
$$(sqrt{x})^{/}=frac{1}{2sqrt{x}};$$
Тут полезно заметить, что формулу производной от квадратного корня можно не учить. Она сводится к формуле производной от степени:
$$(sqrt{x})^{/}=(x^{frac{1}{2}})^{/}=frac{1}{2}*x^{frac{1}{2}-1}=frac{1}{2}*x^{-frac{1}{2}}=frac{1}{2sqrt{x}};$$
Производная от синуса
$$sin(x)^{/}=cos(x);$$
Производная от косинуса
$$cos(x)^{/}=-sin(x);$$
Производная от тангенса
$$tg(x)^{/}=frac{1}{cos^{2}(x)};$$
Производная от котангенса
$$tg(x)^{/}=frac{-1}{sin^{2}(x)};$$
Производная от экспоненты
$$(e^x)^{/}=e^x;$$
Производная от показательной функции
$$(a^x)^{/}=a^x*ln(a);$$
Пример 3
$$(2^x)^{/}=2^{x}*ln(2);$$
Производная от натурального логарифма
$$(ln(x))^{/}=frac{1}{x};$$
Производная от логарифма
$$(log_{a}(x))^{/}=frac{1}{x*ln(a)};$$
Свойства производной
Помимо формул по вычислению производной еще есть свойства производной, их тоже надо выучить.
Вынесение константы за знак производной
$$(alpha*f(x))^{/}=alpha*(f(x))^{/};$$
Пример 4
$$(3*x^5)^{/}=3*(x^5)^{/}=3*5x^4=15x^4;$$
$$(10sin(x))^{/}==10*(sin(x))^{/}=10*cos(x);$$
Производная от суммы и разности двух функций
$$(f(x) pm g(x))^{/}=(f(x))^{/} pm (g(x))^{/};$$
Пример 5
$$(2x^4+x^3)^{/}=?$$
Тут (f(x)=2x^4), а (g(x)=x^3). Тогда по формуле производной от суммы:
$$(2x^4+x^3)^{/}=(2x^4)^{/}+(x^3)^{/}=2*(x^4)^{/}+(x^3)^{/}=2*4x^3+3x^2=8x^3+3x^2;$$
Пример 6
$$(ln(x)+cos(x))^{/}=(ln(x))^{/}+(cos(x))^{/}=frac{1}{x}-sin(x);$$
Пример 7
$$(x^6-e^x)^{/}=(x^6)^{/}-(e^x)^{/}=6x^5-e^x;$$
Производная от произведения двух функций
$$(f(x)*g(x))^{/}=(f(x))^{/}*g(x)+f(x)*(g(x))^{/};$$
Пример 8
$$(x^2*sin(x))^{/}=?$$
$$(x^2*sin(x))^{/}=(x^2)^{/}*sin(x)+x^2*(sin(x))^{/}=2x*sin(x)+x^2*cos(x);$$
Пример 9
$$(ln(x)*e^x)^{/}=(ln(x))^{/}*e^x+ln(x)*(e^x)^{/}=frac{1}{x}*e^x+ln(x)*e^x;$$
Производная от частного двух функций
$$left(frac{f(x)}{g(x)}right)^{/}=frac{(f(x))^{/}*g(x)-f(x)*(g(x))^{/}}{(g(x))^2};$$
Пример 10
$$left(frac{x^3}{sin(x)}right)^{/}=frac{(x^3)^{/}*sin(x)-x^3*(sin(x))^{/}}{(sin(x))^2}=frac{3x^2*sin(x)-x^3*cos(x)}{(sin(x))^2};$$
Примеры нахождения производной
Рассмотрим несколько примеров нахождения производной, чтобы разобраться, как применяются свойства и формулы производной на практике.
Пример 11
$$(5x^3+2cos(x))^{/}=(5x^3)^{/}+(2cos(x))^{/}=$$
$$=5*(x^3)^{/}+2*(cos(x))^{/}=5*3*x^2+2*(-sin(x))=15x^2-2sin(x);$$
Пример 12
$$left(-frac{3x^2}{2x^4+5x}right)^{/}=-frac{(3x^2)^{/}*(2x^4+5x)-3x^2*(2x^4+5x)^{/}}{(2x^4+5x)^2}=$$
$$=-frac{6x*(2x^4+5x)-3x^2*(8x+5)}{(2x^4+5x)^2}=-frac{12x^5-24x^3+15x^2}{(2x^4+5x)^2};$$
Пример 13
$$(2xsqrt{x})^{/}=(2x)^{/}*sqrt{x}+2x*(sqrt{x})^{/}=$$
$$=2*sqrt{x}+2x*frac{1}{2sqrt{x}}=2*sqrt{x}+frac{2x}{2sqrt{x}}=2*sqrt{x}+sqrt{x}=3sqrt{x};$$
Производная сложной функции
Сложная функция — это функция не от аргумента (x), а от какой-то другой функции: (f(g(x))). Например, функция (sin(x^2)) будет сложной функцией: «внешняя» функция синуса берется от «внутренней» функции степени ((x^2)). Так как под синусом стоит аргумент не (x), а (x^2), то такая функция будет называться сложной.
Еще примеры сложных функций:
-
$$ln(3x^4);$$
Внешняя функция: натуральный логарифм; Внутренняя функция: ((3x^4)). -
$$cos(ln(x));$$
Внешняя функция: косинус; Внутренняя функция: ((ln(x))). -
$$e^{2x^2+3};$$
Внешняя функция: экспонента; Внутренняя функция: ((2x^2+3)). -
$$(sin(x))^3;$$
Внешняя функция: возведение в третью степень; Внутренняя функция: (sin(x)).
Чтобы посчитать производную от такой функции, нужно сначала найти производную внешней функции, а затем умножить результат на производную внутренней функции. В общем виде формула выглядит так:
$$f(g(x))^{/}=f^{/}(g(x))*g^{/}(x);$$
Скорее всего, выглядит непонятно, поэтому давайте разберем на примерах.
Пример 14
$$((cos(x))^4)^{/}=?$$
Внешней функцией тут будет возведение в четвертую степень, поэтому сначала считаем производную от степени по формуле ((x^n)^{/}=n*x^{n-1}). А потом умножаем результат на производную внутренней функции, у нас это функция косинуса, по формуле (cos(x)^{/}=-sin(x)):
$$((cos(x))^4)^{/}=underset{text{внешняя производная}}{underbrace{4*(cos(x))^3}}*underset{text{внутренняя производная}}{underbrace{(cos(x))^{/}}}=$$
$$=4*(cos(x))^3*(-sin(x))=-4*(cos(x))^3*sin(x);$$
Пример 15
$$(e^{2x^3+5})^{/}=?$$
Внешняя функция — это экспонента ((e^x)^{/}=e^x), а внутренняя функция — квадратный многочлен ((2x^3+5)):
$$(e^{2x^3+5})^{/}=e^{2x^3+5}*(2x^3+5)^{/}=e^{2x^3+5}*((2x^3)^{/}+5^{/})=e^{2x^3+5}*6x^2.$$
Пример 16
$$(ln((2x^2+3)^6))^{/}=?$$
Внешняя функция — это натуральной логарифм, берем производную от него по формуле ((ln(x))^{/}=frac{1}{x}), и умножаем на производную внутренней функции, у нас это шестая степень: ((x^n)^{/}=n*x^{n-1}). Но и на этом еще не все: под шестой степенью стоит не просто (x), а квадратный многочлен, значит еще нужно умножить на производную от этого квадратного многочлена:
$$ln((2x^2+3)^6)=frac{1}{(2x^2+3)^6}*((2x^2+3)^6)^{/}*(2x^2+3)^{/}=$$
$$=frac{1}{(2x^2+3)^6}*6*(2x^2+3)^5*(4x+0)=frac{1}{(2x^2+3)^6}*6*(2x^2+3)^5*4x=$$
$$=frac{6*(2x^2+3)^5*4x}{(2x^2+3)^6}=frac{24x*(2x^2+3)^5}{(2x^2+3)^6}=frac{24x}{(2x^2+3)^6}.$$
Вывод формул производной функции
Выведем некоторые из этих формул, чтобы было понимание, откуда они берутся. Но перед этим познакомимся с новыми обозначениями. Запись (f(x)) означает, что функция берется от аргумента (x). Например:
$$f(x)=x^3+sin(x);$$
На месте аргумента (x) может стоять все что угодно, например выражение (2x+3). Обозначение такой функции будет (f(2x+3)), а сама функция примет вид:
$$f(2x+3)=(2x+3)^3+sin(2x+3);$$
То есть, везде вместо аргумента (x) мы пишем (2x+3).
И несколько важных замечаний про (Delta f(x)) и (Delta x). Напомню, что значок (Delta) означает изменение некоторой величины. (Delta x) — изменения координаты (x) при переходе от одной точки на графике функции к другой; (Delta f(x)) — разница координат (y) между двумя точками на графике. Подробнее про это можно почитать в главе, где мы вводим понятие производной. Распишем (Delta x) для двух близких точек на графике функции (O) и (B):
$$Delta x=x_B-x_O;$$
Отсюда можно выразить (x_B):
$$x_B=x_O+Delta x;$$
Абсцисса (координата точки по оси (x)) точки (B) получается путем сложения абсциссы точки (O) и (Delta x).
Кстати, функцию (f(x)=x^3+sin(x)) от аргумента (x_B=x_O+Delta x) можно расписать:
$$f(x_B)=f(x_O+Delta x)=(x_O+Delta x)^3+sin(x_O+Delta x);$$
Рис.1. График произвольной функции
И распишем (Delta f):
$$Delta f(x)=f(x_B)-f(x_O)=f(x_O+Delta x)-f(x_O);$$
Тогда определение производной можно записать в виде:
$$f^{/}(x)=frac{Delta f(x)}{Delta x}=frac{f(x_O+Delta x)-f(x_O)}{Delta x} quad при quad Delta x to 0;$$
За (x_O) обычно обозначают точку, в окрестности которой берут производную. То есть, получается (x_O) — это абсцисса начальной точки, а (x_O+Delta x) — абсцисса конечной точки.
Нам это пригодится при выводе формул производной.
Производная квадратичной функции
Выведем теперь формулу производной от (f(x)=x^2), воспользовавшись определением производной:
$$f^{/}(x)=frac{Delta f(x)}{Delta x}=frac{f(x+Delta x)-f(x)}{Delta x} quad при quad Delta x to 0;$$
Распишем числитель (f(x+Delta x)-f(x)) с учетом, что (f(x)=x^2):
$$f(x+Delta x)-f(x)=(x+Delta x)^2-x^2=x^2+2xDelta x+(Delta x)^2-x^2=2xDelta x+(Delta x)^2;$$
Подставим в определение производной:
$$f^{/}(x)=frac{2xDelta x+(Delta x)^2}{Delta x}=frac{Delta x*(2x+Delta x)}{Delta x}=2x+Delta x;$$
Напоминаю, что (Delta x) это бесконечно малая величина:
$$(Delta x)^2 ll 0;$$
Поэтому этим слагаемым можно пренебречь. Вот мы и получили формулу для производной от квадратной функции:
$$f^{/}(x)=(x^2)^{/}=2x;$$
Производная от третьей степени
Аналогичные рассуждения можно провести для функции третьей степени:
$$f(x)=x^3;$$
Воспользуемся определением производной:
$$f^{/}(x)=frac{f(x+Delta x)-f(x)}{Delta x} quad при quad Delta x to 0;$$
$$f(x+Delta x)-f(x)=(x+Delta x)^3-x^3=(x+Delta x-x)((x+Delta x)^2+(x+Delta x)*x+x^2)=$$
$$=Delta x*(x^2+2x*Delta x+(Delta x)^2+x^2+x*Delta x+x^2)=Delta x*(3x^2+3xDelta x);$$
$$f^{/}(x)=frac{f(x+Delta x)-f(x)}{Delta x}=frac{Delta x*(3x^2+3xDelta x)}{Delta x}=3x^2+3xDelta x;$$
Так как при умножении на бесконечно малую величину получается бесконечно малая величина, то слагаемым (3xDelta x) можно пренебречь:
$$f^{/}(x)=(x^3)^{/}=3x^2;$$
Точно таким же способом можно вывести формулы производных для любых степеней:
$$(x^4)^{/}=4x^3;$$
$$(x^5)^{/}=5x^4;$$
$$…$$
$$(x^n)^{/}=n*x^{n-1};$$
Кстати, эта формула справедлива и для дробных степеней.
Вывод остальных формул делается похожим образом, только там может понадобиться знание пределов. Вывод всех формул разбирается в университетском курсе математического анализа.
Что такое производная функции простыми словами? Для чего нужна производная? Определение производной
Как решать задания №7 из ЕГЭ по математике. Анализ графиков при помощи производной. Графики производной и графики функции
Исследуем функцию с помощью производной. Находим точки минимума и максимума, наибольшее и наименьшее значение функции. Точки экстремума. Промежутки возрастания и убывания.
Связь коэффициента наклона и тангенса угла наклона касательной к функции и производной функции в точке касания. Задание №7 в ЕГЭ по математике.
Что такое функция и что такое сложная функция ?
Функция $gleft(tright)=3cdot t-1$ — это правило отображения $t$ — чисел в значения функции $gleft(.right)$ по указанному правилу.
Например: числу $t=2$ соответствует значение $gleft(2right)=3cdot 2-1=5$. «2» отображается в «5».
Еще: $t=0$ отображается в $-1$, т.е. $gleft(0right)=-1$ ; говорят: функция $g$ в точке $0$ принимает значение $-1$.
Именно все такие пары соответствий $left(2;5right)$ , $left(0;-1right)$ , $left(4;11right)$ … все прочие «делают» функцию.
«Я знаю кто он, если я знаю на что он способен, что и как он делает». Функция: аргумент —> значение
$gleft(tright)$ переводит значения аргументов в значения функции. Имя аргумента » $t$ » здесь не важно, важно правило: $3cdot t-1$ !
Другая функция, $fleft(zright)=z^2$ переводит, отображает 5 —> 25, -1 —> 1. т.е. $fleft(5right)=25$ $fleft(-1right)=1$
- Ключевые термины: функция имя аргумент правило вычисления значения
- $gleft(tright)$ $gleft(tright)=3cdot t-1$ $g$ $t$ $3cdot t-1$
- $fleft(zright)$ $fleft(zright)=z^2$ $f$ $z$ $z^2$
Сложная функция $fleft(gleft(xright)right)=left(3x-1right)^2$ комбинированная из двух: $f$ и $g$
для $x=2$ функция $fleft(gleft(2right)right)=fleft(5right)=25$, значение по правилу такое же $left(3cdot 2-1right)^2=25$
для $x=0$ функция $fleft(gleft(0right)right)=fleft(-1right)=1$, также и значение по правилу $left(3cdot -1-1right)^2=1$
-
термины $fleft(gleft(xright)right)$ $x$ — аргумент функции $g$. $gleft(xright)$ — аргумент функции $f$.
-
$f$ — внешняя функция, $g$ — внутренняя функция. правило сложной функции $left(3x-1right)^2$
-
$fleft(gleft(xright)right)=fleft(3x-1right)=left(3x-1right)^2=left(gleft(xright)right)^2$ … $x$ (по правилу $g$ ) —> $left(3x-1right)$ (по правилу $f$) —> $left(3x-1right)^2$
Пример 1: Найти производную сложной функций $left(left(3x-1right)^2right)’$
-
Сложная функция: внутреняя $gleft(xright)=left(3x-1right)^2$ и внешняя $fleft(gright)=left(gleft(xright)right)^2$ — квадрат от аргумента, от внутренней
-
Метод Замены: Введем новую переменную $X=3x-1$ … «внутренняя функция стала переменной от $x$ «
-
Итак, зависимости: $fleft(Xright)=left(Xright)^2$, $X=3x-1$ . C какой скоростью изменяется $f$ при изменении $x$ ?
-
выражение $left(Xright)^2$ при изменениях $X$ изменяется со скоростью $left(left(Xright)^2right)’=2cdot X=2cdot (3x-1)$
-
переменная $X$ при изменениях аргумента $x$ изменяется со скоростью $left(Xright)’=left(3x-1right)’=3$
-
тогда, «комбинация двух изменений»: $left(Xright)^2$ при изменениях $x$ меняется по умножения скоростей $2cdot (3x-1)cdot 3$
-
иллюстрация правила умножения: Проследим за всеми взаимными изменениями
-
$bigtriangleup left(X^2right)approx left(X^2right)’cdot bigtriangleup X=left[2Xright]cdot bigtriangleup X$ $bigtriangleup Xapprox left(X’right)cdot bigtriangleup x=left(3x-1right)’bigtriangleup x$
-
комбинированная скорость $f’left(xright)approx frac{bigtriangleup left(X^2right)}{bigtriangleup x}=frac{bigtriangleup left(X^2right)}{bigtriangleup X}cdot frac{bigtriangleup left(Xright)}{bigtriangleup x}approx left[2Xright]cdot left(X’right)=left[2cdot left(3x-1right)right]cdot left(3right)$ — умножение скоростей
Решение: Оформим записи о дифференцировании сложной функции через равенства — действия шаг за шагом:
$left(left(3x-1right)^2right)’=left(X^2right)’cdot X’=2Xcdot X’=2left(3x-1right)cdot left(3x-1right)’=2left(3x-1right)cdot 3=18x-6$. Или, короче:
$left(left(3x-1right)^2right)’=2left(3x-1right)cdot left(3x-1right)’=2left(3x-1right)cdot 3=18x-6$ (замена $X=3x-1$ в воображении)
Хорошие вопросы: Производная Чего? в этом случае «квадрата». Что есть внешняя и что есть внутренняя функции?
Теорема: Производная Сложной Функции по аргументу $x$ равна умножению
производной внешней функции по внутренней на производной внутренней функции по $x$.
$left(fleft(gleft(xright)right)right)’=f_g’cdot g_x’$ Метод Замены: $left(fleft(gleft(xright)right)right)’=left(fleft(Xright)right)’=f_X’left(Xright)cdot X’$.
$X=gleft(xright)$ — внутреннее выражение. Доказательство через осмысление предела: $frac{bigtriangleup fleft(gleft(xright)right)}{bigtriangleup x}=frac{bigtriangleup fleft(gright)}{bigtriangleup g}cdot frac{bigtriangleup gleft(xright)}{bigtriangleup x}$
Таблица Основных Производных … $X$ большое — любое выражение от $x$
-
Степень: $left(X^nright)’=ncdot X^{n-1}cdot X’$ $left(X^3right)’=3X^2cdot X’$
-
Корень: $left(sqrt{X}right)’=left(X^{frac{1}{2}}right)’=frac{1}{2}cdot X^{-frac{1}{2}}cdot X’$ $left(sqrt[3]{X}right)’=left(X^{frac{1}{3}}right)’=frac{1}{3}cdot X^{-frac{2}{3}}cdot X’$
-
Тригонометрические: $left(sin Xright)’=cos Xcdot X’$ $left(cos Xright)’=-sin Xcdot X’$
-
Экспоненциальные: $left(e^Xright)’=e^Xcdot X’$ $left(a^Xright)’=a^Xcdot ln acdot X’$
-
Логарифмические: $left(ln Xright)’=frac{1}{X}cdot X’$ $left(log _aXright)’=left(frac{ln X}{ln a}right)’=frac{1}{Xcdot ln a}cdot X’$
Правила Дифференцирования:
-
производная суммы равна сумме производных: $left(A-B+Cright)’=A’-B’+C’$
-
правило производной от умножения: $left(Acdot Bright)’=A’cdot B+Acdot B’$
-
правило производной от деления: $left(frac{A}{B}right)’=frac{A’cdot B-Acdot B’}{B^2}$
-
производная сложной функции : $left(fleft(Xright)right)’=f’left(Xright)cdotleft(Xright)’$
Дифференцирование «сложных» функций, … … «как замена» и умножение на производную «замены»:
- Производная сложной функции … в аргументе функции выражение от $x$, называем «заменой» $X$ :
- $left(fleft(Xright)right)’=f’left(Xright)cdotleft(Xright)’$. В сложных функциях надо распознать и выделить внешнюю и внутреннюю функцию.
- Найти производную внешней функции и умножить на производную внутренней функции.
- f- внешняя функция, $X$ — внутренняя. $f’left(Xright)$ — производная в $X$ !
Пример 2: Найти производные «сложных» функций
В сложных функциях важно правильно распознать внешнюю и внутреннюю функцию. И, перемножить их производные.
A. $left(sin7xright)’=left(sin Xright)’=cos Xcdotleft(X’right)=cos7xcdotleft(7xright)’=7cos7x$
B. $left(sqrt{5cdot x^2-6}right)’=left(sqrt{X}right)’=frac{1}{2sqrt{X}}cdotleft(Xright)’=frac{1}{2sqrt{5cdot x^2-6}}cdotleft(5cdot x^2-6right)’=frac{10x}{2sqrt{5cdot x^2-6}}=frac{5x}{sqrt{5cdot x^2-6}}$
C. $left(e^{-5x}right)’=left(e^Xright)’=e^Xcdotleft(Xright)’=e^{-5x}cdotleft(-5xright)’=-5e^{-5x}$
D. $left(cossqrt{5cdot x^2-6}right)’=left(cos Xright)’=-sin Xcdotleft(Xright)’=-sinsqrt{5cdot x^2-6}cdotleft(sqrt{5cdot x^2-6}right)’=-frac{5xcdotsinsqrt{5cdot x^2-6}}{sqrt{5cdot x^2-6}}$
E. $left(log_3left(x^5-3x^2right)right)’=left(log_3Xright)’=left(frac{ln X}{ln3}right)’=frac{1}{ln3cdot X}cdotleft(Xright)’=frac{1}{ln3cdotleft(x^5-3x^2right)}cdotleft(x^5-3x^2right)’=frac{5x^4-6x}{ln3cdotleft(x^5-3x^2right)}$
Пример 3: Найти производную $left(sqrt{3x}cosleft(4x+1right)right)’$
-
перед нами произведение двух функций , возьмем производную от умножения по формуле
-
$left(fgright)’=f’g+fg’$ : $left(sqrt{3x}right)’cosleft(4x+1right)+sqrt{3x}left(cosleft(4x+1right)right)’$ .
-
функции , от которых предстоит взять производную, являются сложными …. производные сложных?
-
важно правильно распознать, какая функция будет внешней, а какая внутренней для каждой сложной функции.
-
$sqrt{3x}$ : внешняя функция — квадратный корень ; внутренняя — выражение под корнем $3x$ , берем производную:
-
$left(sqrt{3x}right)’=frac{1}{2}left(3xright)^{frac{1}{2}-1}cdotleft(3xright)’=frac{1}{2}left(3xright)^{-frac{1}{2}}cdot3=frac{3}{2sqrt{3x}}$
-
$cosleft(4x+1right)$ : внешняя функция — тригонометрическая cos ; внутренняя — аргумент косинуса $4x+1$
-
$left(cosleft(4x+1right)right)’=-sinleft(4x+1right)cdotleft(4x+1right)’=-sinleft(4x+1right)cdot4x’=-4sinleft(4x+1right)$
-
соберем все наши выкладки и получим производную исходного выражения:
-
$left(sqrt{3x}right)’cosleft(4x+1right)+sqrt{3x}left(cosleft(4x+1right)right)’=frac{3}{2sqrt{3x}}cosleft(4x+1right)-4sqrt{3x}sinleft(4x+1right)$
Иллюстационный пример: Учет сложности под разными функциями ….
Классная Интерактивная Доска:
Упражнения:
Производная сложной функции
Формула
Пусть есть функция $ y=f(g(x)) $, тогда производную сложной функции можно найти по формуле:
$$ y’=f'(g(x)) cdot g'(x) $$
Проще говоря, нахождение производной сложной функции выполняется «по цепочке». Сначала находим производную от внешней функции без изменения её аргумента и умножаем на производную аргумента. Если аргумент в свою очередь тоже является сложной функцией, то снова берем производную ещё и от него.
Рассмотрим на практике примеры решений производных сложных функций.
Примеры решений
Пример 1 |
Найти производную сложной функции: $ y = sqrt{x^2+1} $ |
Решение |
Пользуемся формулой нахождения производной сложной функции. Сначала находим производную внешней функции без учета внутренней функции, а затем и производную от самой внутренней функции: $$ y’=( sqrt{x^2+1} )’= $$ $$ =frac{1}{2sqrt{x^2+1}} cdot (x^2+1)’= $$ $$ =frac{1}{2sqrt{x^2+1}} cdot 2x = frac{x}{sqrt{x^2+1}} $$ Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ y’=frac{x}{sqrt{x^2+1}} $$ |
Пример 2 |
Найти производную сложной функции: $ y = e^{4x+3} $ |
Решение |
Видим экспоненту в задаче, поэтому берем значение производной для неё из таблицы, а затем вычисляем производную от аргумента: $$ y’=(e^{4x+3})’ = e^{4x+3} cdot (4x+3)’ = $$ $$ = e^{4x+3} cdot 4 = 4e^{4x+3} $$ |
Ответ |
$$ y’ = 4e^{4x+3} $$ |
Пример 3 |
Найти производную сложной функции: $ y = arctan x^2 $ |
Решение |
Зная значение производной арктангенса из таблицы, находим производную сложной функции: $$ y’ = (arctan x^2)’ = frac{1}{1+(x^2)^2} cdot (x^2)’ = $$ $$ = frac{1}{1+(x^2)^2} cdot 2x = frac{2x}{1+x^4} $$ |
Ответ |
$$ y’ = frac{2x}{1+x^4} $$ |
Пример 4 |
Найти производную сложной функции: $ y = ln(x^3+2) $ |
Решение |
Перед нами сложная функция, точнее натуральный логарифм от многочлена. Поэтому применим правило. Имеем: $$ y’ = (ln(x^3+2))’ = frac{1}{x^3+2} cdot (x^3+2)’ = $$ $$ = frac{1}{x^3+2} cdot 3x^2 = frac{3x^2}{x^3+2} $$ |
Ответ |
$$ y’ = frac{3x^2}{x^3+2} $$ |
Пример 5 |
Найти производную от сложной функции: $ y = ln(sin^3x+ e^{cos x}) $ |
Решение |
Сложную функцию представляет натуральный логарифм, аргументом которого является сумма двух функций, обе тоже сложные функции. Вспоминаем формулу и приступаем: $$ y’ = ( ln(sin^3x+e^{cos x}) )’ = $$ $$ =frac{1}{sin^3x+e^{cos x}} cdot (sin^3x+e^{cos x})’ = $$ Производная суммы функций равна сумме производных этих функций: $$ =frac{1}{sin^3x+e^{cos x}} cdot ( (sin^3x)’+(e^{cos x})’) = $$ Первая функция $ (sin^3x)’ $ — это производная от сложной функции: $$ (sin^3x)’ = 3sin^2x cdot (sin x)’ = 3sin^2x cos x $$ Вторая функция $ (e^{cos x})’ $ — это производная сложной функции: $$ (e^{cos x})’ = e^{cos x} cdot (cos x)’ = e^{cos x} cdot (-sin x) $$ Продолжаем нахождение производной исходной функции: $$ = frac{1}{sin^3x+e^{cos x}} cdot (3sin^2x cos x — e^{cos x} sin x) $$ |
Ответ |
$$ y’ = frac{3sin^2x cos x — e^{cos x} sin x}{sin^3x+e^{cos x}} $$ |
Раз ты зашел сюда, то уже, наверное, успел увидеть в учебнике эту формулу
((f(g(x)))’=f'(g(x))cdot g'(x))
и сделать вот такое лицо:
Друг, не переживай! На самом деле все просто до безобразия. Ты обязательно все поймешь. Только одна просьба – прочитай статью не торопясь, старайся понять каждый шаг. Я писал максимально просто и наглядно, но вникнуть в идею всё равно надо. И обязательно реши задания из статьи.
Содержание:
- Что такое сложная функция?
«Распаковка» сложной функции
Внутренняя и внешняя функция
Производная сложной функции. Примеры
Что такое сложная функция?
Представь, что ты переезжаешь в другую квартиру и поэтому собираешь вещи в большие коробки. Пусть надо собрать какие-нибудь мелкие предметы, например, школьные письменные принадлежности. Если просто скидать их в огромную коробку, то они затеряются среди других вещей. Чтобы этого избежать, ты сначала кладешь их, например, в пакет, который затем укладываешь в большую коробку, после чего ее запечатываешь. Этот «сложнейший» процесс представлен на схеме ниже:
Казалось бы, причем здесь математика? Да притом, что сложная функция формируется ТОЧНО ТАКИМ ЖЕ способом! Только «упаковываем» мы не тетради и ручки, а (x), при этом «пакетами» и «коробками» служат разные функции.
Например, возьмем x и «запакуем» его в функцию косинуса:
В результате получим, ясное дело, (cosx). Это наш «пакет с вещами». А теперь кладем его в «коробку» — запаковываем, например, в кубическую функцию.
Что получится в итоге? Да, верно, будет «пакет с вещами в коробке», то есть «косинус икса в кубе».
Получившаяся конструкция и есть сложная функция. Она отличается от простой тем, что к одному иксу применяется НЕСКОЛЬКО «воздействий» (упаковок) подряд и получается как бы «функция от функции» — «упаковка в упаковке».
В школьном курсе видов этих самых «упаковок» совсем мало, всего четыре :
Давай теперь «упакуем» икс сначала в показательную функцию с основанием 7, а потом в тригонометрическую функцию тангенс. Получим:
(x → 7^x → tg(7^x))
А теперь «упакуем» икс два раза в тригонометрические функции, сначала в синус, а потом в котангенс:
(x → sinx → ctg (sinx ))
Просто, правда?
Напиши теперь сам функции, где икс:
— сначала «упаковывается» в косинус, а потом в показательную функцию с основанием (3);
— сначала в пятую степень, а затем в тангенс;
— сначала в логарифм по основанию (4), затем в степень (-2).
Ответы на это задание посмотри в конце статьи.
А можем ли мы «упаковать» икс не два, а три раза? Да, без проблем! И четыре, и пять, и двадцать пять раз. Вот, например, функция, в которой икс «упакован» (4) раза:
(y=5^{log_2{sin(x^4 )}})
Но такие формулы в школьной практике не встретятся (студентам повезло больше — у них может быть и посложнее☺).
«Распаковка» сложной функции
Посмотри на предыдущую функцию еще раз. Сможешь ли ты разобраться в последовательности «упаковки»? Во что икс запихнули сначала, во что потом и так далее до самого конца. То есть — какая функция вложена в какую? Возьми листок и запиши, как ты считаешь. Можно сделать это цепочкой со стрелками как мы писали выше или любым другим способом.
Сделал?
Теперь правильный ответ: сначала икс «упаковали» в (4)-ую степень, потом результат упаковали в синус, его в свою очередь поместили в логарифм по основанию (2), и в конце концов всю эту конструкцию засунули в степень пятерки.
То есть разматывать последовательность надо В ОБРАТНОМ ПОРЯДКЕ. И тут подсказка как это делать проще: сразу смотри на икс – от него и надо плясать. Давай разберем несколько примеров.
Например, вот такая функция: (y=tg(log_2x )). Смотрим на икс – что с ним происходит сначала? Берется логарифм от него. А потом? Берется тангенс от результата. Вот и последовательность будет такая же:
(x → log_2x → tg(log_2x ))
Еще пример: (y=cos{(x^3 )}). Анализируем – сначала икс возвели в куб, а потом от результата взяли косинус. Значит, последовательность будет: (x → x^3 → cos{(x^3 )}). Обрати внимание, функция вроде бы похожа на самую первую (там, где с картинками). Но это совсем другая функция: здесь в кубе икс (то есть (cos{(x·x·x)})), а там в кубе косинус (x) (то есть, (cosx·cosx·cosx)). Эта разница возникает из-за разных последовательностей «упаковки».
Последний пример (с важной информацией в нем): (y=sin{(2x+5)}). Понятно, что здесь сначала сделали арифметические действия с иксом, потом от результата взяли синус: (x → 2x+5 → sin{(2x+5)}). И это важный момент: несмотря на то, что арифметические действия функциями сами по себе не являются, здесь они тоже выступают как способ «упаковки». Давай немного углубимся в эту тонкость.
Как я уже говорил выше, в простых функциях икс «упаковывается» один раз, а в сложных — два и более. При этом любая комбинация простых функций (то есть их сумма, разность, умножение или деление) — тоже простая функция. Например, (x^7) – простая функция и (ctg x) — тоже. Значит и все их комбинации являются простыми функциями:
(x^7+ ctg x) — простая,
(x^7· ctg x) – простая,
(frac{x^7}{ctg x}) – простая и т.д.
Однако если к такой комбинации применить еще одну функцию – будет уже сложная функция, так как «упаковок» станет две. Смотри схему:
Хорошо, давай теперь сам. Напиши последовательность «заворачивания» функций:
(y=cos{(sinx)})
(y=5^{x^7})
(y=arctg{11^x})
(y=log_2(1+x))
Ответы опять в конце статьи.
Внутренняя и внешняя функции
Зачем же нам нужно разбираться во вложенности функций? Что нам это дает? Дело в том, что без такого анализа мы не сможем надежно находить производные разобранных выше функций.
И для того, чтобы двигаться дальше, нам будут нужны еще два понятия: внутренняя и внешняя функции. Это очень простая вещь, более того, на самом деле мы их уже разобрали выше: если вспомнить нашу аналогию в самом начале, то внутренняя функция — это «пакет», а внешняя – это «коробка». Т.е. то, во что икс «заворачивают» сначала – это внутренняя функция, а то, во что «заворачивают» внутреннюю – уже внешняя. Ну, понятно почему – она ж снаружи, значит внешняя.
Вот в этом примере: (y=tg(log_2x )), функция (log_2x) – внутренняя, а — внешняя.
А в этом: (y=cos{(x^3+2x+1)}), (x^3+2x+1) — внутренняя, а — внешняя.
Выполни последнюю практику анализа сложных функций, и перейдем, наконец, к тому, ради чего всё затевалось — будем находить производные сложных функций:
Заполни пропуски в таблице:
Производная сложной функции
Браво нам, мы всё ж таки добрались до «босса» этой темы – собственно, производной сложной функции, а конкретно, до той самой ужасной формулы из начала статьи.☺
((f(g(x)))’=f'(g(x))cdot g'(x))
Формула эта читается так:
Производная сложной функции равна произведению производной внешней функции по неизменной внутренней на производную внутренней функции.
И сразу смотри схему разбора «по словам» чтобы понимать, что к чему относится:
Надеюсь, термины «производная» и «произведение» затруднений не вызывают. «Сложную функцию» — мы уже разобрали. Загвоздка в «производной внешней функции по неизменной внутренней». Что это такое?
Ответ: это обычная производная внешней функции, при которой изменяется только внешняя функция, а внутренняя остается такой же. Все равно непонятно? Хорошо, давай на примере.
Пусть у нас есть функция (y=sin(x^3 )). Понятно, что внутренняя функция здесь (x^3), а внешняя . Найдем теперь производную внешней по неизменной внутренней.
Из таблицы производных мы знаем, что производная синуса икс есть косинус икс (табличные значения надо знать наизусть!): (({sin{x}})’=cos{x}).
Тогда производная внешней функции по неизменной внутренней для нашего случая будет (cos(x^3)). То есть, мы взяли ее как обычную производную синуса, а содержимое синуса (внутреннюю функцию) просто скопировали в полученную производную (косинус), ничего в ней не меняя.
Таким образом, на данный момент имеем:
Осталась «производная внутренней функции». Ну, это совсем легко – обычная производная от внутренней функции, при этом внешняя не влияет вообще никак. В нашем примере, производная от (x^3).
((x^3 )’=3x^2)
Все, теперь можем писать ответ:
Вот так. Давай еще один пример разберем.
Пусть надо найти производную функции (y=(sinx )^3).
Анализируем. Последовательность «заворачивания» у нас такая: (x → sinx → (sinx )^3). Значит, в данном примере внутренняя функция это (sinx), а внешняя .
Производная внешней по внутренней – это производная куба (содержимое куба при этом не меняется). Так как , а в нашем случае в куб «завернут» (sinx), то производная внешней будет (3(sinx)^2). То есть, имеем:
Ну, а производная внутренней – это просто производная синуса икс, то есть косинус икс.
В итоге, имеем:
(y’=((sinx )^3 )’=3(sinx )^2·(sinx )’=3(sinx )^2·cosx)
Понятно?
Ладно, ладно, вот еще один пример с разбором. ☺
Пример. Найти производную сложной функции (y=ln(x^2-x)).
Разбираем вложенность функций: (x → x^2-x → ln(x^2-x)).
Внутренняя: (x^2-x). Внешняя: .
Из таблицы производных знаем:.
То есть производная внешней по внутренней будет: (ln(x^2-x)’=) (frac{1}{x^2-x}).
Производная внутренней: ((x^2-x)’= (x^2)’-(x)’=2x-1).
В итоге, согласно большой и страшной формуле имеем:
(y ‘=(ln(x^2-x) )’=)(frac{1}{x^2-x})(·(2x-1))
Ну и напоследок можно немного «причесать» ответ, чтоб никто не докопался:
(y ‘=(ln(x^2-x))’=)(frac{1}{x^2-x})(·(2x-1)=)(frac{2x-1}{x^2-x})
Готово.
Что, еще примеров желаешь? Легко.
Пример. Найти производную сложной функции (y=sin{(cosx)}).
Вложенность функций: (x → cosx → sin{(cosx)})
Внутренняя: (cosx) Внешняя:
Производная внешней по внутренней: (sin{(cosx )}’=cos{cosx})
Производная внутренней: ((cosx )’= -sinx)
Имеем: (y’=(sin{(cosx)})’=cos{cosx}·(-sinx )=-cos{cosx} ·sinx)
Замечание: Обрати внимание, что заменить запись (cos{cosx}) на (cos^2x) НЕЛЬЗЯ, так как (cos^2x) — это комбинация простых функций (cos^ 2x=cosx·cosx), а (cos{cosx}) – сложная функция: косинус от косинуса икс. Это абсолютно разные функции.
Еще пример с важным замечанием в нем.
Пример. Найти производную сложной функции (y=sqrt{x^6} )
Вложенность функций: (x → x^6 → sqrt{x^6})
Внутренняя: (x^6) Внешняя:
Производная внешней по внутренней: (sqrt{x^6}’=)(frac{1}{2sqrt{x^6}})
Производная внутренней: ((x^6)’= 6x^5)
Имеем: ((sqrt{x^6})’=)(frac{1}{2sqrt{x^6}})(·6x^5)
И теперь упростим ответ. Вспомним свойство корня: (sqrt[b]{x^a} =x^{frac{a}{b}}). Тогда (sqrt{x^6}=x^{frac{6}{2}}=x^3). С учетом этого получаем:
(y’=( sqrt{x^6})’=)(frac{1}{2sqrt{x^6}})(·6x^5=)(frac{1}{2x^3})(·6x^5=)(frac{6x^5}{2x^3})(=3x^2)
Всё. А теперь, собственно, важное замечание:
Тот же самый ответ, но значительно меньшими усилиями мы могли бы получить, упростив исходную функцию сразу. Воспользуемся тем же свойством корня: (sqrt[b]{x^a} =x^{frac{a}{b}}). Тогда исходная функция приобретает вид: (y=sqrt{x^6}=x^{frac{6}{2}}=x^3). А производная куба это практически табличное значение! Готов ответ: (y’=(sqrt{x^6})’=(x^3 )’=3x^2). Немножко проще предыдущего решения, правда ☺? Поэтому прежде чем искать производную, посмотрите, можно ли исходную функцию упростить, чтоб решать было проще.
Давай рассмотрим пример, где эта идея нам сильно поможет.
Пример. Найти производную сложной функции (y=ln(x^3)).
Можно, конечно, рассмотреть вложенность функций: (x → x^3 → ln(x^3 )), разобрать на внутреннюю и внешнюю и так далее. Но можно вспомнить свойство логарифма: (log_a{b^c}=c·log_a{b}). И тогда функция получается (y=ln(x^3 )=3lnx). Отлично! Берем производную:
(y’=(ln(x^3 ) )’=(3lnx )’=3(lnx )’=3·)(frac{1}{x}=frac{3}{x})
Вуаля!
Теперь задачка посложнее, для продвинутых. Решим пример с тройной вложенностью!
Пример. Найти производную сложной функции (y=3^{sin(x^4+1)}).
Вложенность функций: (x → x^4+1 → sin(x^4+1) → 3^{sin(x^4+1)})
Внутренняя: (x^4+1) Средняя: Внешняя:
Сначала производная внешней по средней. Вспоминаем таблицу производных: . Значит, в нашем случае будет (3^{sin(x^4+1)}·ln3).
Хорошо, теперь производная средней по внутренней. По таблице: . Значит, мы получим, (sin(x^4+1)’=cos(x^4+1)).
И наконец, производная внутренней: ((x^4+1)’=(x^4 )’+(1)’=4x^3).
Отлично. Теперь собираем все вместе, перемножая отдельные производные:
((3^{sin(x^4+1)})’=3^{sin(x^4+1)} ·ln3·cos{(x^4+1)}·4x^3)
Готово. Да, это ответ. ☺
Ну, а что ты хотел, я сразу сказал – пример для продвинутых! А представь, что будет с четырехкратной или пятикратной вложенностью? ☺
Пример: Найти производную сложной функции (y=tg(7^x)).
Разбираем вложенность функций: (x : → :7^x : → :tg(7^x)).
Внутренняя: (7^x) Внешняя: (tg(7^x)).
Ищем производную самой внешней функции, внутреннюю при этом не трогаем.
Из таблицы производных знаем: .
То есть, в нашем случае производная внешней по внутренней будет: (frac{1}{cos^2(7^x)}).
Теперь ищем производную внутренней. Этой формулой мы уже пользовались, так что сразу пишем ответ: ((7^x)’=7^x·ln7).
И перемножаем результаты:
(y’=tg(7^x)’=)(frac{1}{cos^2(7^x)}·7^x·ln7)
И «причесываем»: (y’=(tg(7)^x))’=)(frac{1}{cos^2(7^x )})( ·7^x·ln7=)(frac{ln7·7^x}{cos^2(7^x)}).
Ну, теперь думаю всё понятно? И снова повторю – не пугайся сложных конструкций в ответах и промежуточных вычислениях. Они «на лицо ужасные», но зато добрые (в смысле простые) внутри. ☺ Пойми принцип и делай все последовательно.
Последний пример. Такие задания в разных вариациях весьма часто дают на контрольных и тестах. Он вроде как считается сложным. ☺ Хех, наивные учителя. ☺
Пример: Найти производную сложной функции (y=sqrt[3]{(x^5+2x-5)^2}).
Казалось бы, опять у нас тройная вложенность функций:
(x → x^5+2x-5 → (x^5+2x-5)^2 → sqrt[3]{(x^5+2x-5)^2}).
Но давай снова воспользуемся свойством корня (sqrt[b]{x^a} =x^{frac{a}{b}}) и преобразуем нашу функцию к виду:
(y=sqrt[3]{(x^5+2x-5)^2}=(x^5+2x-5)^{frac{2}{3}})
Вот так. И теперь у нас вложенность двойная: (x → x^5+2x-5 → (x^5+2x-5)^{frac{2}{3}})
При этом функция осталась той же! Удобное свойство, однако. Стоит его запомнить, да? ☺ Ладно, поехали дальше.
Внутренняя функция: (x^5+2x-5). Внешняя: .
Производная внешней по внутренней. По таблице производных общая формула производной степенной функции: . Получаем:
. Тогда в нашем случае будет: (frac{2}{3}(x^5+2x-5)^{-frac{1}{3}}).
Производная внутренней: ((x^5+2x-5)’=5x^4+2).
Общий результат: (y ‘=(sqrt[3]{(x^5+2x-5)^2})’=((x^5+2x-5)^{frac{2}{3}} )’=frac{2}{3}(x^5+2x-5)^{-frac{1}{3}}·(5x^4+2)).
В принципе, ответ найден. Но здесь можно сильно «причесать» результаты. Это может показаться сложным, но это не так, просто опять нагромождения символов большое и возникает такое ложное ощущение. На всякий случай помни: «не причесанный» ответ – тоже ответ. Поэтому если не поймешь дальнейших преобразований – не критично. Ладно, расческу в руки и вперед.
Вспоминаем свойство отрицательной степени (a^{-n}=)(frac{1}{a^n}). Получаем:
(y ‘=frac{2}{3}(x^5+2x-5)^{-frac{1}{3}}·(5x^4+2)=)(frac{2}{3})(·)(frac{1}{(x^5+2x-5)^{frac{1}{3}}})(·(5x^4+2))
А теперь применяем свойство корня (sqrt[b]{x^a} =x^{frac{a}{b}}) в обратную сторону. То есть, вот так (x^{frac{a}{b}}=sqrt[b]{x^a}). В результате имеем:
(y’=)(frac{2}{3})(frac{1}{(x^5+2x-5)^{frac{1}{3}}})(·(5x^4+2)=)(frac{2}{3})(frac{1}{sqrt[3]{x^5+2x-5}})(·(5x^4+2))
Ну, и перемножаем дроби.
(y’=)(frac{2}{3})(frac{1}{sqrt[3]{x^5+2x-5}})(·(5x^4+2)=)(frac{2(5x^4+2)}{3sqrt[3]{x^5+2x-5}})(=)(frac{10x^4+4}{3sqrt[3]{x^5+2x-5}})
ВСЁ!!! А теперь сам.
Найти производные функций:
a. (y=ctg(x^7))
b. (y=e^{x^4+5x^3})
c. (y=sqrt{cosx})
d. (y=log_5{5^x})
e. (y=(tgx)^3)
f. (y=sin(ln(x^2)))
Ответы ко всем заданиям (вперемежку).
(y=tg(x^5))
(y=log^{-2}_{4}{x})
(y=3^{cosx})
(x → 1+x → log_2{(1+x)} )
(x → 11^x → arctg(11^x) )
(x → x^7 → 5^{x^7})
(x → sinx → cos(sinx))
Сошлось? Красавчик!