Производная корня
Опубликовано 10.07.2021
Производная корня из x – это формула определения производной функции, выраженной корнем из x или производной корня из выражения относительно x. Все производные смотрите в таблице производных.
Формула производной квадратного корня
Давайте выведем с вами формулу для производной корня для простой функции, опираясь на формулу производной степени :
,
То есть, получается, что формула производной корня: , где
Производная корня любой степени
Аналогично определим производную корня любой степени. Например, пусть нам нужно определить производную кубического корня иначе находим производную корня третьей степени из x.
Производная кубического корня
Определим производную корня кубического: . Запишем этот корень как степень от
. Получим
.
Находим производную:
или
Примеры нахождения производной корня
Пример 1
Найдите производную функции: при
Решение: находим производную функции: , теперь подставим данное значение
. Получим
Пример 2
Найдите производную функции . То есть нам нужно узнать, какова будет производная корня четвертой степени из x.
Решение: представим корень в виде степени. Получим . Теперь легко можно найти производную, зная формулу производной степени.
Таким образом, теперь легко определять производную корня любой степени, просто представляя сам корень в виде степени и зная формулу производной степени.
( 5 оценок, среднее 4.2 из 5 )
Загрузить PDF
Загрузить PDF
На курсах дифференциального исчисления вы наверняка учили правила дифференцирования основных функций, в том числе правило дифференцирования степенной функции. Однако если функция содержит квадратный или другой корень, например , может показаться, что данное правило не подходит. Тем не менее достаточно переписать ее в степенном виде, чтобы получить очевидный ответ. Если функция содержит несколько корней, такую подстановку можно делать сколько угодно раз и использовать правило дифференцирования сложной функции.
-
1
Вспомните правило дифференцирования степенной функции. Обычно это правило учат в самом начале курса дифференциального исчисления. Оно гласит, что производная переменной
, возведенной в степень
, равна:[1]
-
2
Запишите квадратный корень в виде степенной функции. Чтобы найти производную квадратного корня, вспомните, что его можно переписать в виде степенной функции. При этом стоящая под корнем величина записывается в виде основания, которое возводится в степень 1/2. Рассмотрим следующие примеры:[2]
-
3
Примените правило дифференцирования степенной функции. Если под корнем стоит переменная x,
, производная берется следующим образом:[3]
-
4
Упростите результат. На этом этапе необходимо вспомнить, что при отрицательной степени следует найти число, обратное данному числу в той же положительной степени. Степень
означает, что квадратный корень следует поставить в знаменателе дроби.[4]
- Продолжим приведенный выше пример для квадратного корня x и упростим производную:
Реклама
-
1
Вспомните правило дифференцирования сложных функций. Это правило применяется в тех случаях, когда необходимо продифференцировать функцию, аргументом которой выступает другая функция. Согласно данному правилу, комбинация двух функций,
и
, дифференцируется следующим образом:[5]
-
2
-
3
Найдите производные обеих функций. Чтобы применить правило дифференцирования сложных функций к квадратному корню, сначала следует найти производную квадратного корня:[7]
-
;
- После этого находим производную второй функции:
-
-
4
Комбинируем найденные производные согласно правилу дифференцирования сложных функций. Вспоминаем это правило (
) и в результате получаем:[8]
Реклама
-
1
Запомните простое правило дифференцирования любых квадратных корней. Если необходимо найти производную квадратного корня, под которым стоит переменная или функция, используйте следующее правило. Результат всегда будет представлять собой производную подкоренного выражения, поделенную на удвоенный первоначальный квадратный корень. Это можно записать следующим образом:[9]
-
2
Найдите производную подкоренного выражения. Как следует из названия, подкоренное выражение стоит под знаком квадратного корня. Чтобы применить данное правило, найдем производную этого выражения. Рассмотрим следующие примеры:[10]
-
3
Запишите производную подкоренного выражения в числителе дроби. Производная корня представляет собой дробь, в числителе которой стоит производная подкоренного выражения. Для приведенных выше функций получаем следующие выражения:[11]
-
4
Запишите знаменатель в виде удвоенного первоначального квадратного корня. Согласно данному правилу, в знаменателе следует написать удвоенный квадратный корень. Для приведенных выше функций получаем следующие знаменатели:[12]
-
5
Скомбинируем числитель и знаменатель и получим искомую производную. Запишите полную дробь, и у вас получится производная первоначальной функции:[13]
Реклама
Об этой статье
Эту страницу просматривали 52 535 раз.
Была ли эта статья полезной?
Производная: корень из х
Щебетун Виктор
Эксперт по предмету «Математика»
Задать вопрос автору статьи
Найдём производную от функции игрек, равной квадратному корню из икс $y=sqrt{x}$.
Для этого проведём стандартную процедуру вывода формулы производной.
Сначала дадим функции y, равной $f(x)$ в точке x, приращение $Δx$:
$f(x+ Δx)=sqrt{x+ Δx}$.
Теперь рассмотрим, чему равно приращение $y$:
$Δy=f(x+Δx)-f(x)=sqrt{x+ Δx}- sqrt{x}$;
Из этого следует, что:
$frac{Δy}{ Δx}=frac{sqrt{x+ Δx}- sqrt{x}}{Δx}$.
Домножим всё полученное выражение на $(sqrt{x+ Δx}+ sqrt{x})$, в результате чего в числителе получается разность квадратов, равная $(x+ Δx)-x= Δx$, а дробь преображается до следующей формы:
$frac{Δy}{Δx}=frac{1}{sqrt{x+ Δx}+ sqrt{x}}$.
Теперь возьмём предел полученного отношения при $Δx to 0$:
$lim_{ Δx to 0}= frac{Δy}{Δx}=lim_{ Δx to 0}frac{1}{sqrt{x+ Δx}+ sqrt{x}}=frac{1}{sqrt{x}+sqrt{x}}=frac{1}{2sqrt{x}}$.
Таким образом, мы осуществили доказательство того, что производная корня из $x$ равна $frac{1}{2sqrt{x}}$:
$(sqrt{x})’=frac{1}{2 cdot sqrt{x}}$.
Формула для производной от икса под знаком кубического корня выглядит подобным образом:
$(sqrt[3]{x})’=frac{1}{3 cdot sqrt[3]{x^2}}$.
Пример 1
Продифференцируйте следующие функции:
-
$y=sqrt{x} – 9x^2$
-
$y=sqrt{x}-5x^2$.
Решение:
-
$(sqrt{x} – 9x^2)’=frac{1}{2sqrt{x}-18x}$;
-
$(sqrt{x}-5x^2)’=frac{1}{2sqrt{x}-10x}$.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Дата последнего обновления статьи: 16.04.2023
Производная корня
Определение |
Производная корня из икс равна единице деленной на удвоенный корень из икс: $$ (sqrt{x})’ = frac{1}{2sqrt{x}} $$ |
Выводится формула из производной степенной функции $ (x^p)’ = px^{p-1} $ и свойства записи корней $ sqrt[n]{x} = x^{frac{1}{n}} $:
$$ (sqrt{x})’ = (x^frac{1}{2})’ = frac{1}{2}x^{frac{1}{2}-1} = frac{1}{2} x^{-frac{1}{2}} = frac{1}{2 x^frac{1}{2}} = frac{1}{2sqrt{x}} $$
По такому принципу берется производная кубического корня:
$$ (sqrt[3]{x})’ = (x^frac{1}{3})’ = frac{1}{3}x^{frac{1}{3}-1} = frac{1}{3} x^{-frac{2}{3}} = frac{1}{3 x^frac{2}{3}} = frac{1}{3sqrt[3]{x^2}} $$
Для удобства выведем формулу производной корня $ n $-ой степени:
$$ (sqrt[n]{x})’ = (x^frac{1}{n})’ = frac{1}{n}x^{frac{1}{n}-1} = frac{1}{n} x^{frac{1-n}{n}} = frac{1}{n}sqrt[n]{x^{1-n}} $$
Пример 1 |
Найти производную корня из косинуса $ y = sqrt{cos x} $ |
Решение |
Уравнение представляет собой сложную функцию, поэтому сначала берем производную от внешней функции, а затем от внутренней: $$ y’ = (sqrt{cos x})’ = frac{1}{2sqrt{cos x}} cdot (cos x)’ = $$ $$ = frac{1}{2sqrt{cos x}} cdot (-sin x) = -frac{sin x}{2sqrt{cos x}} $$ Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ y’ = -frac{sin x}{2sqrt{cos x}} $$ |
Пример 2 |
Найти производную косинуса корня икс: $ y = cos sqrt{x} $ |
Решение |
Сначала находим внешнюю производную по правилу $ (cos x)’ = -sin x $, затем производную внутренней функции $ (sqrt{x})’ = frac{1}{2sqrt{x}} $ и перемножаем их между собой: $$ y’=(cos sqrt{x})’ = -sin sqrt{x} cdot (sqrt{x})’ = $$ $$ = -sin sqrt{x} cdot frac{1}{2sqrt{x}} = — frac{sin sqrt{x}}{2sqrt{x}} $$ |
Ответ |
$$ y’ = — frac{sin sqrt{x}}{2sqrt{x}} $$ |
урок 3. Математика ЕГЭ
Как найти производную от функции
Как считать производные?
Никто не использует определение производной, чтобы ее вычислить. Как же тогда ее посчитать?
Оказывается, существуют специальные формулы, с помощью которых производная от функции вычисляется достаточно просто.
Формулы производной
Выпишем теперь все формулы производной функции и порешаем примеры.
Производная от константы
Производная от любого числа всегда равна (0):
$$(const)^{/}=0;$$
Пример 1
$$(5)^{/}=0;$$
Производная от (x)
Производная просто от (x) равна (1):
$$x^{/}=1;$$
Производная от степени
$$(x^n)^{/}=n*x^{n-1};$$
Пример 2
$$(x^4)^{/}=4*x^{4-1}=4*x^{3};$$
$$(x^{10})^{/}=10*x^{10-1}=10*x^{9};$$
$$(x^{-3})^{/}=-3*x^{-3-1}=-3*x^{-4};$$
$$(x^{frac{1}{3}})^{/}=frac{1}{3}*x^{1-frac{1}{3}}=frac{1}{3}*x^{frac{2}{3}};$$
Производная от квадратного корня
$$(sqrt{x})^{/}=frac{1}{2sqrt{x}};$$
Тут полезно заметить, что формулу производной от квадратного корня можно не учить. Она сводится к формуле производной от степени:
$$(sqrt{x})^{/}=(x^{frac{1}{2}})^{/}=frac{1}{2}*x^{frac{1}{2}-1}=frac{1}{2}*x^{-frac{1}{2}}=frac{1}{2sqrt{x}};$$
Производная от синуса
$$sin(x)^{/}=cos(x);$$
Производная от косинуса
$$cos(x)^{/}=-sin(x);$$
Производная от тангенса
$$tg(x)^{/}=frac{1}{cos^{2}(x)};$$
Производная от котангенса
$$tg(x)^{/}=frac{-1}{sin^{2}(x)};$$
Производная от экспоненты
$$(e^x)^{/}=e^x;$$
Производная от показательной функции
$$(a^x)^{/}=a^x*ln(a);$$
Пример 3
$$(2^x)^{/}=2^{x}*ln(2);$$
Производная от натурального логарифма
$$(ln(x))^{/}=frac{1}{x};$$
Производная от логарифма
$$(log_{a}(x))^{/}=frac{1}{x*ln(a)};$$
Свойства производной
Помимо формул по вычислению производной еще есть свойства производной, их тоже надо выучить.
Вынесение константы за знак производной
$$(alpha*f(x))^{/}=alpha*(f(x))^{/};$$
Пример 4
$$(3*x^5)^{/}=3*(x^5)^{/}=3*5x^4=15x^4;$$
$$(10sin(x))^{/}==10*(sin(x))^{/}=10*cos(x);$$
Производная от суммы и разности двух функций
$$(f(x) pm g(x))^{/}=(f(x))^{/} pm (g(x))^{/};$$
Пример 5
$$(2x^4+x^3)^{/}=?$$
Тут (f(x)=2x^4), а (g(x)=x^3). Тогда по формуле производной от суммы:
$$(2x^4+x^3)^{/}=(2x^4)^{/}+(x^3)^{/}=2*(x^4)^{/}+(x^3)^{/}=2*4x^3+3x^2=8x^3+3x^2;$$
Пример 6
$$(ln(x)+cos(x))^{/}=(ln(x))^{/}+(cos(x))^{/}=frac{1}{x}-sin(x);$$
Пример 7
$$(x^6-e^x)^{/}=(x^6)^{/}-(e^x)^{/}=6x^5-e^x;$$
Производная от произведения двух функций
$$(f(x)*g(x))^{/}=(f(x))^{/}*g(x)+f(x)*(g(x))^{/};$$
Пример 8
$$(x^2*sin(x))^{/}=?$$
$$(x^2*sin(x))^{/}=(x^2)^{/}*sin(x)+x^2*(sin(x))^{/}=2x*sin(x)+x^2*cos(x);$$
Пример 9
$$(ln(x)*e^x)^{/}=(ln(x))^{/}*e^x+ln(x)*(e^x)^{/}=frac{1}{x}*e^x+ln(x)*e^x;$$
Производная от частного двух функций
$$left(frac{f(x)}{g(x)}right)^{/}=frac{(f(x))^{/}*g(x)-f(x)*(g(x))^{/}}{(g(x))^2};$$
Пример 10
$$left(frac{x^3}{sin(x)}right)^{/}=frac{(x^3)^{/}*sin(x)-x^3*(sin(x))^{/}}{(sin(x))^2}=frac{3x^2*sin(x)-x^3*cos(x)}{(sin(x))^2};$$
Примеры нахождения производной
Рассмотрим несколько примеров нахождения производной, чтобы разобраться, как применяются свойства и формулы производной на практике.
Пример 11
$$(5x^3+2cos(x))^{/}=(5x^3)^{/}+(2cos(x))^{/}=$$
$$=5*(x^3)^{/}+2*(cos(x))^{/}=5*3*x^2+2*(-sin(x))=15x^2-2sin(x);$$
Пример 12
$$left(-frac{3x^2}{2x^4+5x}right)^{/}=-frac{(3x^2)^{/}*(2x^4+5x)-3x^2*(2x^4+5x)^{/}}{(2x^4+5x)^2}=$$
$$=-frac{6x*(2x^4+5x)-3x^2*(8x+5)}{(2x^4+5x)^2}=-frac{12x^5-24x^3+15x^2}{(2x^4+5x)^2};$$
Пример 13
$$(2xsqrt{x})^{/}=(2x)^{/}*sqrt{x}+2x*(sqrt{x})^{/}=$$
$$=2*sqrt{x}+2x*frac{1}{2sqrt{x}}=2*sqrt{x}+frac{2x}{2sqrt{x}}=2*sqrt{x}+sqrt{x}=3sqrt{x};$$
Производная сложной функции
Сложная функция — это функция не от аргумента (x), а от какой-то другой функции: (f(g(x))). Например, функция (sin(x^2)) будет сложной функцией: «внешняя» функция синуса берется от «внутренней» функции степени ((x^2)). Так как под синусом стоит аргумент не (x), а (x^2), то такая функция будет называться сложной.
Еще примеры сложных функций:
-
$$ln(3x^4);$$
Внешняя функция: натуральный логарифм; Внутренняя функция: ((3x^4)). -
$$cos(ln(x));$$
Внешняя функция: косинус; Внутренняя функция: ((ln(x))). -
$$e^{2x^2+3};$$
Внешняя функция: экспонента; Внутренняя функция: ((2x^2+3)). -
$$(sin(x))^3;$$
Внешняя функция: возведение в третью степень; Внутренняя функция: (sin(x)).
Чтобы посчитать производную от такой функции, нужно сначала найти производную внешней функции, а затем умножить результат на производную внутренней функции. В общем виде формула выглядит так:
$$f(g(x))^{/}=f^{/}(g(x))*g^{/}(x);$$
Скорее всего, выглядит непонятно, поэтому давайте разберем на примерах.
Пример 14
$$((cos(x))^4)^{/}=?$$
Внешней функцией тут будет возведение в четвертую степень, поэтому сначала считаем производную от степени по формуле ((x^n)^{/}=n*x^{n-1}). А потом умножаем результат на производную внутренней функции, у нас это функция косинуса, по формуле (cos(x)^{/}=-sin(x)):
$$((cos(x))^4)^{/}=underset{text{внешняя производная}}{underbrace{4*(cos(x))^3}}*underset{text{внутренняя производная}}{underbrace{(cos(x))^{/}}}=$$
$$=4*(cos(x))^3*(-sin(x))=-4*(cos(x))^3*sin(x);$$
Пример 15
$$(e^{2x^3+5})^{/}=?$$
Внешняя функция — это экспонента ((e^x)^{/}=e^x), а внутренняя функция — квадратный многочлен ((2x^3+5)):
$$(e^{2x^3+5})^{/}=e^{2x^3+5}*(2x^3+5)^{/}=e^{2x^3+5}*((2x^3)^{/}+5^{/})=e^{2x^3+5}*6x^2.$$
Пример 16
$$(ln((2x^2+3)^6))^{/}=?$$
Внешняя функция — это натуральной логарифм, берем производную от него по формуле ((ln(x))^{/}=frac{1}{x}), и умножаем на производную внутренней функции, у нас это шестая степень: ((x^n)^{/}=n*x^{n-1}). Но и на этом еще не все: под шестой степенью стоит не просто (x), а квадратный многочлен, значит еще нужно умножить на производную от этого квадратного многочлена:
$$ln((2x^2+3)^6)=frac{1}{(2x^2+3)^6}*((2x^2+3)^6)^{/}*(2x^2+3)^{/}=$$
$$=frac{1}{(2x^2+3)^6}*6*(2x^2+3)^5*(4x+0)=frac{1}{(2x^2+3)^6}*6*(2x^2+3)^5*4x=$$
$$=frac{6*(2x^2+3)^5*4x}{(2x^2+3)^6}=frac{24x*(2x^2+3)^5}{(2x^2+3)^6}=frac{24x}{(2x^2+3)^6}.$$
Вывод формул производной функции
Выведем некоторые из этих формул, чтобы было понимание, откуда они берутся. Но перед этим познакомимся с новыми обозначениями. Запись (f(x)) означает, что функция берется от аргумента (x). Например:
$$f(x)=x^3+sin(x);$$
На месте аргумента (x) может стоять все что угодно, например выражение (2x+3). Обозначение такой функции будет (f(2x+3)), а сама функция примет вид:
$$f(2x+3)=(2x+3)^3+sin(2x+3);$$
То есть, везде вместо аргумента (x) мы пишем (2x+3).
И несколько важных замечаний про (Delta f(x)) и (Delta x). Напомню, что значок (Delta) означает изменение некоторой величины. (Delta x) — изменения координаты (x) при переходе от одной точки на графике функции к другой; (Delta f(x)) — разница координат (y) между двумя точками на графике. Подробнее про это можно почитать в главе, где мы вводим понятие производной. Распишем (Delta x) для двух близких точек на графике функции (O) и (B):
$$Delta x=x_B-x_O;$$
Отсюда можно выразить (x_B):
$$x_B=x_O+Delta x;$$
Абсцисса (координата точки по оси (x)) точки (B) получается путем сложения абсциссы точки (O) и (Delta x).
Кстати, функцию (f(x)=x^3+sin(x)) от аргумента (x_B=x_O+Delta x) можно расписать:
$$f(x_B)=f(x_O+Delta x)=(x_O+Delta x)^3+sin(x_O+Delta x);$$
Рис.1. График произвольной функции
И распишем (Delta f):
$$Delta f(x)=f(x_B)-f(x_O)=f(x_O+Delta x)-f(x_O);$$
Тогда определение производной можно записать в виде:
$$f^{/}(x)=frac{Delta f(x)}{Delta x}=frac{f(x_O+Delta x)-f(x_O)}{Delta x} quad при quad Delta x to 0;$$
За (x_O) обычно обозначают точку, в окрестности которой берут производную. То есть, получается (x_O) — это абсцисса начальной точки, а (x_O+Delta x) — абсцисса конечной точки.
Нам это пригодится при выводе формул производной.
Производная квадратичной функции
Выведем теперь формулу производной от (f(x)=x^2), воспользовавшись определением производной:
$$f^{/}(x)=frac{Delta f(x)}{Delta x}=frac{f(x+Delta x)-f(x)}{Delta x} quad при quad Delta x to 0;$$
Распишем числитель (f(x+Delta x)-f(x)) с учетом, что (f(x)=x^2):
$$f(x+Delta x)-f(x)=(x+Delta x)^2-x^2=x^2+2xDelta x+(Delta x)^2-x^2=2xDelta x+(Delta x)^2;$$
Подставим в определение производной:
$$f^{/}(x)=frac{2xDelta x+(Delta x)^2}{Delta x}=frac{Delta x*(2x+Delta x)}{Delta x}=2x+Delta x;$$
Напоминаю, что (Delta x) это бесконечно малая величина:
$$(Delta x)^2 ll 0;$$
Поэтому этим слагаемым можно пренебречь. Вот мы и получили формулу для производной от квадратной функции:
$$f^{/}(x)=(x^2)^{/}=2x;$$
Производная от третьей степени
Аналогичные рассуждения можно провести для функции третьей степени:
$$f(x)=x^3;$$
Воспользуемся определением производной:
$$f^{/}(x)=frac{f(x+Delta x)-f(x)}{Delta x} quad при quad Delta x to 0;$$
$$f(x+Delta x)-f(x)=(x+Delta x)^3-x^3=(x+Delta x-x)((x+Delta x)^2+(x+Delta x)*x+x^2)=$$
$$=Delta x*(x^2+2x*Delta x+(Delta x)^2+x^2+x*Delta x+x^2)=Delta x*(3x^2+3xDelta x);$$
$$f^{/}(x)=frac{f(x+Delta x)-f(x)}{Delta x}=frac{Delta x*(3x^2+3xDelta x)}{Delta x}=3x^2+3xDelta x;$$
Так как при умножении на бесконечно малую величину получается бесконечно малая величина, то слагаемым (3xDelta x) можно пренебречь:
$$f^{/}(x)=(x^3)^{/}=3x^2;$$
Точно таким же способом можно вывести формулы производных для любых степеней:
$$(x^4)^{/}=4x^3;$$
$$(x^5)^{/}=5x^4;$$
$$…$$
$$(x^n)^{/}=n*x^{n-1};$$
Кстати, эта формула справедлива и для дробных степеней.
Вывод остальных формул делается похожим образом, только там может понадобиться знание пределов. Вывод всех формул разбирается в университетском курсе математического анализа.
Что такое производная функции простыми словами? Для чего нужна производная? Определение производной
Как решать задания №7 из ЕГЭ по математике. Анализ графиков при помощи производной. Графики производной и графики функции
Исследуем функцию с помощью производной. Находим точки минимума и максимума, наибольшее и наименьшее значение функции. Точки экстремума. Промежутки возрастания и убывания.
Связь коэффициента наклона и тангенса угла наклона касательной к функции и производной функции в точке касания. Задание №7 в ЕГЭ по математике.